Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice?
Abstract
:1. Introduction
2. Glaucoma
3. Glaucoma and IOP
4. Glaucoma and Central Corneal Thickness
5. Age and Ocular Stiffness
6. Hysteresis and the Cornea
7. Corneal Hysteresis Measurement
8. Corneal Hysteresis and Glaucoma
9. Primary Open-Angle Glaucoma (POAG)
10. Angle-Closure Glaucoma (ACG)
11. Pseudoexfoliation Glaucoma (PXFG)
12. Normal-Tension Glaucoma (NTG)
13. Corneal Hysteresis and Glaucomatous Progression
14. Effect of IOP Reduction on Hysteresis
15. Limitations
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Keeler, C.R. The ophthalmoscope in the lifetime of Hermann von Helmholtz. Arch. Ophthalmol. 2002, 120, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Eddy, D.M.; Sanders, L.E.; Eddy, J.F. The value of screening for glaucoma with tonometry. Surv. Ophthalmol. 1983, 28, 194–205. [Google Scholar] [CrossRef]
- Johnson, C.A.; Wall, M.; Thompson, H.S. A history of perimetry and visual field testing. Optom. Vis. Sci. 2011, 88, E8–E15. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, R.; Sindhushree, R. Glaucoma Surgery. Gems Ophthalmol. Glaucoma 2018, 355–474. [Google Scholar]
- Leffler, C.T.; Schwartz, S.G.; Giliberti, F.M.; Young, M.T.; Bermudez, D. What was Glaucoma Called Before the 20th Century? Ophthalmol. Eye Dis. 2015, 7, 21–33. [Google Scholar] [CrossRef]
- Realini, T. A history of glaucoma pharmacology. Optom. Vis. Sci. 2011, 88, 36–38. [Google Scholar] [CrossRef]
- Brandão, L.M.; Grieshaber, M.C. Update on minimally invasive glaucoma surgery (MIGS) and new implants. J. Ophthalmol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, P.; Greene, G.; O’Brien, C. Current applications of machine learning in the screening and diagnosis of glaucoma: A systematic review and meta-analysis. Int. J. Ophthalmol. 2020, 13, 149. [Google Scholar] [CrossRef]
- Frezzotti, P.; Pescucci, C.; Papa, F.T.; Iester, M.; Mittica, V.; Motolese, I.; Peruzzi, S.; Artuso, R.; Longo, I.; Mencarelli, M.A.; et al. Association between primary open-angle glaucoma (POAG) and WDR36 sequence variance in Italian families affected by POAG. Br. J. Ophthalmol. 2011, 95, 624–626. [Google Scholar] [CrossRef] [Green Version]
- Schmier, J.K.; Halpern, M.T.; Jones, M.L. The economic implications of glaucoma: A literature review. Pharmacoeconomics 2007, 25, 287–308. [Google Scholar] [CrossRef]
- Iroku-Malize, T.; Kirsch, S. Eye Conditions in Older Adults: Open-Angle Glaucoma. FP Essent 2016, 445, 11–16. [Google Scholar] [PubMed]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Mozaffarieh, M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv. Ophthalmol. 2007, 52 (Suppl. S2), S162–S173. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, W.S.; Ahmed, O.M.; Waisbourd, M.; Katz, L.J. A review of potential novel glaucoma therapeutic options independent of intraocular pressure. Surv. Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Stamper, R.L. A history of intraocular pressure and its measurement. Optom Vis Sci 2011, 88, E16–E28. [Google Scholar] [CrossRef]
- Ivanišević, M.; Stanić, R.; Ivanišević, P.; Vuković, A. Albrecht von Graefe (1828-1870) and his contributions to the development of ophthalmology. Int. Ophthalmol. 2020, 40, 1029–1033. [Google Scholar] [CrossRef]
- Goldmann, H. A new applanation tonometer. Bull. Mem. Soc. Fr. Ophtalmol. 1954, 67, 474–477; discussion 477–478. [Google Scholar]
- Wu, Z.; Medeiros, F.A. Recent developments in visual field testing for glaucoma. Curr. Opin. Ophthalmol. 2018, 29, 141–146. [Google Scholar] [CrossRef]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K., 2nd; Wilson, M.R.; et al. The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 714–720; discussion 730–829. [Google Scholar] [CrossRef]
- Miglior, S.; Pfeiffer, N.; Torri, V.; Zeyen, T.; Cunha-Vaz, J.; Adamsons, I. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 2007, 114, 3–9. [Google Scholar] [CrossRef]
- Gordon, M.O.; Torri, V.; Miglior, S.; Beiser, J.A.; Floriani, I.; Miller, J.P.; Gao, F.; Adamsons, I.; Poli, D.; D’Agostino, R.B.; et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007, 114, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iester, M.; Mete, M.; Figus, M.; Frezzotti, P. Incorporating corneal pachymetry into the management of glaucoma. J. Cataract. Refract. Surg. 2009, 35, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Nouri-Mahdavi, K.; Hoffman, D.; Coleman, A.L.; Liu, G.; Li, G.; Gaasterland, D.; Caprioli, J. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 2004, 111, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Guedes, G.; Tsai, J.C.; Loewen, N.A. Glaucoma and aging. Curr. Aging Sci. 2011, 4, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; McNally, S.; Kilpatrick, J.I.; Jarvis, S.P.; O’Brien, C.J. Aging and ocular tissue stiffness in glaucoma. Surv. Ophthalmol. 2018, 63, 56–74. [Google Scholar] [CrossRef]
- Wang, K.; Johnstone, M.A.; Xin, C.; Song, S.; Padilla, S.; Vranka, J.A.; Acott, T.S.; Zhou, K.; Schwaner, S.A.; Wang, R.K.; et al. Estimating Human Trabecular Meshwork Stiffness by Numerical Modeling and Advanced OCT Imaging. Invest. Ophthalmol. Vis. Sci. 2017, 58, 4809–4817. [Google Scholar] [CrossRef]
- Hopkins, A.A.; Murphy, R.; Irnaten, M.; Wallace, D.M.; Quill, B.; O’Brien, C. The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping. Am. J. Physiol. Cell Physiol. 2020, 319, C611–C623. [Google Scholar] [CrossRef]
- McElnea, E.M.; Quill, B.; Docherty, N.G.; Irnaten, M.; Siah, W.F.; Clark, A.F.; O’Brien, C.J.; Wallace, D.M. Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol. Vis. 2011, 17, 1182–1191. [Google Scholar]
- Choi, W.; Bae, H.W.; Cho, H.; Kim, E.W.; Kim, C.Y.; Seong, G.J. Evaluation of the Relationship Between Age and Trabecular Meshwork Height to Predict the Risk of Glaucoma. Sci. Rep. 2020, 10, 7115. [Google Scholar] [CrossRef]
- Albon, J.; Purslow, P.P.; Karwatowski, W.S.; Easty, D.L. Age related compliance of the lamina cribrosa in human eyes. Br. J. Ophthalmol. 2000, 84, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Louizos, C.; Yáñez, J.A.; Forrest, L.; Davies, N.M. Understanding the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships. J. Pharm. Pharm. Sci. A Publ. Can. Soc. Pharm. Sci. Soc. Can. Des Sci. Pharm. 2014, 17, 34. [Google Scholar] [CrossRef]
- Rio-Cristobal, A.; Martin, R. Corneal assessment technologies: Current status. Surv. Ophthalmol. 2014, 59, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.; Jones, R.; Nguyen, T.; Grazier, J. Stress-controlled viscoelastic tensile response of bovine cornea. J. Biomech. 2007, 40, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Kling, S.; Bekesi, N.; Dorronsoro, C.; Pascual, D.; Marcos, S. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation. PLoS ONE 2014, 9, e104904. [Google Scholar] [CrossRef]
- Hessemer, V.; Dick, B. Viscoelastic substances in cataract surgery. Principles and current overview. Klin. Monbl. Augenheilkd. 1996, 209, 55–61. [Google Scholar] [CrossRef]
- Kobayashi, A.; Staberg, L.; Schlegel, W. Viscoelastic properties of human cornea. Exp. Mech. 1973, 13, 497–503. [Google Scholar] [CrossRef]
- Medeiros, F.A.; Meira-Freitas, D.; Lisboa, R.; Kuang, T.M.; Zangwill, L.M.; Weinreb, R.N. Corneal hysteresis as a risk factor for glaucoma progression: A prospective longitudinal study. Ophthalmology 2013, 120, 1533–1540. [Google Scholar] [CrossRef] [Green Version]
- Susanna, C.N.; Diniz-Filho, A.; Daga, F.B.; Susanna, B.N.; Zhu, F.; Ogata, N.G.; Medeiros, F.A. A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor for Predicting Development of Glaucoma. Am. J. Ophthalmol. 2018, 187, 148–152. [Google Scholar] [CrossRef]
- Jammal, A.A.; Medeiros, F.A. Corneal hysteresis: Ready for prime time? Curr. Opin. Ophthalmol. 2022. [Google Scholar] [CrossRef]
- Terai, N.; Raiskup, F.; Haustein, M.; Pillunat, L.E.; Spoerl, E. Identification of biomechanical properties of the cornea: The ocular response analyzer. Curr. Eye Res. 2012, 37, 553–562. [Google Scholar] [CrossRef]
- Abd Elaziz, M.S.; Elsobky, H.M.; Zaky, A.G.; Hassan, E.A.M.; KhalafAllah, M.T. Corneal biomechanics and intraocular pressure assessment after penetrating keratoplasty for non keratoconic patients, long term results. BMC Ophthalmol. 2019, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Luce, D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 2005, 31, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.; Pye, D. A Clinical Description of Ocular Response Analyzer Measurements. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2911–2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Wang, D.; Wu, Y.; Meng, X.; Chen, B.; Ge, M.; Huang, Y. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016, 94, e317–e324. [Google Scholar] [CrossRef]
- Fujishiro, T.; Matsuura, M.; Fujino, Y.; Murata, H.; Tokumo, K.; Nakakura, S.; Kiuchi, Y.; Asaoka, R. The Relationship Between Corvis ST Tonometry Parameters and Ocular Response Analyzer Corneal Hysteresis. J. Glaucoma 2020, 29, 479–484. [Google Scholar] [CrossRef]
- Carbonaro, F.; Andrew, T.; Mackey, D.A.; Spector, T.D.; Hammond, C.J. The heritability of corneal hysteresis and ocular pulse amplitude: A twin study. Ophthalmology 2008, 115, 1545–1549. [Google Scholar] [CrossRef] [Green Version]
- Haseltine, S.J.; Pae, J.; Ehrlich, J.R.; Shammas, M.; Radcliffe, N.M. Variation in corneal hysteresis and central corneal thickness among black, hispanic and white subjects. Acta Ophthalmol. 2012, 90, e626–e631. [Google Scholar] [CrossRef]
- Laiquzzaman, M.; Bhojwani, R.; Cunliffe, I.; Shah, S. Diurnal variation of ocular hysteresis in normal subjects: Relevance in clinical context. Clin. Exp. Ophthalmol. 2006, 34, 114–118. [Google Scholar] [CrossRef]
- Zhang, B.; Shweikh, Y.; Khawaja, A.P.; Gallacher, J.; Bauermeister, S.; Foster, P.J. Associations with Corneal Hysteresis in a Population Cohort: Results from 96 010 UK Biobank Participants. Ophthalmology 2019, 126, 1500–1510. [Google Scholar] [CrossRef]
- Mangouritsas, G.; Morphis, G.; Mourtzoukos, S.; Feretis, E. Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol. 2009, 87, 901–905. [Google Scholar] [CrossRef]
- Anand, A.; De Moraes, C.G.; Teng, C.C.; Tello, C.; Liebmann, J.M.; Ritch, R. Corneal hysteresis and visual field asymmetry in open angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2010, 51, 6514–6518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dana, D.; Mihaela, C.; Raluca, I.; Miruna, C.; Catalina, I.; Miruna, C.; Schmitzer, S.; Catalina, C. Corneal hysteresis and primary open angle glaucoma. Rom. J. Ophthalmol. 2015, 59, 252–254. [Google Scholar] [PubMed]
- Jiménez-Santos, M.A.; Saénz-Francés, F.; Sánchez-Jean, R.; Martinez-de-la Casa, J.M.; García-Feijoo, J.; Jañez-Escalada, L. Synergic effect of corneal hysteresis and central corneal thickness in the risk of early-stage primary open-angle glaucoma progression. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2743–2751. [Google Scholar] [CrossRef] [PubMed]
- Sullivan-Mee, M.; Billingsley, S.C.; Patel, A.D.; Halverson, K.D.; Alldredge, B.R.; Qualls, C. Ocular Response Analyzer in subjects with and without glaucoma. Optom. Vis. Sci. 2008, 85, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shen, M.; Wang, J.; Fang, A.; Xu, A.; Fang, H.; Lu, F. Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. Am. J. Ophthalmol. 2009, 147, 1061–1066.e1062. [Google Scholar] [CrossRef]
- Narayanaswamy, A.; Su, D.H.; Baskaran, M.; Tan, A.C.S.; Nongpiur, M.E.; Htoon, H.M.; Wong, T.Y.; Aung, T. Comparison of Ocular Response Analyzer Parameters in Chinese Subjects With Primary Angle-Closure and Primary Open-Angle Glaucoma. Arch. Ophthalmol. 2011, 129, 429–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nongpiur, M.E.; Png, O.; Chiew, J.W.; Fan, K.R.; Girard, M.J.; Wong, T.; Goh, D.; Perera, S.A.; Aung, T. Lack of association between corneal hysteresis and corneal resistance factor with glaucoma severity in primary angle closure glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6879–6885. [Google Scholar] [CrossRef] [Green Version]
- Ayala, M. Corneal Hysteresis in Normal Subjects and in Patients with Primary Open-Angle Glaucoma and Pseudoexfoliation Glaucoma. Ophthalmic Res. 2011, 46, 187–191. [Google Scholar] [CrossRef]
- Yazgan, S.; Celik, U.; Alagöz, N.; Taş, M. Corneal Biomechanical Comparison of Pseudoexfoliation Syndrome, Pseudoexfoliative Glaucoma and Healthy Subjects. Curr. Eye Res. 2015, 40, 470–475. [Google Scholar] [CrossRef]
- Yenerel, N.M.; Gorgun, E.; Kucumen, R.B.; Oral, D.; Dinc, U.A.; Ciftci, F. Corneal biomechanical properties of patients with pseudoexfoliation syndrome. Cornea 2011, 30, 983–986. [Google Scholar] [CrossRef]
- Pradhan, Z.S.; Deshmukh, S.; Dixit, S.; Sreenivasaiah, S.; Shroff, S.; Devi, S.; Webers, C.A.; Rao, H.L. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST. PLoS ONE 2020, 15, e0241296. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Klein, R.; Sponsel, W.E.; Franke, T.; Cantor, L.B.; Martone, J.; Menage, M.J. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology 1992, 99, 1499–1504. [Google Scholar] [CrossRef]
- Park, K.; Shin, J.; Lee, J. Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: A retrospective study. BMC Ophthalmol. 2018, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Lee, J.W.; Kim, E.A.; Caprioli, J. The effect of corneal biomechanical properties on rebound tonometer in patients with normal-tension glaucoma. Am J Ophthalmol 2015, 159, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Grise-Dulac, A.; Saad, A.; Abitbol, O.; Febbraro, J.L.; Azan, E.; Moulin-Tyrode, C.; Gatinel, D. Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J. Glaucoma 2012, 21, 486–489. [Google Scholar] [CrossRef]
- Kaushik, S.; Pandav, S.S.; Banger, A.; Aggarwal, K.; Gupta, A. Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am. J. Ophthalmol. 2012, 153, 840–849.e842. [Google Scholar] [CrossRef]
- Morita, T.; Shoji, N.; Kamiya, K.; Fujimura, F.; Shimizu, K. Corneal biomechanical properties in normal-tension glaucoma. Acta Ophthalmol. 2012, 90, e48–e53. [Google Scholar] [CrossRef]
- Ehrlich, J.R.; Radcliffe, N.M.; Shimmyo, M. Goldmann applanation tonometry compared with corneal-compensated intraocular pressure in the evaluation of primary open-angle Glaucoma. BMC Ophthalmol. 2012, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Shoji, N.; Morita, T.; Hirasawa, K.; Matsumura, K.; Kasahara, M.; Shimizu, K. Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed. Int. J. Ophthalmol. 2016, 9, 973–978. [Google Scholar] [CrossRef]
- Doyle, A.; Bensaid, A.; Lachkar, Y. Central corneal thickness and vascular risk factors in normal tension glaucoma. Acta Ophthalmol. Scand. 2005, 83, 191–195. [Google Scholar] [CrossRef]
- Helmy, H.; Leila, M.; Zaki, A.A. Corneal biomechanics in asymmetrical normal-tension glaucoma. Clin. Ophthalmol. 2016, 10, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Congdon, N.G.; Broman, A.T.; Bandeen-Roche, K.; Grover, D.; Quigley, H.A. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am. J. Ophthalmol. 2006, 141, 868–875. [Google Scholar] [CrossRef]
- De Moraes, C.V.G.; Hill, V.; Tello, C.; Liebmann, J.M.; Ritch, R. Lower Corneal Hysteresis is Associated with More Rapid Glaucomatous Visual Field Progression. J. Glaucoma 2012, 21, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Estrela, T.; Jammal, A.A.; Mariottoni, E.B.; Urata, C.N.; Ogata, N.G.; Berchuck, S.I.; Medeiros, F.A. The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients. J. Glaucoma 2020, 29, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tatham, A.J.; Abe, R.Y.; Diniz-Filho, A.; Zangwill, L.M.; Weinreb, R.N.; Medeiros, F.A. Corneal hysteresis and progressive retinal nerve fiber layer loss in glaucoma. Am. J. Ophthalmol. 2016, 166, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Kamalipour, A.; Moghimi, S.; Eslani, M.; Nishida, T.; Mohammadzadeh, V.; Micheletti, E.; Girkin, C.A.; Fazio, M.A.; Liebmann, J.M.; Zangwill, L.M.; et al. A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor of Central Visual Field Progression in Glaucoma. Am. J. Ophthalmol 2022. [Google Scholar] [CrossRef]
- Agarwal, D.R.; Ehrlich, J.R.; Shimmyo, M.; Radcliffe, N.M. The relationship between corneal hysteresis and the magnitude of intraocular pressure reduction with topical prostaglandin therapy. Br. J. Ophthalmol. 2012, 96, 254–257. [Google Scholar] [CrossRef]
- Tsikripis, P.; Papaconstantinou, D.; Koutsandrea, C.; Apostolopoulos, M.; Georgalas, I. The effect of prostaglandin analogs on the biomechanical properties and central thickness of the cornea of patients with open-angle glaucoma: A 3-year study on 108 eyes. Drug. Des. Devel. Ther. 2013, 7, 1149–1156. [Google Scholar] [CrossRef] [Green Version]
- Pillunat, K.R.; Spoerl, E.; Terai, N.; Pillunat, L.E. Effect of selective laser trabeculoplasty on corneal biomechanics. Acta Ophthalmol. 2016, 94, e501–e504. [Google Scholar] [CrossRef]
- Hirneiß, C.; Sekura, K.; Brandlhuber, U.; Kampik, A.; Kernt, M. Corneal biomechanics predict the outcome of selective laser trabeculoplasty in medically uncontrolled glaucoma. Graefes. Arch. Clin. Exp. Ophthalmol. 2013, 251, 2383–2388. [Google Scholar] [CrossRef]
- Pakravan, M.; Afroozifar, M.; Yazdani, S. Corneal Biomechanical Changes Following Trabeculectomy, Phaco-trabeculectomy, Ahmed Glaucoma Valve Implantation and Phacoemulsification. J. Ophthalmic Vis. Res. 2014, 9, 7–13. [Google Scholar] [PubMed]
- Fujino, Y.; Murata, H.; Matsuura, M.; Nakakura, S.; Shoji, N.; Nakao, Y.; Kiuchi, Y.; Asaoka, R. The Relationship between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy. J. Glaucoma 2020, 29, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Sorkhabi, R.; Najafzadeh, F.; Sadeghi, A.; Ahoor, M.; Mahdavifard, A. Corneal biomechanical changes after trabeculectomy with mitomycin C in primary open-angle glaucoma and pseudoexfoliation glaucoma. Int. Ophthalmol. 2019, 39, 2741–2748. [Google Scholar] [CrossRef] [PubMed]
- Pillunat, K.R.; Spoerl, E.; Terai, N.; Pillunat, L.E. Corneal biomechanical changes after trabeculectomy and the impact on intraocular pressure measurement. J. Glaucoma 2017, 26, 278–282. [Google Scholar] [CrossRef] [PubMed]
Study Lead Author and Year | Study Type | Number of Patients | Main Finding |
---|---|---|---|
POAG | |||
Sullivan-Mee et al., 2008 [54] | Retrospective | 298 | CH Values are useful in differentiating between patients with and without POAG. |
Anand et al., 2010 [51] | Prospective | 117 | Asymmetric POAG was associated with asymmetry in ORA parameters. Lower CH was associated with more advanced glaucomatous disease. |
Dana et al., 2015 [52] | Observational | 55 | Positive, statistically significant correlation between CH values and VFI. Lower CH Values are associated with lower VFI. |
Jiménez-Santos et al., 2021 [53] | Cohort | 1573 | CH can be considered as a risk factor of progression in early-stage POAG. |
ACG | |||
Sun et al., 2009 [55] | Prospective | 80 | CH was significantly lower in chronic PACG patients. |
Narayanaswamy et al., 2011 [56] | Prospective | 443 | Corneal hysteresis was lower in eyes with glaucoma and after adjusting for confounding factors, lower CH values was found in PACG eyes. |
Nongpiur et al., 2015 [57] | Prospective | 204 | Severity of glaucoma in PACG is not associated with lower CH values. |
PXFG | |||
Ayala et al., 2011 [58] | Retrospective | 90 | CH was significantly lower in PXFG patients than in POAG normal patients, but no significance was found between the POAG and the normal group. |
Yenerel et al., 2011 [60] | Prospective | 52 | CH reduces in patients with both unilateral and bilateral PEX. |
Yazgan et al., 2015 [59] | Prospective | 118 | CH values were decreased in patients with PXFG, more so than in patients with solely PEX. |
Pradhan et al., 2020 [61] | Prospective | 66 | After adjusting for IOP, CH values for normal eyes, POAG eyes and PEX eyes did not differ. |
NTG | |||
Morita et al., 2012 [67] | Prospective | 166 | IOPcc and CH values were significantly higher in NTG eyes than in normal eyes. |
Ehrlich et al., 2012 [68] | Retrospective | 614 | Compared to GAT, IOPcc may be a superior test in the evaluation of glaucoma as it may account for measurement errors induced by corneal biomechanics. |
Hong et al., 2016 [69] | Prospective | 56 | Higher IOPcc and lower CH are associated with VF progression in NTG patients. |
Park et al., 2018 [63] | Retrospective | 188 | Lower CH values are associated with a smaller rim area and volume, thinner RNFL, and a larger cup disc ratio after adjusting for CCT, age, IOP, and disc size. |
Study Lead Author and Year | Study Type | Number of Patients | Main Finding |
---|---|---|---|
Congdon et al., 2006 [72] | Observational | 230 | Lower CH values were associated with visual field progression. |
De Moraes et al., 2012 [73] | Prospective | 153 | High correlation between VF progression and CH values. |
Medeiros et al., 2013 [37] | Prospective | 68 | Eyes with lower CH had faster rates of visual field loss than those with higher CH. |
Zhang et al., 2016 [75] | Prospective | 133 | Lower CH was significantly associated with faster rates of RNFL loss over time. |
Susanna et al., 2018 [38] | Prospective | 199 | Baseline lower CH measurements were significantly associated with an increased risk of developing glaucomatous visual field defects over time. |
Estrela et al., 2020 [74] | Prospective | 126 | In eyes with asymmetric CH values, there was an associated asymmetric VF progression, with lower CH values associated with greater rates of progression |
Kamalipour et al., 2022 [76] | Prospective | 143 | Lower CH values were associated with a greater risk of progression on 10-2 VF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murtagh, P.; O’Brien, C. Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice? J. Clin. Med. 2022, 11, 2895. https://doi.org/10.3390/jcm11102895
Murtagh P, O’Brien C. Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice? Journal of Clinical Medicine. 2022; 11(10):2895. https://doi.org/10.3390/jcm11102895
Chicago/Turabian StyleMurtagh, Patrick, and Colm O’Brien. 2022. "Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice?" Journal of Clinical Medicine 11, no. 10: 2895. https://doi.org/10.3390/jcm11102895
APA StyleMurtagh, P., & O’Brien, C. (2022). Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice? Journal of Clinical Medicine, 11(10), 2895. https://doi.org/10.3390/jcm11102895