Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Purification of PBMCs and DNA/RNA Extraction
2.3. Quantification of HIV-Reservoir Size
2.4. HIV Viral-Splicing Analysis
2.5. Statistical Analysis
3. Results
Study Subjects
4. Patients
- HIV+ group: PLWH, who never were exposed to HCV (negative for both HCV PCR and antibodies).
- HIV+/HCV- group: PLWH coinfected with HCV, who spontaneously cleared HCV infection (negative HCV PCR but positive for HCV antibodies).
- HIV+/HCV+ group: PLWH chronically infected HCV (positive for both HCV PCR and antibodies), who had never been treated for HCV at the baseline but who achieved SVR with DAAs at the endpoint.
HIV Reservoir Size and Dynamics
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Arithmetic mean ratio |
BMI | Body mass index |
ART | Antiretroviral therapy |
COVIHEP | Multidisciplinary Group of Viral Coinfection HIV/Hepatitis |
DAAs | Direct acting antivirals |
DNA | Deoxyribonucleic acid |
GLM | Generalized linear models |
HCV | Hepatitis C virus |
HIV | Human immunodeficiency virus |
IDUs | Intravenous drug users |
IFNL3 (IL | 28B) |
Interferon | λ3 (interleukin 28B) |
IQR | Interquartile range |
INIs | Integrase inhibitors |
MSM | Men who have sex with men |
MSW | Men who have sex with women/women who have sex with men |
mRNA | Messenger ribonucleic acid |
NK cells | Natural killer cells |
NRTIs | Nucleoside analogue reverse transcriptase inhibitors |
NNRTIs | Non-nucleoside reverse transcriptase inhibitors |
γδT cells | Gamma delta T cell |
PBMCs | Peripheral-blood mononuclear cells |
PCR | Polymerase chain reaction |
PIs | Protease inhibitors |
PLWH | Persons living with HIV |
qPCR | Quantitative PCR |
rCD4+ T cells | Resting CD4+ T cells |
rCD4 T | PBMCs |
SVR | Sustained virological response |
References
- OMS. UNAIDS-Global HIV & AIDS Statistics—2020 Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 22 February 2022).
- WHO. HIV and Hepatitis Coinfections. Available online: https://www.who.int/hiv/topics/hepatitis/en/ (accessed on 22 February 2022).
- Rallón, N.; García, M.; García-Samaniego, J.; Rodríguez, N.; Cabello, A.; Restrepo, C.; Álvarez, B.; García, R.; Górgolas, M.; Benito, J.M. HCV coinfection contributes to HIV pathogenesis by increasing immune exhaustion in CD8 T-cells. PLoS ONE 2017, 12, e0173943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrysanthidis, T.; Loli, G.; Metallidis, S.; Germanidis, G. Mechanisms of Accelerated Liver Fibrosis in HIV-HCV Coinfection. Aids Rev. 2017, 19, 148–155. [Google Scholar] [CrossRef]
- Thomas, D.A.J.; Rai, R.; Anania, F.; Schaeffer, M.; Nea, G. The Natural History of Hepatitis C Virus Infection. JAMA 2000, 284, 450–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veenhuis, R.T.; Astemborski, J.; Chattergoon, M.A.; Greenwood, P.; Jarosinski, M.; Moore, R.D.; Mehta, S.H.; Cox, A.L. Systemic Elevation of Proinflammatory Interleukin 18 in HIV/HCV Coinfection versus HIV or HCV Monoinfection. Clin. Infect. Dis. 2017, 64, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Li, D.K.; Chung, R.T. Overview of Direct-Acting Antiviral Drugs and Drug Resistance of Hepatitis C Virus. Methods Mol Biol. 2008, 7, 798–812. [Google Scholar] [CrossRef]
- Coiras, M.; López-Huertas, M.R.; Pérez-Olmeda, M.; Alcamí, J. Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat. Rev. Microbiol. Genet. 2009, 7, 798–812. [Google Scholar] [CrossRef]
- Buzon, M.J.; Sun, H.; Li, C.; Shaw, A.; Seiss, K.; Ouyang, Z.; Martin-Gayo, E.; Leng, J.; Henrich, T.J.; Li, J.Z.; et al. HIV-1 persistence in CD4+ T cells with stem cell–like properties. Nat. Med. 2014, 20, 139–142. [Google Scholar] [CrossRef]
- Chomont, N.; El-Far, M.; Ancuta, P.; Trautmann, L.; Procopio, F.A.; Yassine-Diab, B.; Boucher, G.; Boulassel, M.-R.; Ghattas, G.; Brenchley, J.M.; et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 2009, 15, 893–900. [Google Scholar] [CrossRef]
- García, M.; Buzón, M.J.; Benito, J.M.; Rallón, N. Peering into the HIV reservoir. Rev. Med. Virol. 2018, 28, e1981. [Google Scholar] [CrossRef]
- Rocco, J.; Mellors, J.W.; Macatangay, B.J. Regulatory T cells: The ultimate HIV reservoir? J. Virus. Erad. 2018, 4, 209–214. [Google Scholar] [CrossRef]
- Wong, M.E.; Jaworowski, A.; Hearps, A.C. The HIV Reservoir in Monocytes and Macrophages. Front. Immunol. 2019, 10, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, K.; Winckelmann, A.; Palmer, S. HIV-1 Reservoirs During Suppressive Therapy. Trends Microbiol. 2016, 24, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Bar, K.J.; Li, J.Z. Lessons learned from HIV antiretroviral treatment interruption trials. Curr. Opin. HIV AIDS 2018, 13, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-X.; Xu, Y.; Sullivan, J.; Souder, E.; Argyris, E.G.; Acheampong, E.A.; Fisher, J.; Sierra, M.; Thomson, M.M.; Najera, R.; et al. IL-7 is a potent and proviral strain–specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J. Clin. Investig. 2005, 115, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlamini, Z.; Hull, R. Can the HIV-1 splicing machinery be targeted for drug discovery? HIV AIDS 2017, 9, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Brigati, C.; Giacca, M.; Noonan, D.M.; Albini, A. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol. Lett. 2003, 220, 57–65. [Google Scholar] [CrossRef] [Green Version]
- López-Huertas, M.R.; Palladino, C.; Garrido-Arquero, M.; Esteban-Cartelle, B.; Sanchez-Carrillo, M.; Martinez-Roman, P.; Martín-Carbonero, L.; Ryan, P.; Domínguez-Domínguez, L.; De Los Santos, I.; et al. HCV-coinfection is related to an increased HIV-1 reservoir size in cART-treated HIV patients: A cross-sectional study. Sci. Rep. 2019, 9, 5606. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Román, P.; López-Huertas, M.R.; Crespo-Bermejo, C.; Arca-Lafuente, S.; Cortegano, I.; Millares, D.E.V.; Gaspar, M.L.; Martín-Carbonero, L.; Domínguez-Domínguez, L.; Ryan, P.; et al. Hepatitis C Virus Influences HIV-1 Viral Splicing in Coinfected Patients. J. Clin. Med. 2020, 9, 2091. [Google Scholar] [CrossRef]
- Field, N.; Cohen, T.; Struelens, M.J.; Palm, D.; Cookson, B.; Glynn, J.R.; Gallo, V.; Ramsay, M.; Sonnenberg, P.; Maccannell, D.; et al. Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): An extension of the STROBE statement. J. Virol. 2003, 77, 10119–10124. [Google Scholar] [CrossRef]
- Brussel, A.; Sonigo, P. Analysis of Early Human Immunodeficiency Virus Type 1 DNA Synthesis by Use of a New Sensitive Assay for Quantifying Integrated Provirus. J. Virol. 2003, 77, 10119–10124. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, P.; Desfarges, S.; Bartha, I.; Joos, B.; Zangger, N.; Munoz, M.; Gunthard, H.F.; Beerenwinkel, N.; Telenti, A.; Ciuffi, A. Correction: 24 Hours in the Life of HIV-1 in a T Cell Line. PLoS Pathog. 2015, 11, e1005006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, S.G.; Andreis, S.; Mengoli, C.; Menegotto, N.; Cavinato, S.; Scaggiante, R.; Andreoni, M.; Palù, G.; Basso, M.; Cattelan, A.M. Soluble CD163 and soluble CD14 plasma levels but not cellular HIV-DNA decrease during successful interferon-free anti-HCV therapy in HIV-1–HCV co-infected patients on effective combined anti-HIV treatment. Med. Microbiol. Immunol. 2018, 207, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Ghiglione, Y.; Polo, M.L.; Urioste, A.; Rhodes, A.; Czernikier, A.; Trifone, C.; Quiroga, M.F.; Sisto, A.; Patterson, P.; Salomón, H.; et al. Hepatitis C Virus (HCV) Clearance After Treatment with Direct-Acting Antivirals in Human Immunodeficiency Virus (HIV)-HCV Coinfection Modulates Systemic Immune Activation and HIV Transcription on Antiretroviral Therapy. Open Forum Infect. Dis. 2020, 7, ofaa115. [Google Scholar] [CrossRef] [PubMed]
- Rozera, G.; Fabbri, G.; Lorenzini, P.; Mastrorosa, I.; Timelli, L.; Zaccarelli, M.; Amendola, A.; Vergori, A.; Plazzi, M.M.; Cicalini, S.; et al. Peripheral blood HIV-1 DNA dynamics in antiretroviral-treated HIV/HCV co-infected patients receiving directly-acting antivirals. PLoS ONE 2017, 12, e0187095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, B.; Navarrete-Muñoz, M.A.; Briz, V.; Olmedillas-López, S.; Nistal, S.; Cabello, A.; Prieto, L.; Górgolas, M.; García-Arranz, M.; Benito, J.M.; et al. HIV-reservoir size is not affected either by HCV coinfection or by direct acting antivirals (DAAs) therapy. Sci. Rep. 2022, 12, 5095. [Google Scholar] [CrossRef] [PubMed]
- Siliciano, J.D.; Kajdas, J.; Finzi, D.; Quinn, T.C.; Chadwick, K.; Margolick, J.B.; Kovacs, C.; Gange, S.; Siliciano, R.F. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 2003, 9, 727–728. [Google Scholar] [CrossRef]
- Álvarez, B.; Restrepo, C.; García, M.; Navarrete-Muñoz, M.A.; Jiménez-Sousa, M.A.; Prieto, L.; Cabello, A.; Nistal, S.; Resino, S.; Górgolas, M.; et al. Liver Stiffness Hinders Normalization of Systemic Inflammation and Endothelial Activation after Hepatitis C Virus (HCV) Eradication in HIV/HCV Coinfected Patients. Vaccines 2020, 8, 323. [Google Scholar] [CrossRef]
- Perez, S.; Kaspi, A.; Domovitz, T.; Davidovich, A.; Lavi-Itzkovitz, A.; Meirson, T.; Alison Holmes, J.; Dai, C.-Y.; Huang, C.-F.; Chung, R.T.; et al. Hepatitis C virus leaves an epigenetic signature post cure of infection by direct-acting antivirals. PLoS Genet. 2019, 15, e1008181. [Google Scholar] [CrossRef]
- Aregay, A.; Sekyere, S.O.; Deterding, K.; Port, K.; Dietz, J.; Berkowski, C.; Sarrazin, C.; Manns, M.P.; Cornberg, M.; Wedemeyer, H. Elimination of hepatitis C virus has limited impact on the functional and mitochondrial impairment of HCV-specific CD8+ T cell responses. J. Hepatol. 2019, 71, 889–899. [Google Scholar] [CrossRef]
- Langhans, B.; Nischalke, H.D.; Krämer, B.; Hausen, A.; Dold, L.; van Heteren, P.; Hüneburg, R.; Nattermann, J.; Strassburg, C.P.; Spengler, U. Increased peripheral CD4 + regulatory T cells persist after successful direct-acting antiviral treatment of chronic hepatitis C. J. Hepatol. 2017, 66, 888–896. [Google Scholar] [CrossRef]
- Parisi, S.G.; Andreis, S.; Basso, M.; Cavinato, S.; Scaggiante, R.; Franzetti, M.; Andreoni, M.; Palù, G.; Cattelan, A. Time course of cellular HIV-DNA and low-level HIV viremia in HIV–HCV co-infected patients whose HCV infection had been successfully treated with directly acting antivirals. Med. Microbiol. Immunol. 2017, 206, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Broncano, P.; Medrano, L.M.; Berenguer, J.; Brochado-Kith, O.; González-García, J.; Jiménez-Sousa, M.; Quereda, C.; Sanz, J.; Téllez, M.J.; Díaz, L.; et al. Mild profile improvement of immune biomarkers in HIV/HCV-coinfected patients who removed hepatitis C after HCV treatment: A prospective study. J. Infect. 2020, 80, 99–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, B.R.; Depla, M.; Freije, C.A.; Gaucher, D.; Mazouz, S.; Boisvert, M.; Bédard, N.; Bruneau, J.; Rice, C.M.; Shoukry, N.H. Longitudinal transcriptomic characterization of the immune response to acute hepatitis C virus infection in patients with spontaneous viral clearance. PLoS Pathog. 2018, 14, e1007290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, A.I.; Pezacki, J.P.; Wodicka, L.; Brideau, A.D.; Supekova, L.; Thimme, R.; Wieland, S.; Bukh, J.; Purcell, R.H.; Schultz, P.G.; et al. Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 2002, 99, 15669–15674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Shen, C.; Guha, D.; Ding, M.; Kulich, S.; Ashimkhanova, A.; Rinaldo, C.; Seaberg, E.; Margolick, J.B.; Stosor, V.; et al. Identification of the transcripts associated with spontaneous HCV clearance in individuals co-infected with HIV and HCV. BMC Infect. Dis. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Banks, H.; Flores, K.B.; Hu, S.; Rosenberg, E.; Buzon, M.; Yu, X.; Lichterfeld, M. Immuno-modulatory strategies for reduction of HIV reservoir cells. J. Theor. Biol. 2015, 372, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.Y.; Kuntzen, T.; Timm, J.; Nolan, B.E.; Baca, M.A.; Reyor, L.L.; Berical, A.C.; Feller, A.J.; Johnson, K.L.; Wiesch, J.S.Z.; et al. Spontaneous Control of HCV Is Associated With Expression of HLA-B*57 and Preservation of Targeted Epitopes. Gastroenterology 2011, 140, 686–696.e1. [Google Scholar] [CrossRef] [Green Version]
- Neumann-Haefelin, C.; McKiernan, S.; Ward, S.; Viazov, S.; Spangenberg, H.C.; Killinger, T.; Baumert, T.F.; Nazarova, N.; Sheridan, I.; Pybus, O.; et al. Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology 2006, 43, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Thöns, C.; Senff, T.; Hydes, T.; Manser, A.R.; Heinemann, F.M.; Heinold, A.; Heilmann, M.; Kim, A.Y.; Uhrberg, M.; Scherbaum, N.; et al. HLA-Bw4 80(T) and multiple HLA-Bw4 copies combined with KIR3DL1 associate with spontaneous clearance of HCV infection in people who inject drugs. J. Hepatol. 2017, 67, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Descours, B.; Avettand-Fenoel, V.; Blanc, C.; Samri, A.; Mélard, A.; Supervie, V.; Theodorou, I.; Carcelain, G.; Rouzioux, C.; Autran, B. Immune Responses Driven by Protective Human Leukocyte Antigen Alleles From Long-term Nonprogressors Are Associated With Low HIV Reservoir in Central Memory CD4 T Cells. Clin. Infect. Dis. 2012, 54, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, O.; Cui, C.; Zhao, B.; Han, X.; Zhang, Z.; Liu, J.; Xu, J.; Hu, Q.; Liao, C.; et al. KIR3DS1/L1 and HLA-Bw4-80I are associated with HIV disease progression among HIV typical progressors and long-term nonprogressors. BMC Infect. Dis. 2013, 13, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentin, A.; Pavlakis, G.N. Natural killer cells are persistently infected and resistant to direct killing by HIV-1. Anticancer Res. 2003, 23, 2071–2075. [Google Scholar] [PubMed]
- Pasternak, A.O.; Berkhout, B. What do we measure when we measure cell-associated HIV RNA. Retrovirology 2018, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Procopio, F.A.; Fromentin, R.; Kulpa, D.A.; Brehm, J.H.; Bebin, A.-G.; Strain, M.C.; Richman, D.D.; O’Doherty, U.; Palmer, S.; Hecht, F.M.; et al. A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals. eBioMedicine 2015, 2, 874–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonski, J.A.; Amelio, A.L.; Giacca, M.; Caputi, M. The transcriptional transactivator Tat selectively regulates viral splicing. Nucleic Acids Res. 2009, 38, 1249–1260. [Google Scholar] [CrossRef] [Green Version]
- Berkhout, B.; Jeang, K.T. trans activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: A quantitative analysis. J. Virol. 1989, 63, 5501–5504. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Baldauf, H.-M.; Keppler, O.T.; Fackler, O.T. Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res. 2013, 23, 876–885. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.M.; Simonetti, F.R.; Gorelick, R.J.; Hill, S.; Gouzoulis, M.A.; Bell, J.; Rehm, C.; Pérez, L.; Boritz, E.; Wu, X.; et al. Dynamic Shifts in the HIV Proviral Landscape During Long Term Combination Antiretroviral Therapy: Implications for Persistence and Control of HIV Infections. Viruses 2020, 12, 136. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, N.; Von Siebenthal, C.; Vongrad, V.; Turk, T.; Neumann, K.; Beerenwinkel, N.; Bogojeska, J.; Fellay, J.; Roth, V.; Kok, Y.; et al. Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART. Nat. Commun. 2019, 10, 3193. [Google Scholar] [CrossRef] [Green Version]
- Renault, C.; Bolloré, K.; Pisoni, A.; Motto-Ros, C.; Van de Perre, P.; Reynes, J.; Tuaillon, E. Accuracy of real time PCR and digital PCR for the monitoring of total HIV DNA under prolonged antiretroviral therapy. Sci. Rep. 2022, 12, 9323. [Google Scholar] [CrossRef]
TOTAL n = 63 | HIV+ n = 22 | HIV+/HCV- n = 17 | HIV+/HCV+ n = 24 | p | |
---|---|---|---|---|---|
Male, n (%) | 34 (54%) | 13 (59.1%) | 10 (58.8%) | 11 (45.8%) | 0.658 |
Age, years * | 52 (44–55) | 46 (37–54.3) | 53 (49.5–55.5) | 51.5 (44.3–55.8) | 0.157 |
Weight, Kg * | 65.9 (61.3–80.4) | 66.8 (63.4–76.6) | 66 (61–82) | 63.5 (57.6–82.1) | 0.632 |
Height, cm * | 165 (160.172.5) | 167 (160–174.5) | 167 (162–175) | 163 (160–169) | 0.213 |
BMI, Kg/m2 * | 24.7 (22–27.4) | 25.6 (21.9–27.9) | 24.8 (22–27.6) | 23.9 (20.9–27.5) | 0.854 |
Time of HIV infection, years * | 20 (16.5–26.5) | 12.1 (18–23.7) $ | 21.1 (13.3–27.4) | 24.1 (13.6–30) | 0.035 |
Transmission route, n (%) | <0.001 | ||||
IDUs | 21 (33.3%) | 0 (0%) | 12 (70.6%) | 9 (37.5%) | |
MSM | 11 (17.5%) | 8 (36.4%) | 2 (11.8%) | 3 (12.5%) | |
MSW | 12 (19%) | 8 (36.4%) | 1 (5.9%) | 3 (12.5%) | |
Others | 17 (27%) | 6 (27.7%) | 2 (11.8%) | 9 (37.5%) | |
CDC category, n (%) | 0.325 | ||||
A | 32 (50.8%) | 12 (54.5%) | 7 (41.2%) | 13 (54.2%) | |
B | 11 (17.5%) | 3 (13.6%) | 4 (23.5%) | 4 (16.7%) | |
C | 14 (22.2%) | 3 (13.6%) | 4 (23.5%) | 7 (29.2%) | |
Unknown | 6 (9.5%) | 4 (18.2%) | 2 (11.8%) | 0 (0%) | |
cART regimen, n (%) | 0.409 | ||||
NNRTIs | 19 (30.2%) | 7 (31.8%) | 8 (47.1%) | 4 (16.7%) | |
NRTIs | 2 (3.2%) | 1 (4.5%) | 0 (0%) | 1 (4.2%) | |
PIs | 3 (4.8%) | 1 (4.5%) | 2 (11.8%) | 0 (0%) | |
INIs | 27 (42.9%) | 9 (40.9%) | 4 (23.5%) | 14 (58.3%) | |
Dual therapy | 5 (7.9%) | 2 (9.1%) | 1 (5.9%) | 2 (8.3%) | |
Monotherapy | 1 (1.6%) | 0 (0%) | 0 (0%) | 1 (4.2%) | |
Unknown | 6 (9.5%) | 2 (9.1%) | 2 (11.8%) | 2 (8.3%) | |
IFNL3 (IL-28B) genotype, n (%) | <0.001 | ||||
CC | 30 (47.6%) | 9 (40.9%) | 15 (88.2%) | 6 (25%) | |
Non-CC | 26 (41.2%) | 8 (36.4%) | 2 (11.8%) | 16 (66.7%) | |
Unknown | 7 (11.1%) | 5 (22.7%) | 0 (0%) | 2 (8.3%) |
TOTAL n = 63 | HIV+ n = 22 | HIV+/HCV- n = 17 | HIV+/HCV+ n = 24 | p | ||
---|---|---|---|---|---|---|
CD4+ count, cells/µL * | B | 783 (572–1099) | 928 (698–1138) | 752 (538–1026) | 741 (558–1174) | 0.398 $ |
E | 835 (609–1117) | 876 (700–1123) | 808 (496–1018) | 854 (602–1227) | ||
TOTAL n = 60 | HIV+ n = 20 | HIV+/HCV- n = 17 | HIV+/HCV+ n = 23 | |||
CD4+, % * | B | 36.5 (32.0–43.1) | 39.5 (35.0–44.0) | 36.0 (31.5–42.0) | 33.0 (26.0–44.0) | 0.308 |
E | 37.0 (31.0–42.4) | 39.4 (34.3–44.3) | 32.0 (25.5–39.5) | 37.0 (27.4–42.3) | ||
TOTAL n = 14 | HIV+ n = 6 | HIV+/HCV- n = 2 | HIV+/HCV+ n = 6 | |||
CD8+ count, cells/µL * | B | 917 (803–1492) | 904 (803–2492) | 1028 (1028–1028) | 991 (736–1849) | 0.345 $ |
E | 962 (794–1427) | 904 (671–1341) | 974 (974–974) | 1175 (847–1844) | ||
TOTAL n = 14 | HIV+ n = 6 | HIV+/HCV- n = 2 | HIV+/HCV+ n = 6 | |||
CD8+, % * | B | 41.6 (35.9–46.9) | 37.4 (34.7–43.2) | 42.3 (42.3–42.3) | 42.9 (40.1–54.8) | 0.123 $ |
E | 39.1 (33.9–45.4) | 37.4 (32.8–41.6) | 41.2 (41.2–41.2) | 43.6 (38.9–53.4) | ||
TOTAL n = 14 | HIV+ n = 6 | HIV+/HCV- n = 2 | HIV+/HCV+ n = 6 | |||
CD4:CD8 Ratio, * | B | 0.93 (0.62–1.18) | 1.05 (0.79–1.21) | 0.88 (0.88–0.88) | 0.77 (0.48–1.13) | 0.735 $ |
E | 0.96 (0.74–1.18) | 1.05 (0.85–1.24) | 0.86 (0.86–0.86) | 0.88 (0.48–0.99) |
TOTAL n = 41 | HIV+/HCV- n = 17 | HIV+/HCV+ n = 24 | p | |
---|---|---|---|---|
HCV genotype | n.a. | |||
GT1 | 12 (29.3%) | 12 (50%) | ||
GT2 | 0 (0%) | 0 (0%) | ||
GT3 | 2 (4.9%) | 2 (8.3%) | ||
GT4 | 8 (19.5%) | 8 (33.3%) | ||
Unknown/not applicable | 19 (46.3%) | 2 (8.3%) | ||
Fibrosis stage | 0.066 | |||
F0–F1 (<6 kPa) | 33 (80.5%) | 12 (70.5%) | 21 (87.5%) | |
F2 (6–9 kPa) | 1 (2.4%) | 0 (0%) | 1 (4.2%) | |
F3 (>9–12 kPa) | 1 (2.4%) | 0 (0%) | 1 (4.2%) | |
F4 (>12 kPa) | 0 (0%) | 0 (0%) | 0 (0%) | |
Unknown/not applicable | 6 (14.6%) | 5 (29.5%) | 1 (4.2%) | |
HCV treatment | n.a. | |||
Ledipasvir + Sofosbuvir | 15 (36.6%) | 15 (62.5%) | ||
Elbasvir + Grazoprevir | 3 (7.3%) | 3 (12.5%) | ||
Sofosbuvir + Daclatasvir | 1 (2.4%) | 1 (4.2%) | ||
Sofosbuvir + Velpatasvir | 2 (4.9%) | 2 (8.3%) | ||
Sofosbuvir + Simeprevir | 1 (2.4%) | 1 (4.2%) | ||
Viekirax + Exviera | 1 (2.4%) | 1 (4.2%) | ||
Unknown/not applicable | 18 (43.9%) | 1 (4.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Román, P.; Crespo-Bermejo, C.; Valle-Millares, D.; Lara-Aguilar, V.; Arca-Lafuente, S.; Martín-Carbonero, L.; Ryan, P.; de los Santos, I.; López-Huertas, M.R.; Palladino, C.; et al. Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance. J. Clin. Med. 2022, 11, 3579. https://doi.org/10.3390/jcm11133579
Martínez-Román P, Crespo-Bermejo C, Valle-Millares D, Lara-Aguilar V, Arca-Lafuente S, Martín-Carbonero L, Ryan P, de los Santos I, López-Huertas MR, Palladino C, et al. Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance. Journal of Clinical Medicine. 2022; 11(13):3579. https://doi.org/10.3390/jcm11133579
Chicago/Turabian StyleMartínez-Román, Paula, Celia Crespo-Bermejo, Daniel Valle-Millares, Violeta Lara-Aguilar, Sonia Arca-Lafuente, Luz Martín-Carbonero, Pablo Ryan, Ignacio de los Santos, María Rosa López-Huertas, Claudia Palladino, and et al. 2022. "Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance" Journal of Clinical Medicine 11, no. 13: 3579. https://doi.org/10.3390/jcm11133579
APA StyleMartínez-Román, P., Crespo-Bermejo, C., Valle-Millares, D., Lara-Aguilar, V., Arca-Lafuente, S., Martín-Carbonero, L., Ryan, P., de los Santos, I., López-Huertas, M. R., Palladino, C., Muñoz-Muñoz, M., Fernández-Rodríguez, A., Coiras, M., Briz, V., & on behalf of the COVIHEP network. (2022). Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance. Journal of Clinical Medicine, 11(13), 3579. https://doi.org/10.3390/jcm11133579