Prediction of the Responsiveness to Vagus-Nerve Stimulation in Patients with Drug-Resistant Epilepsy via Directed-Transfer-Function Analysis of Their Perioperative Scalp EEGs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. VNS Parameters and Responsiveness
2.3. EEG Recording
2.4. Connectivity Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Presurgical Effective Connectivity Analysis Using DTF
3.3. Effect of VNS Implantation on Effective Connectivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med. 2000, 342, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, R.; Brodie, M.J. Diagnosing refractory epilepsy: Response to sequential treatment schedules. Eur. J. Neurol. 2006, 13, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Beleza, P. Refractory epilepsy: A clinically oriented review. Eur. Neurol. 2009, 62, 65–71. [Google Scholar] [CrossRef]
- Wheless, J.W.; Gienapp, A.J.; Ryvlin, P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018, 88, 2–10. [Google Scholar] [CrossRef]
- Ben-Menachem, E.; Mañon-Espaillat, R.; Ristanovic, R.; Wilder, B.J.; Stefan, H.; Mirza, W.; Tarver, W.B.; Wernicke, J.F. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia 1994, 35, 616–626. [Google Scholar] [CrossRef]
- Handforth, A.; DeGiorgio, C.M.; Schachter, S.C.; Uthman, B.M.; Naritoku, D.K.; Tecoma, E.S.; Henry, T.R.; Collins, S.D.; Vaughn, B.V.; Gilmartin, R.C.; et al. Vagus nerve stimulation therapy for partial-onset seizures: A randomized active-control trial. Neurology 1998, 51, 48–55. [Google Scholar] [CrossRef]
- Scherrmann, J.; Hoppe, C.; Kral, T.; Schramm, J.; Elger, C.E. Vagus nerve stimulation: Clinical experience in a large patient series. J. Clin. Neurophysiol. 2001, 18, 408–414. [Google Scholar] [CrossRef]
- Englot, D.J.; Chang, E.F.; Auguste, K.I. Vagus nerve stimulation for epilepsy: A meta-analysis of efficacy and predictors of response. J. Neurosurg. 2011, 115, 1248–1255. [Google Scholar] [CrossRef]
- Workewych, A.M.; Arski, O.N.; Mithani, K.; Ibrahim, G.M. Biomarkers of seizure response to vagus nerve stimulation: A scoping review. Epilepsia 2020, 61, 2069–2085. [Google Scholar] [CrossRef]
- Kramer, M.A.; Cash, S.S. Epilepsy as a disorder of cortical network organization. Neuroscientist 2012, 18, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, G.M.; Sharma, P.; Hyslop, A.; Guillen, M.R.; Morgan, B.R.; Wong, S.; Abel, T.J.; Elkaim, L.; Cajigas, I.; Shah, A.H.; et al. Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. Neuroimage Clin. 2017, 16, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Park, H.J.; Cho, H.; Ko, A.; Pae, C.; Oh, M.K.; Kang, H.C.; Kim, H.D.; Park, E.K.; Shim, K.W.; et al. Interregional metabolic connectivity of 2-deoxy-2[(18) F]fluoro-D-glucose positron emission tomography in vagus nerve stimulation for pediatric patients with epilepsy: A retrospective cross-sectional study. Epilepsia 2018, 59, 2249–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Mierlo, P.; Papadopoulou, M.; Carrette, E.; Boon, P.; Vandenberghe, S.; Vonck, K.; Marinazzo, D. Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization. Prog. Neurobiol. 2014, 121, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Vespa, S.; Heyse, J.; Stumpp, L.; Liberati, G.; Ferrao Santos, S.; Rooijakkers, H.; Nonclercq, A.; Mouraux, A.; van Mierlo, P.; El Tahry, R. Vagus Nerve Stimulation Elicits Sleep EEG Desynchronization and Network Changes in Responder Patients in Epilepsy. Neurotherapeutics 2021, 18, 2623–2638. [Google Scholar] [CrossRef]
- Ge, M.; Jiang, X.; Bai, Q.; Yang, S.; Gusphyl, J.; Yan, W. Application of the directed transfer function method to the study of the propagation of epilepsy neural information. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2007, 2007, 3266–3269. [Google Scholar] [CrossRef]
- Omidvarnia, A.; Pedersen, M.; Vaughan, D.N.; Walz, J.M.; Abbott, D.F.; Zalesky, A.; Jackson, G.D. Dynamic coupling between fMRI local connectivity and interictal EEG in focal epilepsy: A wavelet analysis approach. Hum. Brain Mapp. 2017, 38, 5356–5374. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; Neumaier, A. Algorithm 808: ARfit—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. (TOMS) 2001, 27, 58–65. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Fraschini, M.; Puligheddu, M.; Demuru, M.; Polizzi, L.; Maleci, A.; Tamburini, G.; Congia, S.; Bortolato, M.; Marrosu, F. VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy. Neurosci. Lett. 2013, 536, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Geraedts, V.J.; Marinus, J.; Gouw, A.A.; Mosch, A.; Stam, C.J.; van Hilten, J.J.; Contarino, M.F.; Tannemaat, M.R. Quantitative EEG reflects non-dopaminergic disease severity in Parkinson's disease. Clin. Neurophysiol. 2018, 129, 1748–1755. [Google Scholar] [CrossRef] [Green Version]
- Bodin, C.; Aubert, S.; Daquin, G.; Carron, R.; Scavarda, D.; McGonigal, A.; Bartolomei, F. Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG. Epilepsy Res. 2015, 113, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Sangare, A.; Marchi, A.; Pruvost-Robieux, E.; Soufflet, C.; Crepon, B.; Ramdani, C.; Chassoux, F.; Turak, B.; Landre, E.; Gavaret, M. The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization. Brain Connect 2020, 10, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Babajani-Feremi, A.; Noorizadeh, N.; Mudigoudar, B.; Wheless, J.W. Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology. Neuroimage Clin. 2018, 19, 990–999. [Google Scholar] [CrossRef] [PubMed]
- van Mierlo, P.; Carrette, E.; Hallez, H.; Raedt, R.; Meurs, A.; Vandenberghe, S.; Van Roost, D.; Boon, P.; Staelens, S.; Vonck, K. Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 2013, 54, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Kundassery, K.B.; Gupta, K.; Johnson, G.W.; Wills, K.E.; Goodale, S.E.; Haas, K.; Rolston, J.D.; Naftel, R.P.; Morgan, V.L.; et al. Seizure-onset regions demonstrate high inward directed connectivity during resting-state: An SEEG study in focal epilepsy. Epilepsia 2020, 61, 2534–2544. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Wen, J.; Yu, T.; Li, X. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation. Front. Neuroinform. 2016, 10, 15. [Google Scholar] [CrossRef]
- Bartolomei, F.; Bettus, G.; Stam, C.J.; Guye, M. Interictal network properties in mesial temporal lobe epilepsy: A graph theoretical study from intracerebral recordings. Clin. Neurophysiol. 2013, 124, 2345–2353. [Google Scholar] [CrossRef]
- Niso, G.; Carrasco, S.; Gudín, M.; Maestú, F.; Del-Pozo, F.; Pereda, E. What graph theory actually tells us about resting state interictal MEG epileptic activity. Neuroimage Clin. 2015, 8, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Cai, L.; Wu, X.; Song, Z.; Wang, J.; Xia, Z.; Liu, J.; Cao, Y. Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy. Phys. A Stat. Mech. Its Appl. 2018, 492, 931–940. [Google Scholar] [CrossRef]
- Magnes, J.; Moruzzi, G.; Pompeiano, O. Synchronization of the EEG produced by low-frequncy electrical stimulation of the region of the solitary tract. Arch. Ital. Biol. 1961, 99, 33–67. [Google Scholar] [CrossRef]
- Chase, M.H.; Nakamura, Y.; Clemente, C.D.; Sterman, M.B. Afferent vagal stimulation: Neurographic correlates of induced EEG synchronization and desynchronization. Brain Res. 1967, 5, 236–249. [Google Scholar] [CrossRef]
- Jaseja, H. EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: Clinical neurophysiological evidence. Med. Hypotheses 2010, 74, 855–856. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, F.; Bonini, F.; Vidal, E.; Trébuchon, A.; Lagarde, S.; Lambert, I.; McGonigal, A.; Scavarda, D.; Carron, R.; Benar, C.G. How does vagal nerve stimulation (VNS) change EEG brain functional connectivity? Epilepsy Res. 2016, 126, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Rutecki, P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 1990, 31 (Suppl. S2), S1–S6. [Google Scholar] [CrossRef]
- Hachem, L.D.; Wong, S.M.; Ibrahim, G.M. The vagus afferent network: Emerging role in translational connectomics. Neurosurg. Focus 2018, 45, E2. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.H.; Sterman, M.B.; Clemente, C.D. Cortical and subcortical patterns of response to afferent vagal stimulation. Exp. Neurol. 1966, 16, 36–49. [Google Scholar] [CrossRef]
- Mithani, K.; Mikhail, M.; Morgan, B.R.; Wong, S.; Weil, A.G.; Deschenes, S.; Wang, S.; Bernal, B.; Guillen, M.R.; Ochi, A.; et al. Connectomic Profiling Identifies Responders to Vagus Nerve Stimulation. Ann. Neurol. 2019, 86, 743–753. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, C.; Zhang, X.; Qiao, L.; Wang, X.; Zhang, X.; Yan, X.; Ni, D.; Yu, T.; Zhang, G.; et al. A resting-state functional MRI study on the effect of vagal nerve stimulation on spontaneous regional brain activity in drug-resistant epilepsy patients. Behav. Brain Res. 2020, 392, 112709. [Google Scholar] [CrossRef]
Patient No. | Age (Years) | Sex | Disease Duration (Years) | Epilepsy Diagnosis | Pre-VNS Seizure Frequency (per Month) | Mean Seizure Reduction Rate for 5 Years (%) | Responsiveness |
---|---|---|---|---|---|---|---|
1 | 35 | M | 29 | CLE | 90 | 88 | Responder |
2 | 38 | F | 20 | Rt. FLE | 1 | 100 | Responder |
3 | 37 | M | 28 | Rt. FPLE | 11 | −24 | Nonresponder |
4 | 55 | M | 29 | Lt. TLE | 2 | 61 | Responder |
5 | 21 | M | 12 | IGE | 4 | 69 | Responder |
6 | 31 | M | 10 | Both TLE | 1.5 | −33 | Nonresponder |
7 | 37 | M | 7 | Both FTLE | 2.5 | −7 | Nonresponder |
8 | 35 | F | 26 | Lt. FPLE | 10 | −73 | Nonresponder |
9 | 23 | M | 12 | IGE | 14 | 33 | Nonresponder |
10 | 35 | M | 15 | Both FLE | 35 | 53 | Responder |
11 | 41 | M | 28 | Rt. PLE | 3 | 100 | Responder |
12 | 25 | M | 16 | IGE | 45 | −58 | Nonresponder |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, T.; Hwang, Y.; Lee, C.Y.; Joo, E.Y.; Seo, D.-W.; Hong, S.B.; Shon, Y.-M. Prediction of the Responsiveness to Vagus-Nerve Stimulation in Patients with Drug-Resistant Epilepsy via Directed-Transfer-Function Analysis of Their Perioperative Scalp EEGs. J. Clin. Med. 2022, 11, 3695. https://doi.org/10.3390/jcm11133695
Kim D, Kim T, Hwang Y, Lee CY, Joo EY, Seo D-W, Hong SB, Shon Y-M. Prediction of the Responsiveness to Vagus-Nerve Stimulation in Patients with Drug-Resistant Epilepsy via Directed-Transfer-Function Analysis of Their Perioperative Scalp EEGs. Journal of Clinical Medicine. 2022; 11(13):3695. https://doi.org/10.3390/jcm11133695
Chicago/Turabian StyleKim, Dongyeop, Taekyung Kim, Yoonha Hwang, Chae Young Lee, Eun Yeon Joo, Dae-Won Seo, Seung Bong Hong, and Young-Min Shon. 2022. "Prediction of the Responsiveness to Vagus-Nerve Stimulation in Patients with Drug-Resistant Epilepsy via Directed-Transfer-Function Analysis of Their Perioperative Scalp EEGs" Journal of Clinical Medicine 11, no. 13: 3695. https://doi.org/10.3390/jcm11133695
APA StyleKim, D., Kim, T., Hwang, Y., Lee, C. Y., Joo, E. Y., Seo, D. -W., Hong, S. B., & Shon, Y. -M. (2022). Prediction of the Responsiveness to Vagus-Nerve Stimulation in Patients with Drug-Resistant Epilepsy via Directed-Transfer-Function Analysis of Their Perioperative Scalp EEGs. Journal of Clinical Medicine, 11(13), 3695. https://doi.org/10.3390/jcm11133695