Relationship between Lower Limbs Performance and Spinal Alignment in Parkinson’s Disease Patients: An Observational Study with Cross Sectional Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Clinical Measurements
2.4. Statistics
3. Results
4. Discussion
Limits of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashour, R.; Jankovic, J. Joint and skeletal deformities in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Mov. Disord. Off. J. Mov. Disord. Soc. 2006, 21, 1856–1863. [Google Scholar] [CrossRef]
- Srivanitchapoom, P.; Hallett, M. Camptocormia in Parkinson’s disease: Definition, epidemiology, pathogenesis and treatment modalities. J. Neurol. Neurosurg. Psychiatry 2016, 87, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Baik, J.S.; Kim, J.Y.; Park, J.H.; Han, S.W.; Park, J.H.; Lee, M.S. Scoliosis in patients with Parkinson’s disease. J. Clin. Neurol. 2009, 5, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Doherty, K.M.; van de Warrenburg, B.P.; Peralta, M.C.; Silveira-Moriyama, L.; Azulay, J.P.; Gershanik, O.S.; Bloem, B.R. Postural deformities in Parkinson’s disease. Lancet. Neurol. 2011, 10, 538–549. [Google Scholar] [CrossRef]
- Ameghino, L.; Rossi, M.; Merello, M. How Do I Examine Postural Disorders in Parkinson’s Disease? Mov. Disord. Clin. Pract. 2016, 3, 626. [Google Scholar] [CrossRef]
- Hasegawa, T.; Treis, A.; Patenge, N.; Fiesel, F.C.; Springer, W.; Kahle, P.J. Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways. J. Neurochem. 2008, 105, 1700–1715. [Google Scholar] [CrossRef]
- Duncan, R.P.; Leddy, A.L.; Earhart, G.M. Five times sit-to-stand test performance in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2011, 92, 1431–1436. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Quadros, A.C., Jr.; Santos, R.F.; Stella, F.; Gobbi, L.T.; Gobbi, S. Benefits of physical exercise on executive functions in older people with Parkinson’s disease. Brain Cogn. 2009, 69, 435–441. [Google Scholar] [CrossRef]
- Margraf, N.G.; Rohr, A.; Granert, O.; Hampel, J.; Drews, A.; Deuschl, G. MRI of lumbar trunk muscles in patients with Parkinson’s disease and camptocormia. J. Neurol. 2015, 262, 1655–1664. [Google Scholar] [CrossRef]
- Bissolotti, L.; Berjano, P.; Zuccher, P.; Zenorini, A.; Buraschi, R.; Villafane, J.H.; Negrini, S. Sagittal balance is correlated with Parkinson’s Disease clinical parameters: An overview of spinopelvic alignment on 175 consecutive cases. Eur. Spine J. 2017, 26, 471–478. [Google Scholar] [CrossRef]
- Bissolotti, L.; Isacco-Grassi, F.; Orizio, C.; Gobbo, M.; Berjano, P.; Villafane, J.H.; Negrini, S. Spinopelvic balance and body image perception in Parkinson’s disease: Analysis of correlation. Eur. Spine J. 2015, 24 (Suppl. 7), 898–905. [Google Scholar] [CrossRef]
- Ito, H.; Yokoi, D.; Kobayashi, R.; Okada, H.; Kajita, Y.; Okuda, S. The relationships between three-axis accelerometer measures of physical activity and motor symptoms in patients with Parkinson’s disease: A single-center pilot study. BMC Neurol. 2020, 20, 340. [Google Scholar] [CrossRef]
- Monjo, H.; Fukumoto, Y.; Asai, T.; Shuntoh, H. Muscle Thickness and Echo Intensity of the Abdominal and Lower Extremity Muscles in Stroke Survivors. J. Clin. Neurol. 2018, 14, 549–554. [Google Scholar] [CrossRef]
- Takai, Y.; Ohta, M.; Akagi, R.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Sit-to-stand test to evaluate knee extensor muscle size and strength in the elderly: A novel approach. J. Physiol. Anthropol. 2009, 28, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Akbar, U.; McQueen, R.B.; Bemski, J.; Carter, J.; Goy, E.R.; Kutner, J.; Johnson, M.J.; Miyasaki, J.M.; Kluger, B. Prognostic predictors relevant to end-of-life palliative care in Parkinson’s disease and related disorders: A systematic review. J. Neurol. Neurosurg. Psychiatry 2021, 92, 629–636. [Google Scholar] [CrossRef]
- Rainoldi, L.; Zaina, F.; Villafañe, J.H.; Donzelli, S.; Negrini, S. Quality of Life in Normal and Idiopathic Scoliosis Adolescents before diagnosis: Reference values and discriminative validity of the SRS-22. A cross-sectional study of 1205 pupils. Spine J. 2015, 15, 662–667. [Google Scholar] [CrossRef]
- Hasegawa, R.; Islam, M.M.; Lee, S.C.; Koizumi, D.; Rogers, M.E.; Takeshima, N. Threshold of lower body muscular strength necessary to perform ADL independently in community-dwelling older adults. Clin. Rehabil. 2008, 22, 902–910. [Google Scholar] [CrossRef]
- Inkster, L.M.; Eng, J.J.; MacIntyre, D.L.; Stoessl, A.J. Leg muscle strength is reduced in Parkinson’s disease and relates to the ability to rise from a chair. Mov. Disord. Off. J. Mov. Disord. Soc. 2003, 18, 157–162. [Google Scholar] [CrossRef]
- Mak, M.K.; Hui-Chan, C.W. Switching of movement direction is central to parkinsonian bradykinesia in sit-to-stand. Mov. Disord. Off. J. Mov. Disord. Soc. 2002, 17, 1188–1195. [Google Scholar] [CrossRef]
- Nocera, J.R.; Buckley, T.; Waddell, D.; Okun, M.S.; Hass, C.J. Knee extensor strength, dynamic stability, and functional ambulation: Are they related in Parkinson’s disease? Arch. Phys. Med. Rehabil. 2010, 91, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Bissolotti, L.; Gobbo, M.; Villafane, J.H.; Negrini, S. Spinopelvic balance: New biomechanical insights with clinical implications for Parkinson’s disease. Eur. Spine J. 2014, 23, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Machida, Y.; Hanawa, H.; Kanai, M.; Asano, S. Analysis of Relationships between Spinal Deformity and Walking Ability in Parkinson’s Disease Patients. Spine Surg. Relat. Res. 2019, 3, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C.; Harhay, M.O.; Harhay, M.N. The muscle quality index and mortality among males and females. Ann. Epidemiol. 2016, 26, 648–653. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, D.D.C.; Prestes, J.; de Sousa Diniz, J.; Beal, P.R.; Alves, V.P.; Stone, W.; Beal, F.L.R. Comparison of field- and laboratory-based estimates of muscle quality index between octogenarians and young older adults: An observational study. J. Exerc. Rehabil. 2020, 16, 458–466. [Google Scholar] [CrossRef]
- Lee, C.; Dierickx, E. Defining Sarcopenia Using Muscle Quality Index. J. Aging Res. Clin. Pract. 2018, 7, 45–59. [Google Scholar] [CrossRef]
- Bissolotti, L.; Donzelli, S.; Gobbo, M.; Zaina, F.; Villafane, J.H.; Negrini, S. Association Between Sagittal Balance and Scoliosis in Patients with Parkinson Disease: A Cross-sectional Study. Am. J. Phys. Med. Rehabil. 2016, 95, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Schenkman, M.; Moore, C.G.; Kohrt, W.M.; Hall, D.A.; Delitto, A.; Comella, C.L.; Josbeno, D.A.; Christiansen, C.L.; Berman, B.D.; Kluger, B.M.; et al. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2018, 75, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Moreno Catala, M.; Woitalla, D.; Arampatzis, A. Central factors explain muscle weakness in young fallers with Parkinson’s disease. Neurorehabilit. Neural Repair 2013, 27, 753–759. [Google Scholar] [CrossRef]
- Alberts, J.L.; Rosenfeldt, A.B.; Lopez-Lennon, C.; Suttman, E.; Jansen, A.E.; Imrey, P.B.; Dibble, L.E. Effectiveness of a Long-Term, Home-Based Aerobic Exercise Intervention on Slowing the Progression of Parkinson Disease: Design of the Cyclical Lower Extremity Exercise for Parkinson Disease II (CYCLE-II) Study. Phys Ther. 2021, 101, pzab191. [Google Scholar] [CrossRef]
- Lima, L.O.; Cardoso, F.; Teixeira-Salmela, L.F.; Rodrigues-de-Paula, F. Work and power reduced in L-dopa naive patients in the early-stages of Parkinson’s disease. Arq. Neuro-Psiquiatr. 2016, 74, 287–292. [Google Scholar] [CrossRef] [Green Version]
Healthy Controls (n = 42) | Parkinson Patients (n = 43) | ||||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | p-Value | |
Age | 68.9 | 65.4 | 73.3 | 75.3 | 67.2 | 78.8 | 0.01 * |
Height (cm) | 166.8 | 160.0 | 171.0 | 165.0 | 157.0 | 172.0 | 0.36 |
Weight (kg) | 76.0 | 63.0 | 84.0 | 72.0 | 63.0 | 84.0 | 0.44 |
BMI | 26.9 | 24.0 | 29.1 | 27.2 | 22.9 | 29.4 | 0.80 |
METs/wk | 1140.0 | 570.0 | 2625.0 | 910.0 | 187.5 | 1670.0 | 0.07 |
Sit to stand time (s) | 20.5 | 17.0 | 25.0 | 24.5 | 21.0 | 35.5 | <0.01 |
MQI (Watt) | 135.9 | 110.5 | 177.7 | 101.5 | 69.1 | 143.0 | <0.01 * |
MQI (Watt/kg) | 1.9 | 1.5 | 2.4 | 1.5 | 1.0 | 1.7 | <0.01 * |
Healthy Controls (n = 42) | Parkinson Patients (n = 43) | p-Value | |||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
ATR (°) | 3.5 | 2.0 | 5.0 | 4.0 | 0.0 | 5.0 | 0.74 |
PL-C7 (mm) | 55.0 | 50.0 | 80.0 | 100.0 | 80.0 | 130.0 | <0.01 * |
PL-AK (mm) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25.0 | <0.01 * |
PL-L3 (mm) | 40.0 | 30.0 | 50.0 | 40.0 | 30.0 | 50.0 | 0.26 |
PL-S1 (mm) | 10.0 | 0.0 | 20.0 | 0.0 | 0.0 | 20.0 | 0.02 * |
Inclinometer C7-T1 (°) | 64.0 | 57.0 | 70.0 | 54.0 | 45.0 | 59.0 | <0.01 * |
Inclinometer D12-L1 (°) | 81.0 | 76.0 | 86.0 | 84.0 | 80.0 | 87.0 | 0.07 |
Healthy Controls (n = 42) | Parkinson Patients (n = 43) | |||
---|---|---|---|---|
ρ | p-Value | ρ | p-Value | |
MQI vs. PL-C7 | −0.01 | 0.94 | 0.02 | 0.88 |
MQI vs. PL-AK | −0.08 | 0.64 | −0.02 | 0.91 |
MQI vs. PL-L3 | 0.24 | 0.12 | 0.35 | 0.03 * |
MQI vs. PL-S1 | 0.11 | 0.50 | 0.04 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bissolotti, L.; Rota, M.; Calza, S.; Sanchez Romero, E.A.; Battaglino, A.; Villafañe, J.H. Relationship between Lower Limbs Performance and Spinal Alignment in Parkinson’s Disease Patients: An Observational Study with Cross Sectional Design. J. Clin. Med. 2022, 11, 3775. https://doi.org/10.3390/jcm11133775
Bissolotti L, Rota M, Calza S, Sanchez Romero EA, Battaglino A, Villafañe JH. Relationship between Lower Limbs Performance and Spinal Alignment in Parkinson’s Disease Patients: An Observational Study with Cross Sectional Design. Journal of Clinical Medicine. 2022; 11(13):3775. https://doi.org/10.3390/jcm11133775
Chicago/Turabian StyleBissolotti, Luciano, Matteo Rota, Stefano Calza, Eleuterio A. Sanchez Romero, Andrea Battaglino, and Jorge H. Villafañe. 2022. "Relationship between Lower Limbs Performance and Spinal Alignment in Parkinson’s Disease Patients: An Observational Study with Cross Sectional Design" Journal of Clinical Medicine 11, no. 13: 3775. https://doi.org/10.3390/jcm11133775
APA StyleBissolotti, L., Rota, M., Calza, S., Sanchez Romero, E. A., Battaglino, A., & Villafañe, J. H. (2022). Relationship between Lower Limbs Performance and Spinal Alignment in Parkinson’s Disease Patients: An Observational Study with Cross Sectional Design. Journal of Clinical Medicine, 11(13), 3775. https://doi.org/10.3390/jcm11133775