Intraoperative Anterior Segment Optical Coherence Tomography in the Management of Cataract Surgery: State of the Art
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Yan, W.; Fotis, K.; Prasad, N.M.; Lansingh, V.C.; Taylor, H.R.; Finger, R.P.; Facciolo, D.; He, M. Cataract Surgical Rate and Socioeconomics: A Global Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5872–5881. [Google Scholar] [CrossRef] [PubMed]
- Tognetto, D.; Brézin, A.P.; Cummings, A.B.; Malyugin, B.E.; Kemer, O.E.; Prieto, I.; Rejdak, R.; Teus, M.A.; Törnblom, R.; Toro, M.D.; et al. Rethinking Elective Cataract Surgery Diagnostics, Assessments, and Tools after the COVID-19 Pandemic Experience and Beyond: Insights from the EUROCOVCAT Group. Diagnostics 2020, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- Leon, P.; Umari, I.; Mangogna, A.; Zanei, A.; Tognetto, D. An evaluation of intraoperative and postoperative outcomes of torsional mode versus longitudinal ultrasound mode phacoemulsification: A Meta-analysis. Int. J. Ophthalmol. 2016, 9, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Chisari, C.G.; Toro, M.D.; Cimino, V.; Rejdak, R.; Luca, M.; Rapisarda, L.; Avitabile, T.; Posarelli, C.; Rejdak, K.; Reibaldi, M.; et al. Retinal Nerve Fiber Layer Thickness and Higher Relapse Frequency May Predict Poor Recovery after Optic Neuritis in MS Patients. J. Clin. Med. 2019, 8, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posarelli, C.; Sartini, F.; Casini, G.; Passani, A.; Toro, M.D.; Vella, G.; Figus, M. What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review. J. Clin. Med. 2020, 9, 1682. [Google Scholar] [CrossRef]
- Anisimova, N.; Arbisser, L.B.; Shilova, N.F.; A Melnik, M.; Belodedova, A.V.; Knyazer, B.; E Malyugin, B. Anterior vitreous detachment: Risk factor for intraoperative complications during phacoemulsification. J. Cataract Refract. Surg. 2020, 46, 55–62. [Google Scholar] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Howick, J.; Glasziou, P.; Aronson, J.K. Evidence-based mechanistic reasoning. J. R. Soc. Med. 2010, 103, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Das, S.; Kummelil, M.K.; Kharbanda, V.; Arora, V.; Nagappa, S.; Shetty, R.; Shetty, B.K. Microscope Integrated Intraoperative Spectral Domain Optical Coherence Tomography for Cataract Surgery: Uses and Applications. Curr. Eye Res. 2015, 41, 643–652. [Google Scholar] [CrossRef]
- Tañá-Sanz, P.; Ruiz-Santos, M.; Rodríguez-Carrillo, M.D.; Aguilar-Córcoles, S.; Montés-Micó, R.; Tañá-Rivero, P. Agreement between intraoperative anterior segment spectral-domain OCT and 2 swept-source OCT biometers. Expert Rev. Med. Devices 2021, 18, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Waring, G.O.; Chang, D.H.; Rocha, K.M.; Gouvea, L.; Penatti, R. Correlation of Intraoperative Optical Coherence Tomography of Crystalline Lens Diameter, Thickness, and Volume with Biometry and Age. Am. J. Ophthalmol. 2020, 225, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Hirnschall, N.; Amir-Asgari, S.; Maedel, S.; Findl, O. Predicting the Postoperative Intraocular Lens Position Using Continuous Intraoperative Optical Coherence Tomography Measurements. Investig. Opthalmol. Vis. Sci. 2013, 54, 5196–5203. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, M.; Horiguchi, H.; Shiba, T.; Nakano, T. Inspection of the lens thickness with preoperative biometric measurements prevents an erroneous interpretation of posterior capsule during FLACS. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Palanker, D.V.; Blumenkranz, M.S.; Andersen, D.; Wiltberger, M.; Marcellino, G.; Gooding, P.; Angeley, D.; Schuele, G.; Woodley, B.; Simoneau, M.; et al. Femtosecond Laser–Assisted Cataract Surgery with Integrated Optical Coherence Tomography. Sci. Transl. Med. 2010, 2, 58ra85. [Google Scholar] [CrossRef] [Green Version]
- Titiyal, J.S.; Kaur, M.; Ramesh, P.; Shah, P.; Falera, R.; Bageshwar, L.M.S.; Kinkar, A.; Sharma, N. Impact of Clear Corneal Incision Morphology on Incision-Site Descemet Membrane Detachment in Conventional and Femtosecond Laser-Assisted Phacoemulsification. Curr. Eye Res. 2017, 43, 293–299. [Google Scholar] [CrossRef]
- Song, W.K.; Lee, J.A.; Kim, J.Y.; Kim, M.J.; Tchah, H. Analysis of Positional Relationships of Various Centers in Cataract Surgery. Korean J. Ophthalmol. 2019, 33, 70–81. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Toto, L.; Mattei, P.A.; Vecchiarino, L.; Mastropasqua, A.; Navarra, R.; Di Nicola, M.; Nubile, M. Optical coherence tomography and 3-dimensional confocal structured imaging system–guided femtosecond laser capsulotomy versus manual continuous curvilinear capsulorhexis. J. Cataract Refract. Surg. 2014, 40, 2035–2043. [Google Scholar] [CrossRef]
- Titiyal, J.S.; Kaur, M.; Shaikh, F.; Goel, S.; Bageshwar, L.M.S. Real-time intraoperative dynamics of white cataract—intraoperative optical coherence tomography–guided classification and management. J. Cataract Refract. Surg. 2020, 46, 598–605. [Google Scholar] [CrossRef]
- Titiyal, J.S.; Kaur, M.; Shaikh, F.; Rani, D.; Bageshwar, L.M. Elucidating intraoperative dynamics and safety in posterior polar cataract with intraoperative OCT-guided phacoemulsification. J. Cataract Refract. Surg. 2020, 46, 1266–1272. [Google Scholar] [CrossRef]
- Juergens, L.; Michiels, S.; Borrelli, M.; Spaniol, K.; Guthoff, R.; Schrader, S.; Frings, A.; Geerling, G. Intraoperative OCT—Real-World User Evaluation in Routine Surgery. Klin. Mon. Augenheilkd. 2021, 238, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P. Intraoperative optical coherence tomography: Past, present, and future. Eye 2015, 30, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Dupps, W.; Kaiser, P.; Goshe, J.; Singh, R.P.; Petkovsek, D.; Srivastava, S.K. The Prospective Intraoperative and Perioperative Ophthalmic ImagiNg with Optical CoherEncE TomogRaphy (PIONEER) Study: 2-Year Results. Am. J. Ophthalmol. 2014, 158, 999–1007.e1. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.D.; Waheed, N.K.; Witkin, A.; Baumal, C.R.; Liu, J.J.; Potsaid, B.; Joseph, A.; Jayaraman, V.; Cable, A.; Chan, K.; et al. Microscope-Integrated Intraoperative Ultrahigh-Speed Swept-Source Optical Coherence Tomography for Widefield Retinal and Anterior Segment Imaging. Ophthalmic Surg. Lasers Imaging Retin. 2018, 49, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, H.B.; Schultz, T. Primary Posterior Laser-Assisted Capsulotomy. J. Refract. Surg. 2014, 30, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Haddad, J.S.; Rocha, K.M.; Yeh, K.; Iv, G.O.W. Lens anatomy parameters with intraoperative spectral-domain optical coherence tomography in cataractous eyes. Clin. Ophthalmol. 2019, 13, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirnschall, N.; Norrby, S.; Weber, M.; Maedel, S.; Amir-Asgari, S.; Findl, O. Using continuous intraoperative optical coherence tomography measurements of the aphakic eye for intraocular lens power calculation. Br. J. Ophthalmol. 2014, 99, 7–10. [Google Scholar] [CrossRef]
- Lytvynchuk, L.M.; Glittenberg, C.G.; Falkner-Radler, C.I.; Neumaier-Ammerer, B.; Smretschnig, E.; Hagen, S.; Ansari-Shahrezaei, S.; Binder, S. Evaluation of intraocular lens position during phacoemulsification using intraoperative spectral-domain optical coherence tomography. J. Cataract Refract. Surg. 2016, 42, 694–702. [Google Scholar] [CrossRef]
- Yadav, S.; Mukhija, R.; Pujari, A.; Tandon, R. Intraoperative optical coherence tomography-guided assessment of hydro-dissection procedure during cataract surgery. Indian J. Ophthalmol. 2020, 68, 1647–1648. [Google Scholar] [CrossRef]
- Bala, C.; Chan, T.; Meades, K. Factors affecting corneal incision position during femtosecond laser–assisted cataract surgery. J. Cataract Refract. Surg. 2017, 43, 1541–1548. [Google Scholar] [CrossRef]
- Hirasawa, H.; Murata, H.; Mayama, C.; Araie, M.; Asaoka, R. Evaluation of various machine learning methods to predict vision-related quality of life from visual field data and visual acuity in patients with glaucoma. Br. J. Ophthalmol. 2014, 98, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Schultz, T.; Tsiampalis, N.; Dick, H.B. Laser-Assisted Capsulotomy Centration: A Prospective Trial Comparing Pupil Versus OCT-Based Scanned Capsule Centration. J. Refract. Surg. 2017, 33, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.-P.; Chan, N.S.-W.; Yang, Y.; Ti, S.-E. Femtosecond laser-assisted cataract surgery for the white cataract. Br. J. Ophthalmol. 2018, 103, 544–550. [Google Scholar] [CrossRef]
- Titiyal, J.S.; Kaur, M.; Falera, R. Intraoperative optical coherence tomography in anterior segment surgeries. Indian J. Ophthalmol. 2017, 65, 116–121. [Google Scholar] [CrossRef]
- Pujari, A.; Sharma, N.; Bafna, R.K.; Agarwal, D. Study 3: Assessment of events during surgery on posterior polar cataracts using intraoperative optical coherence tomography. Indian J. Ophthalmol. 2021, 69, 594–597. [Google Scholar] [CrossRef]
- Singh, A.; Vanathi, M.; Sahu, S.; Devi, S. Intraoperative OCT assisted descemetopexy with stromal vent incisions and intracameral gas injection for case of non-resolving Descemet’s membrane detachment. BMJ Case Rep. 2017, 2017, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sahay, P.; Shaji, K.R.; Maharana, P.K.; Titiyal, J.S. Spontaneous anterior dislocation of lens in a case of ectopia lentis et pupillae: A rare entity treated by a novel technique of microscope integrated optical coherence tomography (MIOCT) guided intralenticular lens aspiration. BMJ Case Rep. 2019, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Study Design | Study Sample | Type of Surgery (n° of Eyes) | Type of Cataract (n°) | Intraoperative OCT (i-OCT) Specifications | Ocular Evaluation | Results | Grade 1 | Level 2 |
---|---|---|---|---|---|---|---|---|---|---|
Das S. | 2016 | Prospective study (P) | 38 eyes (E) | Microincision cataract surgery (MICS) (28); femtosecond laser assisted cataract surgery (FLACS) (10) | Posterior polar cataracts (PPCs) (3); mature intumescent cataracts (2); nuclear cataracts (N) grade 2–3 (33). | RESCANTM 700 (Carl Zeiss Meditec) | To describe the role of i-OCT in MICS and FLACS, focusing on wound assessment, capsulorhexis, hydroprocedures, nucleus management, intraocular lens (IOL) assessment | I-OCT could be useful for assessing wound morphology, deciding the adequate depth of trenching, and detecting intraocular lens (IOL) position. | Low | 4 |
Tañá-Sanz P. | 2021 | P | 102 E | FLACS | Not specified (NS) | Catalys (Johnson & Johnson Vision) | To compare different parameters obtained by i-OCT (before starting surgery) and preoperative OCT biometry. | Measurements provided by Catalys, IOLMaster 700 (Carl Zeiss Meditec) and Anterion (Heidelberg Engineering) are significantly different. | Low | 4 |
Waring G.O. 4th | 2020 | Retrospective study (R) | 293 E | FLACS (235); femtosecond laser-assisted refractive lens exchange (58) | NS | Catalys | To analyze the existing relationship among i-OCT-derived lens parameters, biometry, and age. | Commonly available biometric data couldn’t predict i-OCT-derived lens parameters such as lens diameter and lens volume. | Moderate | 4 |
Hirnschall N. | 2013 | P | 70 E | MICS | NS | Visante (Carl Zeiss Meditec) | To analyze the potential role of i-OCT-derived parameters (acquired after crystalline lens removal) in prediction of postoperative IOL position | I-OCT measurement of anterior capsule position after capsular tension ring (CTR) insertion was a better predictor of the early postoperative IOL position compared with preoperative data. | Low | 4 |
Kurosawa M. | 2021 | R | 1070 E | FLACS | NS | Catalys | To study whether comparing preoperatively and intraoperatively acquired lens thickness (LT) could help in preventing surgical complications during nuclear laser irradiation in FLACS. | LT inspection could be useful to reduce inappropriate posterior capsule detection cases and consequently misdirected femtosecond laser spots. | Low | 4 |
Palanker D.V. | 2010 | P | 30 patients | MICS (30); FLACS (29) | N grade 1 to 4 | Frequency-domain OCT (FD-OCT) model integrated on microscope | To develop a model of i-OCT-guided FLACS and to compare it with MICS, focusing on the capsulotomy step. | Capsulotomies performed by OCT-guided femtosecond lasers were characterized by sizes and shapes which were more similar to the intended ones than manual capsulorhexis. | Low | 4 |
Titiyal J.S. | 2018 | P | 129 E | MICS (77); FLACS (52) | NS | RESCANTM 700 | To evaluate the morphology of clear corneal incisions (CCIs) and their impact on Descemet membrane detachment (DMD). | A ragged morphology of CCIs was associated with a higher incidence of DMD; only i-OCT could detect an increase in its size or its development after stromal hydration. | Low | 4 |
Song V.K. | 2019 | R | 35 (E) | FLACS | NS | Catalys | To study the anatomical overlap between the pupil center (PC), the limbal center (LC) and the lens center, in order to guide capsulotomy. | The PC was nearer to the lens center than the LC. | Very low | 4 |
Mastropasqua L. | 2014 | P | 90 E | Lensx (Alcon Laboratories) FLACS (30); Lensar (Lensar) FLACS (30); MICS (30). | NS | Lensx; Lensar | To compare capsulotomies obtained with FLACS with manual capsulorhexis. | FLACS capsulotomies were greater than manual ones, determining a more precise IOL centration. | Moderate | 3 |
Titiyal J.S. | 2020 | P | 50 E | MICS | White cataracts | RESCANTM 700 | To analyze white cataract morphology and intraoperative dynamics, focusing on capsulorhexis. | I-OCT permitted the identification of four types of white cataracts, based on their anatomical characteristics and surgical behavior during capsulorhexis, helping the surgeon dealing with rhexis’ extension-related complications. | Low | 4 |
Titiyal J.S. | 2020 | P; R | 112 E | MICS | PPCs | RESCANTM 700 | To evaluate the morphology of PPCs, intraoperative dynamics of the posterior capsule and the occurrence of posterior capsular dehiscence. | I-OCT could help in detecting those PPCs which could undergo safe hydrodissection. | Low | 4 |
Anisimova N.S. | 2020 | P | 28 videos | MICS (13); FLACS (15) | N | RESCANTM 700 | To identify the presence of incomplete vitreolenticular adhesion, immediately after IOL implantation. | I-OCT permitted the identification of undesired particles into Berger’s space with a higher sensitivity than post-operative OCT. | Very low | 4 |
Juergens L. | 2021 | P | 4 E | Standard phacoemulsification combined with iris diaphragm implantation | NS | EnFocus Ultra-Deep OCT (Leica Microsystems) | To assess when the use of i-OCT could be relevant for intra- operative procedures. | I-OCT was crucial for the implantation of a two-part brown iris diaphragm, because of the poor contrast between the anterior lens capsule margin and the brown implant. | Very low | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro, M.D.; Milan, S.; Tognetto, D.; Rejdak, R.; Costagliola, C.; Zweifel, S.A.; Posarelli, C.; Figus, M.; Rejdak, M.; Avitabile, T.; et al. Intraoperative Anterior Segment Optical Coherence Tomography in the Management of Cataract Surgery: State of the Art. J. Clin. Med. 2022, 11, 3867. https://doi.org/10.3390/jcm11133867
Toro MD, Milan S, Tognetto D, Rejdak R, Costagliola C, Zweifel SA, Posarelli C, Figus M, Rejdak M, Avitabile T, et al. Intraoperative Anterior Segment Optical Coherence Tomography in the Management of Cataract Surgery: State of the Art. Journal of Clinical Medicine. 2022; 11(13):3867. https://doi.org/10.3390/jcm11133867
Chicago/Turabian StyleToro, Mario Damiano, Serena Milan, Daniele Tognetto, Robert Rejdak, Ciro Costagliola, Sandrine Anne Zweifel, Chiara Posarelli, Michele Figus, Magdalena Rejdak, Teresio Avitabile, and et al. 2022. "Intraoperative Anterior Segment Optical Coherence Tomography in the Management of Cataract Surgery: State of the Art" Journal of Clinical Medicine 11, no. 13: 3867. https://doi.org/10.3390/jcm11133867
APA StyleToro, M. D., Milan, S., Tognetto, D., Rejdak, R., Costagliola, C., Zweifel, S. A., Posarelli, C., Figus, M., Rejdak, M., Avitabile, T., Carnevali, A., & Giglio, R. (2022). Intraoperative Anterior Segment Optical Coherence Tomography in the Management of Cataract Surgery: State of the Art. Journal of Clinical Medicine, 11(13), 3867. https://doi.org/10.3390/jcm11133867