The Emerging Role of Combined Brain/Heart Magnetic Resonance Imaging for the Evaluation of Brain/Heart Interaction in Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Brain Anatomy and Function in HF
3.2. Pathophysiology of Brain Dysfunction in Heart Failure
3.2.1. The Role of Reduced CBF
3.2.2. The Neurohormonal Axis
3.2.3. The Inflammatory Axis
3.2.4. The Nutritional Deficiency
3.2.5. The Role of Depression
3.2.6. The Role of Atrial Fibrillation (AF)
3.2.7. The Role of Myocardial Infarction (MI)
3.2.8. The Role of Heart Failure (HF)
3.3. Brain Imaging in Heart Failure
- 1.
- Structural imaging
- 2.
- Functional imaging
- Electroencephalography (EEG)
- Positron Emission Tomography (PET)
- Magnetic Resonance Imaging (MRI)
3.4. Cardiac Imaging in Heart Failure
- Echocardiography (ECHO)
- Cardiovascular Magnetic Resonance (CMR)
3.5. Role of the Proximal Aorta as a Coupling Device between Heart and Brain Perfusion
4. Discussion
Combined Brain/Heart MRI in Heart Failure: Luxury or Real Clinical Need?
- HF patients with subtle CD;
- HF patients with rapidly progressive CD;
- Patients with rapidly progressive HF, even if they have not clinically overt CD;
- Patients under evaluation before any change in cardiac and/or neurologic medication;
- Patients under evaluation before any interventional or surgical treatment for structural heart disease.
5. Conclusions
- There is a great interaction between brain and heart;
- Any kind of cardiac pathology either subclinical or overt may influence the brain function;
- Cognitive tests cannot identify subclinical brain lesions;
- Early treatment of cardiac disease may prevent the development of brain lesions;
- The prognosis of HF is dependent on brain function.
- A combined brain–heart MRI evaluation can be a criterion of brain–heart involvement during HF;
- Artificial intelligence can provide more accurate and objective assessment of brain-heart MRI imaging;
- A combination of cognitive testing and brain–heart MRI will help the categorization of HF patients in different groups of severity and facilitate treatment individualization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrinier, N.; Thilly, N.; Briançon, S.; Juillière, Y.; Mertes, P.M.; Villemot, J.P.; Alla, F.; Zannad, F.; EPICAL group. Prognostic factors associated with 15-year mortality in patients with hospitalized systolic HF: Results of the observational community-based EPICAL cohort study. Int. J. Cardiol. 2017, 228, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Festa, J.R.; Jia, X.; Cheung, K.; Marchidann, A.; Schmidt, M.; Shapiro, P.A.; Mancini, D.M.; Naka, Y.; Deng, M.; Lantz, E.R.; et al. Association of low ejection fraction with impaired verbal memory in older patients with heart failure. Arch. Neurol. 2011, 68, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Pressler, S.J.; Kim, J.; Riley, P.; Ronis, D.L.; Gradus-Pizlo, I. Memory dysfunction, psychomotor slowing, and decreased executive function predict mortality in patients with heart failure and low ejection fraction. J. Card. Fail. 2010, 16, 750–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvé, M.J.; Lewis, W.R.; Blankenbiller, M.; Rickabaugh, B.; Pressler, S.J. Cognitive impairments in chronic heart failure: A case controlled study. J. Card. Fail. 2009, 15, 1–10. [Google Scholar] [CrossRef]
- Hajduk, A.M.; Kiefe, C.I.; Person, S.D.; Gore, J.G.; Saczynski, J.S. Cognitive change in heart failure: A systematic review. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Scherbakov, N.; Doehner, W. Heart-brain interactions in heart failure. Card. Fail. Rev. 2018, 4, 87–91. [Google Scholar] [CrossRef]
- Georgiadis, D.; Sievert, M.; Cencetti, S.; Uhlmann, F.; Krivokuca, M.; Zierz, S.; Werdan, K. Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur. Heart J. 2000, 21, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Lorenzi-Filho, G.; Azevedo, E.R.; Parker, J.D.; Bradley, T.D. Relationship of carbon dioxide tension in arterial blood to pulmonary wedge pressure in heart failure. Eur. Respir. J. 2002, 19, 37–40. [Google Scholar] [CrossRef]
- Sabayan, B.; van Buchem, M.A.; Sigurdsson, S.; Zhang, Q.; Harris, T.B.; Gudnason, V.; Arai, A.E.; Launer, L.J. Cardiac hemodynamics are linked with structural and functional features of brain aging: The age, gene/environment susceptibility (AGES)-Reykjavik Study. J. Am. Heart Assoc. 2015, 4, e001294. [Google Scholar] [CrossRef] [Green Version]
- Gruhn, N.; Larsen, F.S.; Boesgaard, S.; Knudsen, G.M.; Mortensen, S.A.; Thomsen, G.; Aldershvile, J. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 2001, 32, 2530–2533. [Google Scholar] [CrossRef] [Green Version]
- Vogels, R.L.; Oosterman, J.M.; Laman, D.M.; Gouw, A.A.; Schroeder-Tanka, J.M.; Scheltens, P.; van der Flier, W.M.; Weinstein, H.C. Transcranial Doppler blood flow assessment in patients with mild heart failure: Correlates with neuroimaging and cognitive performance. Congest. Heart Fail 2008, 14, 61–66. [Google Scholar] [CrossRef]
- Almeida, O.P.; Garrido, G.J.; Beer, C.; Lautenschlager, N.T.; Arnolda, L.; Flicker, L. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur. Heart J. 2012, 33, 1769–1776. [Google Scholar] [CrossRef] [Green Version]
- Alagiakrishnan, K.; Mah, D.; Ahmed, A.; Ezekowitz, J. Cognitive decline in heart failure. Heart Fail. Rev. 2016, 21, 661–673. [Google Scholar] [CrossRef]
- Huijts, M.; van Oostenbrugge, R.J.; Duits, A.; Burkard, T.; Muzzarelli, S.; Maeder, M.T.; Schindler, R.; Pfisterer, M.E.; Brunner-La Rocca, H.P.; TIME-CHF Investigators. Cognitive impairment in heart failure: Results from the Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure (TIME-CHF) randomized trial. Eur. J. Heart Fail. 2013, 15, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Athilingam, P.; D’Aoust, R.F.; Miller, L.; Chen, L. Cognitive profile in persons with systolic and diastolic heart failure. Congest. Heart Fail. 2013, 19, 44–50. [Google Scholar] [CrossRef]
- Cameron, J.; Worrall-Carter, L.; Page, K.; Riegel, B.; Lo, S.K.; Stewart, S. Does cognitive impairment predict poor self-care in patients with heart failure? Eur. J. Heart Fail. 2010, 12, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, L.A.; Kilian, S.; Firek, A.; Kashner, T.M.; Firek, C.J.; Silvet, H. Cognitive impairment and medication adherence in outpatients with heart failure. Heart Lung 2012, 41, 572–582. [Google Scholar] [CrossRef]
- Rutledge, T.; Reis, V.A.; Linke, S.E.; Greenberg, B.H.; Mills, P.J. Depression in heart failure a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J. Am. Coll. Cardiol. 2006, 48, 1527–1537. [Google Scholar] [CrossRef] [Green Version]
- Vogels, R.L.; van der Flier, W.M.; van Harten, B.; Gouw, A.A.; Scheltens, P.; Schroeder-Tanka, J.M.; Weinstein, H.C. Brain magnetic resonance imaging abnormalities in patients with heart failure. Eur. J. Heart Fail. 2007, 9, 1003–1009. [Google Scholar] [CrossRef]
- Pan, A.; Kumar, R.; Macey, P.M.; Fonarow, G.C.; Harper, R.M.; Woo, M.A. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure. J. Card. Fail. 2013, 19, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Fazekas, F.; Offenbacher, H.; Dusleag, J.; Lechner, H. Brain magnetic resonance imaging and neuropsychologic evaluation of patients with idiopathic dilated cardiomyopathy. Stroke 1991, 22, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovbiagele, B.; Saver, J.L. Cerebral white matter hyperintensities on MRI: Current concepts and therapeutic implications. Cerebrovasc. Dis. 2006, 22, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.; Thiel, F.; Beutner, F.; Teren, A.; Frisch, S.; Ballarini, T.; Möller, H.E.; Ihle, K.; Thiery, J.; Schuler, G.; et al. Brain damage with heart failure: Cardiac biomarker alterations and gray matter decline. Circ. Res. 2020, 126, 750–764. [Google Scholar] [CrossRef] [PubMed]
- Risacher, S.L.; Saykin, A.J. Neuroimaging in aging and neurologic diseases. Handb. Clin. Neurol. 2019, 167, 191–227. [Google Scholar] [CrossRef]
- Newcomer, J.W.; Selke, G.; Melson, A.K.; Hershey, T.; Craft, S.; Richards, K.; Alderson, A.L. Decreased memory performance in healthy humans induced by stress-level cortisol treatment. Arch. Gen. Psychiatry 1999, 56, 527–533. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Wolf, O.T.; May, M.; Wippich, W.; Hellhammer, D.H. Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996, 58, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Chetty, S.; Friedman, A.R.; Taravosh-Lahn, K.; Kirby, E.D.; Mirescu, C.; Guo, F.; Krupik, D.; Nicholas, A.; Geraghty, A.; Krishnamurthy, A.; et al. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol. Psychiatry 2014, 19, 1275–1283. [Google Scholar] [CrossRef] [Green Version]
- Huffman, J.C.; Celano, C.M.; Beach, S.R.; Motiwala, S.R.; Januzzi, J.L. Depression and cardiac disease: Epidemiology, mechanisms, and diagnosis. Cardiovasc. Psychiatry Neurol. 2013, 2013, 695925. [Google Scholar] [CrossRef] [Green Version]
- El-Menyar, A.A. Cytokines and myocardial dysfunction: State of the art. J. Card. Fail. 2008, 14, 61–74. [Google Scholar] [CrossRef]
- Ferketich, A.K.; Ferguson, J.P.; Binkley, P.F. Depressive symptoms and inflammation among heart failure patients. Am. Heart J. 2005, 150, 132–136. [Google Scholar] [CrossRef]
- Wallin, K.; Solomon, A.; Kåreholt, I.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: A population-based study. J. Alzheimers Dis. 2012, 31, 669–676. [Google Scholar] [CrossRef]
- McAfoose, J.; Baune, B.T. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev. 2009, 33, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Keith, M.E.; Walsh, N.A.; Darling, P.B.; Hanninen, S.A.; Thirugnanam, S.; Leong-Poi, H.; Barr, A.; Sole, M.J. B-vitamin deficiency in hospitalized patients with heart failure. J. Am. Diet. Assoc. 2009, 109, 1406–1410. [Google Scholar] [CrossRef]
- Zuccoli, G.; Santa Cruz, D.; Bertolini, M.; Rovira, A.; Gallucci, M.; Carollo, C.; Pipitone, N. MR imaging findings in 56 patients with Wernicke encephalopathy: Nonalcoholics may differ from alcoholics. AJNR Am. J. Neuroradiol. 2009, 30, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Saczynski, J.S.; Beiser, A.; Seshadri, S.; Auerbach, S.; Wolf, P.A.; Au, R. Depressive symptoms and risk of dementia: The Framingham Heart Study. Neurology 2010, 75, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Sheline, Y.I.; Sanghavi, M.; Mintun, M.A.; Gado, M.H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci. 1999, 19, 5034–5043. [Google Scholar] [CrossRef] [Green Version]
- Schiepers, O.J.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 201–217. [Google Scholar] [CrossRef]
- Bhagwagar, Z.; Hafizi, S.; Cowen, P.J. Increased salivary cortisol after waking in depression. Psychopharmacology 2005, 182, 54–57. [Google Scholar] [CrossRef]
- Halvorsen, M.; Høifødt, R.S.; Myrbakk, I.N.; Wang, C.E.; Sundet, K.; Eisemann, M.; Waterloo, K. Cognitive function in unipolar major depression: A comparison of currently depressed, previously depressed, and never depressed individuals. J. Clin. Exp. Neuropsychol. 2012, 34, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Dagres, N.; Chao, T.F.; Fenelon, G.; Aguinaga, L.; Benhayon, D.; Benjamin, E.J.; Bunch, T.J.; Chen, L.Y.; Chen, S.A.; Darrieux, F.; et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on arrhythmias and cognitive function: What is the best practice? Europace 2018, 20, 1399–1421. [Google Scholar] [CrossRef]
- Merkler, A.E.; Sigurdsson, S.; Eiriksdottir, G.; Safford, M.M.; Phillips, C.L.; Iadecola, C.; Gudnason, V.; Weinsaft, J.W.; Kamel, H.; Arai, A.E.; et al. Association between unrecognized myocardial infarction and cerebral infarction on magnetic resonance imaging. JAMA Neurol. 2019, 76, 956–961. [Google Scholar] [CrossRef]
- Lip, G.Y.; Ponikowski, P.; Andreotti, F.; Anker, S.D.; Filippatos, G.; Homma, S.; Morais, J.; Pullicino, P.; Rasmussen, L.H.; Marin, F.; et al. Thrombo-embolism and antithrombotic therapy for heart failure in sinus rhythm. A joint consensus document from the ESC Heart Failure Association and the ESC Working Group on Thrombosis. Eur. J. Heart Fail. 2012, 14, 681–695. [Google Scholar] [CrossRef]
- Aiyer, R.; Novakovic, V.; Barkin, R.L. A systematic review on the impact of psychotropic drugs on electroencephalogram waveforms in psychiatry. Postgrad. Med. 2016, 128, 656–664. [Google Scholar] [CrossRef]
- Yun, M.; Nie, B.; Wen, W.; Zhu, Z.; Liu, H.; Nie, S.; Lanzenberger, R.; Wei, Y.; Hacker, M.; Shan, B.; et al. Assessment of cerebral glucose metabolism in patients with heart failure by 18F-FDG PET/CT imaging. J. Nucl. Cardiol. 2020, 29, 476–488. [Google Scholar] [CrossRef]
- Alosco, M.L.; Brickman, A.M.; Spitznagel, M.B.; Narkhede, A.; Griffith, E.Y.; Cohen, R.; Sweet, L.H.; Josephson, R.; Hughes, J.; Gunstad, J. Reduced gray matter volume is associated with poorer instrumental activities of daily living performance in heart failure. J. Cardiovasc. Nurs. 2016, 31, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Sklerov, M.; Dayan, E.; Browner, N. Functional neuroimaging of the central autonomic network: Recent developments and clinical implications. Clin. Auton. Res. 2019, 29, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Irani, F.; Sweet, L.H.; Haley, A.P.; Gunstad, J.J.; Jerskey, B.A.; Mulligan, R.C.; Jefferson, A.L.; Poppas, A.; Cohen, R.A. A fMRI study of verbal working memory, cardiac output, and ejection fraction in elderly patients with cardiovascular disease. Brain Imaging Behav. 2009, 3, 350–357. [Google Scholar] [CrossRef]
- Suzuki, H.; Matsumoto, Y.; Ota, H.; Kotozaki, Y.; Takahashi, J.; Ito, K.; Fukumoto, Y.; Kawashima, R.; Taki, Y.; Shimokawa, H. Interactions between the heart and the brain in heart failure patients assessed by magnetic resonance imaging—Interim results from Brain assessment and investigation in Heart Failure Trial (B-HeFT). Eur. Heart J. 2013, 34, P2732. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, A.L.; Himali, J.J.; Au, R.; Seshadri, S.; Decarli, C.; O’Donnell, C.J.; Wolf, P.A.; Manning, W.J.; Beiser, A.S.; Benjamin, E.J. Relation of left ventricular ejection fraction to cognitive aging (from the Framingham Heart Study). Am. J. Cardiol. 2011, 108, 1346–1351. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.; Chen, S.; Iyngkaran, P. Cardiac imaging in heart failure with comorbidities. Curr. Cardiol. Rev. 2017, 13, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Marwick, T.H. The role of echocardiography in heart failure. J. Nucl. Med. 2015, 56 (Suppl. S4), 31S–38S. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, M.J.; Inciardi, R.M.; Norby, F.L.; Johansen, M.C.; Parikh, R.; Van’t Hof, J.R.; Alonso, A.; Soliman, E.Z.; Mosley, T.H.; et al. Association of echocardiographic measures of left atrial function and size with incident dementia. JAMA 2022, 327, 1138–1148. [Google Scholar] [CrossRef]
- Aljizeeri, A.; Sulaiman, A.; Alhulaimi, N.; Alsaileek, A.; Al-Mallah, M.H. Cardiac magnetic resonance imaging in heart failure: Where the alphabet begins! Heart Fail. Rev. 2017, 22, 385–399. [Google Scholar] [CrossRef]
- De Roos, A.; van der Grond, J.; Mitchell, G.; Westenberg, J. Magnetic resonance imaging of cardiovascular function and the brain: Is dementia a cardiovascular-driven disease? Circulation 2017, 135, 2178–2195. [Google Scholar] [CrossRef] [Green Version]
- Cullen, B.; O’Neill, B.; Evans, J.J.; Coen, R.F.; Lawlor, B.A. A review of screening tests for cognitive impairment. J. Neurol. Neurosurg. Psychiatry 2007, 78, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Markousis-Mavrogenis, G.; Mitsikostas, D.D.; Koutsogeorgopoulou, L.; Dimitroulas, T.; Katsifis, G.; Argyriou, P.; Apostolou, D.; Velitsista, S.; Vartela, V.; Manolopoulou, D.; et al. Combined brain-heart magnetic resonance imaging in autoimmune rheumatic disease patients with cardiac symptoms: Hypothesis generating insights from a cross-sectional study. J. Clin. Med. 2020, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Frey, A.; Sell, R.; Homola, G.A.; Malsch, C.; Kraft, P.; Gunreben, I.; Morbach, C.; Alkonyi, B.; Schmid, E.; Colonna, I.; et al. Cognitive deficits and related brain lesions in patients with chronic heart failure. JACC Heart Fail. 2018, 6, 583–592. [Google Scholar] [CrossRef]
Modalities | Brain Imaging | Cardiac Imaging | Cost | Availability | Radiation |
---|---|---|---|---|---|
Echocardiography | − | + | + | ++++ | − |
PET | + | + | ++++ | + | +++ |
Combined brain/heart MRI | + | + | +++ | +++ | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markousis-Mavrogenis, G.; Noutsias, M.; Rigopoulos, A.G.; Giannakopoulou, A.; Gatzonis, S.; Pons, R.M.; Papavasiliou, A.; Vartela, V.; Bonou, M.; Kolovou, G.; et al. The Emerging Role of Combined Brain/Heart Magnetic Resonance Imaging for the Evaluation of Brain/Heart Interaction in Heart Failure. J. Clin. Med. 2022, 11, 4009. https://doi.org/10.3390/jcm11144009
Markousis-Mavrogenis G, Noutsias M, Rigopoulos AG, Giannakopoulou A, Gatzonis S, Pons RM, Papavasiliou A, Vartela V, Bonou M, Kolovou G, et al. The Emerging Role of Combined Brain/Heart Magnetic Resonance Imaging for the Evaluation of Brain/Heart Interaction in Heart Failure. Journal of Clinical Medicine. 2022; 11(14):4009. https://doi.org/10.3390/jcm11144009
Chicago/Turabian StyleMarkousis-Mavrogenis, George, Michel Noutsias, Angelos G. Rigopoulos, Aikaterini Giannakopoulou, Stergios Gatzonis, Roser Maria Pons, Antigoni Papavasiliou, Vasiliki Vartela, Maria Bonou, Genovefa Kolovou, and et al. 2022. "The Emerging Role of Combined Brain/Heart Magnetic Resonance Imaging for the Evaluation of Brain/Heart Interaction in Heart Failure" Journal of Clinical Medicine 11, no. 14: 4009. https://doi.org/10.3390/jcm11144009
APA StyleMarkousis-Mavrogenis, G., Noutsias, M., Rigopoulos, A. G., Giannakopoulou, A., Gatzonis, S., Pons, R. M., Papavasiliou, A., Vartela, V., Bonou, M., Kolovou, G., Aggeli, C., Christidi, A., Bacopoulou, F., Tousoulis, D., & Mavrogeni, S. (2022). The Emerging Role of Combined Brain/Heart Magnetic Resonance Imaging for the Evaluation of Brain/Heart Interaction in Heart Failure. Journal of Clinical Medicine, 11(14), 4009. https://doi.org/10.3390/jcm11144009