Pulse Wave Velocity for Risk Stratification of Patients with Aortic Aneurysm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Pulse Wave Velocity Recording
2.3. Statistical Analysis
3. Results
3.1. Study Group
3.2. Age, Gender, and Recorded PWV
3.3. Systolic Blood Pressure and Recorded PWV
3.4. Cardiovascular Risk Factors, Chronic Kidney Disease (CKD), and Recorded PWV
3.5. PWV of Patients with Aortic Disease and Nonaortic Atherosclerotic Vascular Disease
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Rourke, M.F.; Staessen, J.A.; Vlachopoulos, C.; Duprez, D.; Plante, G.E. Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 2002, 15, 426–444. [Google Scholar] [CrossRef]
- Mihalcea, D.J.; Florescu, M.; Suran, B.M.; Enescu, O.A.; Mincu, R.I.; Magda, S.; Patrascu, N.; Vinereanu, D. Comparison of pulse wave velocity assessed by three different techniques: Arteriograph, Complior, and Echo-tracking. Heart Vessels 2016, 31, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement from the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef] [PubMed]
- Milan, A.; Zocaro, G.; Leone, D.; Tosello, F.; Buraioli, I.; Schiavone, D.; Veglio, F. Current assessment of pulse wave velocity: Comprehensive review of validation studies. J. Hypertens. 2019, 37, 1547–1557. [Google Scholar] [CrossRef]
- Weber, T.; Wassertheurer, S.; Rammer, M.; Maurer, E.; Hametner, B.; Mayer, C.C.; Kropf, J.; Eber, B. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension 2011, 58, 825–832. [Google Scholar] [CrossRef]
- Karpetas, A.; Sarafidis, P.A.; Georgianos, P.I.; Protogerou, A.; Vakianis, P.; Koutroumpas, G.; Raptis, V.; Stamatiadis, D.N.; Syrganis, C.; Liakopoulos, V.; et al. Ambulatory recording of wave reflections and arterial stiffness during intra- and interdialytic periods in patients treated with dialysis. Clin. J. Am. Soc. Nephrol. 2015, 10, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, T.G.; Thymis, J.; Benas, D.; Triantafyllidi, H.; Kostelli, G.; Pavlidis, G.; Kousathana, F.; Katogiannis, K.; Vlastos, D.; Lambadiari, V.; et al. Measurement of central augmentation index by three different methods and techniques: Agreement among Arteriograph, Complior, and Mobil-O-Graph devices. J. Clin. Hypertens. 2019, 21, 1386–1392. [Google Scholar] [CrossRef] [Green Version]
- Dogdus, M.; Akhan, O.; Ozyasar, M.; Yilmaz, A.; Altintas, M.S. Evaluation of Arterial Stiffness Using Pulse Wave Velocity and Augmentation Index in Patients with Chronic Venous Insufficiency. Int. J. Vasc. Med. 2018, 2018, 5437678. [Google Scholar] [CrossRef] [Green Version]
- Sarafidis, P.A.; Loutradis, C.; Karpetas, A.; Tzanis, G.; Piperidou, A.; Koutroumpas, G.; Raptis, V.; Syrgkanis, C.; Liakopoulos, V.; Efstratiadis, G.; et al. Ambulatory Pulse Wave Velocity Is a Stronger Predictor of Cardiovascular Events and All-Cause Mortality Than Office and Ambulatory Blood Pressure in Hemodialysis Patients. Hypertension 2017, 70, 148–157. [Google Scholar] [CrossRef]
- Golebiowski, T.; Kusztal, M.; Konieczny, A.; Letachowicz, K.; Gawrys, A.; Skolimowska, B.; Ostrowska, B.; Zmonarski, S.; Janczak, D.; Krajewska, M. Disability of Dialysis Patients and the Condition of Blood Vessels. J. Clin. Med. 2020, 9, 1806. [Google Scholar] [CrossRef] [PubMed]
- Durmus, I.; Kazaz, Z.; Altun, G.; Cansu, A. Augmentation index and aortic pulse wave velocity in patients with abdominal aortic aneurysms. Int. J. Clin. Exp. Med. 2014, 7, 421–425. [Google Scholar]
- Paraskevas, K.I.; Bessias, N.; Psathas, C.; Akridas, K.; Dragios, T.; Nikitas, G.; Andrikopoulos, V.; Mikhailidis, D.P.; Kyriakides, Z.S. Evaluation of aortic stiffness (aortic pulse-wave velocity) before and after elective abdominal aortic aneurysm repair procedures: A pilot study. Open Cardiovasc. Med. J. 2009, 3, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Hannuksela, M.; Johansson, B.; Carlberg, B. Aortic stiffness in families with inherited non-syndromic thoracic aortic disease. Scand. Cardiovasc. J. 2018, 52, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Sung, S.H.; Chen, C.K.; Chen, I.M.; Cheng, H.M.; Yu, W.C.; Shih, C.C.; Chen, C.H. Measures of carotid-femoral pulse wave velocity and augmentation index are not reliable in patients with abdominal aortic aneurysm. J. Hypertens. 2013, 31, 1853–1860. [Google Scholar] [CrossRef]
- Gray, C.; Goodman, P.; Badger, S.A.; O’Malley, M.K.; O’Donohoe, M.K.; McDonnell, C.O. Endovascular Aneurysm Repair Increases Aortic Arterial Stiffness When Compared to Open Repair of Abdominal Aortic Aneurysms. Vasc. Endovascular. Surg. 2016, 50, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Tzilalis, V.D.; Kamvysis, D.; Panagou, P.; Kaskarelis, I.; Lazarides, M.K.; Perdikides, T.; Prassopoulos, P.; Boudoulas, H. Increased pulse wave velocity and arterial hypertension in young patients with thoracic aortic endografts. Ann. Vasc. Surg. 2012, 26, 462–467. [Google Scholar] [CrossRef]
- Youssef, A.; Kalaja, I.; Alkomi, U.; Abt, T.; Hoffmann, R.T.; Reeps, C.; Weiss, N.; Karl Lackner, H.; Mahlmann, A. Aortic stiffness and related complications after endovascular repair of blunt thoracic aortic injury in young patients. Vasa 2020, 49, 295–300. [Google Scholar] [CrossRef]
- Moloney, M.A.; McHugh, S.; DH, O.D.; Casey, R.G.; Kavanagh, E.G.; Grace, P.A.; Fitzgerald, P.; Bouchier-Hayes, D.J. Comparison of arterial stiffness and microcirculatory changes following abdominal aortic aneurysm grafting. Ir. J. Med. Sci. 2011, 180, 375–378. [Google Scholar] [CrossRef]
- Bissacco, D.; Conti, M.; Domanin, M.; Bianchi, D.; Scudeller, L.; Mandigers, T.J.; Allievi, S.; Auricchio, F.; Trimarchi, S. Modifications in Aortic Stiffness after Endovascular or Open Aortic Repair: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 567–577. [Google Scholar] [CrossRef]
- Holda, M.K.; Iwaszczuk, P.; Wszolek, K.; Chmiel, J.; Brzychczy, A.; Trystula, M.; Misztal, M. Coexistence and management of abdominal aortic aneurysm and coronary artery disease. Cardiol. J. 2020, 27, 384–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernesniemi, J.A.; Vanni, V.; Hakala, T. The prevalence of abdominal aortic aneurysm is consistently high among patients with coronary artery disease. J. Vasc. Surg. 2015, 62, 232–240.e233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, J.E.; Feig, P.U.; Izzo, J.L., Jr. Pulse Wave Velocities Derived from Cuff Ambulatory Pulse Wave Analysis. Hypertension 2019, 74, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef]
- Bia, D.; Zocalo, Y. Physiological Age- and Sex-Related Profiles for Local (Aortic) and Regional (Carotid-Femoral, Carotid-Radial) Pulse Wave Velocity and Center-to-Periphery Stiffness Gradient, with and without Blood Pressure Adjustments: Reference Intervals and Agreement between Methods in Healthy Subjects (3–84 Years). J. Cardiovasc. Dev. Dis. 2021, 8, 3. [Google Scholar] [CrossRef]
- Salvi, P.; Scalise, F.; Rovina, M.; Moretti, F.; Salvi, L.; Grillo, A.; Gao, L.; Baldi, C.; Faini, A.; Furlanis, G.; et al. Noninvasive Estimation of Aortic Stiffness Through Different Approaches. Hypertension 2019, 74, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Hametner, B.; Wassertheurer, S.; Kropf, J.; Mayer, C.; Eber, B.; Weber, T. Oscillometric estimation of aortic pulse wave velocity: Comparison with intra-aortic catheter measurements. Blood Press. Monit. 2013, 18, 173–176. [Google Scholar] [CrossRef]
- Brett, S.E.; Guilcher, A.; Clapp, B.; Chowienczyk, P. Estimating central systolic blood pressure during oscillometric determination of blood pressure: Proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry. Blood Press. Monit. 2012, 17, 132–136. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Argyris, A.; Protogerou, A.D.; Vrachatis, D.; Nasothimiou, E.G.; Sfikakis, P.P.; Stergiou, G.S.; Stefanadis, C.I. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: The first feasibility and reproducibility study. Int. J. Cardiol. 2013, 169, 57–61. [Google Scholar] [CrossRef]
- Sarafidis, P.A.; Georgianos, P.I.; Karpetas, A.; Bikos, A.; Korelidou, L.; Tersi, M.; Divanis, D.; Tzanis, G.; Mavromatidis, K.; Liakopoulos, V.; et al. Evaluation of a novel brachial cuff-based oscillometric method for estimating central systolic pressure in hemodialysis patients. Am. J. Nephrol. 2014, 40, 242–250. [Google Scholar] [CrossRef]
- Li, H.; Lin, K.; Shahmirzadi, D. FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness. Biomed. Eng. Comput. Biol. 2016, 7, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
AoD (n = 176) Mean ± SD Number (%) | Nonaortic AVD (n = 205) Mean ± SD Number (%) | ||
---|---|---|---|
Age (years) | 67 ± 9 | 68 ± 10 | |
Gender | Male | 144 (81.8) | 144 (70.2) |
Female | 32 (18.2) | 61 (29.8) | |
Antihypertensives | 159 (90.3) | 170 (82.9) | |
BMI (kg/m2) | 28.6 ± 5.5 | 27.7 ± 5.2 | |
Diabetes | 35 (19.9) | 75 (36.6) | |
Smoking | 45 (25.6) | 44 (21.5) | |
eGFR | 72 ± 25 | 70 ± 28 | |
Hemodialysis | 7 (4.0) | 14 (6.8) | |
AAA | 114 (64.8) | 0 (0.0) | |
T(A)AA | 37 (21.0) | 0 (0.0) | |
Aortic dissection | 25 (14.2) | 0 (0.0) | |
CAD | 70 (39.8) | 86 (42.0) | |
PAD | 40 (22.7) | 141 (68.8) | |
Carotid AD | 27 (15.3) | 84 (41.0) |
Factor | Mean PWV (m/s) | Mean PWV (m/s) | Mean PWV (m/s) | Mean PWV (m/s) | Mean PWV (m/s) | Mean PWV ± SD (m/s) | p | page corrected |
---|---|---|---|---|---|---|---|---|
Age Category | 40–49 y | 50–59 y | 60–69 y | 70–79 y | 80–90 y | All Patients | ||
BMI | ||||||||
<25 kg/m2 (n = 111) | 7.1 (n = 5) | 7.4 (n = 16) | 9.2 (n = 32) | 11.0 (n = 45) | 12.6 (n = 13) | 10.0 ± 1.8 | ||
25–29.9 kg/m2 (n = 151) | 6.8 (n = 7) | 8.1 (n = 26) | 9.3 (n = 53) | 11.0 (n = 56) | 12.6 (n = 9) | 9.8 ± 1.6 | >0.05 | >0.05 |
≥30 kg/m2 (n = 119) | 6.9 (n = 4) | 8.2 (n = 24) | 9.5 (n = 42) | 10.9 (n = 37) | 12.9 (n = 12) | 9.9 ± 1.6 | >0.05 | >0.05 |
Diabetes | ||||||||
Diabetics (n = 110) | 6.8 (n = 1) | 8.2 (n = 15) | 9.2 (n = 42) | 11.0 (n = 41) | 12.9 (n = 11) | 10.1 ± 1.6 | ||
Nondiabetics (n = 271) | 6.9 (n = 15) | 8.0 (n = 51) | 9.5 (n = 85) | 11.0 (n = 97) | 12.6 (n = 23) | 9.9 ± 1.7 | >0.05 | >0.05 |
Smoking | ||||||||
Smokers (n = 89) | 7.0 (n = 3) | 8.2 (n = 30) | 9.3 (n = 34) | 10.9 (n = 19) | 12.2 (n = 3) | 9.3 ± 1.4 | ||
Nonsmokers (n = 292) | 6.8 (n = 13) | 8.0 (n = 36) | 9.4 (n = 93) | 11.0 (n = 119) | 12.8 (n = 31) | 10.1 ± 1.7 | <0.05 | >0.05 |
eGFR | ||||||||
≥90 (n = 107) | 7.0 (n = 5) | 8.2 (n = 32) | 9.4 (n = 48) | 11.1 (n = 20) | 12.1 (n = 2) | 9.2 ± 1.3 | ||
30–89 (n = 244) | 6.7 (n = 9) | 8.0 (n = 29) | 9.3 (n = 68) | 11.0 (n = 110) | 12.7 (n = 28) | 10.2 ± 1.7 | <0.05 | >0.05 |
<30 (n = 30) | 7.2 (n = 2) | 8.0 (n = 6) | 9.5 (n = 7) | 10.7 (n = 11) | 13.0 (n = 4) | 10.0 ± 1.8 | <0.05 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schierling, W.; Matzner, J.; Apfelbeck, H.; Grothues, D.; Oberhoffer-Fritz, R.; Pfister, K. Pulse Wave Velocity for Risk Stratification of Patients with Aortic Aneurysm. J. Clin. Med. 2022, 11, 4026. https://doi.org/10.3390/jcm11144026
Schierling W, Matzner J, Apfelbeck H, Grothues D, Oberhoffer-Fritz R, Pfister K. Pulse Wave Velocity for Risk Stratification of Patients with Aortic Aneurysm. Journal of Clinical Medicine. 2022; 11(14):4026. https://doi.org/10.3390/jcm11144026
Chicago/Turabian StyleSchierling, Wilma, Julia Matzner, Hanna Apfelbeck, Dirk Grothues, Renate Oberhoffer-Fritz, and Karin Pfister. 2022. "Pulse Wave Velocity for Risk Stratification of Patients with Aortic Aneurysm" Journal of Clinical Medicine 11, no. 14: 4026. https://doi.org/10.3390/jcm11144026
APA StyleSchierling, W., Matzner, J., Apfelbeck, H., Grothues, D., Oberhoffer-Fritz, R., & Pfister, K. (2022). Pulse Wave Velocity for Risk Stratification of Patients with Aortic Aneurysm. Journal of Clinical Medicine, 11(14), 4026. https://doi.org/10.3390/jcm11144026