Characteristics and Treatment Outcomes in Advanced-Stage Non-Small Cell Lung Cancer Patients with a KRAS G12C Mutation: A Real-World Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population and Treatments
2.3. Data Collection
2.4. Efficacy Assessment
2.5. Ethics Approval and Informed Consent
2.6. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Tumor Characteristics
3.3. Treatment History
3.4. Treatment Responses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Miller, M.; Hanna, N. Advances in systemic therapy for non-small cell lung cancer. BMJ 2021, 375, n2363. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med. 2008, 359, 1367–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov. 2014, 13, 828–851. [Google Scholar] [CrossRef] [Green Version]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012, 72, 2457–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, A.; Tsongalis, P.D.; Peterson, J.D.; de Abreu, F.B.; Black, C.C.; Gutmann, E.J.; Liu, X.; Tafe, L.J.; Amos, C.I.; Tsongalis, G.J. The potential utility of re-mining results of somatic mutation testing: KRAS status in lung adenocarcinoma. Cancer Genet. 2016, 209, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Carbone, D.P.; Garassino, M.; Barlesi, F. Targeting KRAS in non-small-cell lung cancer: Recent progress and new approaches. Ann. Oncol. 2021, 32, 1101–1110. [Google Scholar] [CrossRef]
- Goulding, R.E.; Chenoweth, M.; Carter, G.C.; Boye, M.E.; Sheffield, K.M.; John, W.J.; Leusch, M.S.; Muehlenbein, C.E.; Li, L.; Jen, M.-H.; et al. KRAS mutation as a prognostic factor and predictive factor in advanced/metastatic non-small cell lung cancer: A systematic literature review and meta-analysis. Cancer Treat. Res. Commun. 2020, 24, 100200. [Google Scholar] [CrossRef]
- Hayashi, H.; Okamoto, I.; Taguri, M.; Morita, S.; Nakagawa, K. Postprogression survival in patients with advanced non-small-cell lung cancer who receive second-line or third-line chemotherapy. Clin. Lung Cancer 2013, 14, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Salgia, R.; Pharaon, R.; Mambetsariev, I.; Nam, A.; Sattler, M. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep. Med. 2021, 2, 100186. [Google Scholar] [CrossRef] [PubMed]
- Cucurull, M.; Notario, L.; Sanchez-Cespedes, M.; Hierro, C.; Estival, A.; Carcereny, E.; Saigí, M. Targeting KRAS in Lung Cancer Beyond KRAS G12C Inhibitors: The Immune Regulatory Role of KRAS and Novel Therapeutic Strategies. Front. Oncol. 2021, 11, 793121. [Google Scholar] [CrossRef] [PubMed]
- Sotorasib FDA Approval. 2021. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sotorasib-kras-g12c-mutated-nsclc (accessed on 13 July 2022).
- Sotorasib EMA Approval. 2022. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/lumykras (accessed on 13 July 2022).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- de Koning, H.J.; Van Der Aalst, C.M.; De Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.-W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Garcia, B.N.C.; van Kempen, L.C.; Kuijpers, C.; Schuuring, E.; Willems, S.M.; van der Wekken, A.J. Prevalence of KRAS p.(G12C) in stage IV NSCLC patients in the Netherlands; a nation-wide retrospective cohort study. Lung Cancer 2022, 167, 1–7. [Google Scholar] [CrossRef]
- Salem, M.E.; El-Refai, S.M.; Sha, W.; Puccini, A.; Grothey, A.; George, T.J.; Hwang, J.J.; O’Neil, B.; Barrett, A.S.; Kadakia, K.C.; et al. Landscape of KRAS(G12C), Associated Genomic Alterations, and Interrelation With Immuno-Oncology Biomarkers in KRAS-Mutated Cancers. JCO Precis. Oncol. 2022, 6, e2100245. [Google Scholar] [CrossRef]
- Karachaliou, N.; Mayo, C.; Costa, C.; Magrí, I.; Gimenez-Capitan, A.; Molina-Vila, M.A.; Rosell, R. KRAS mutations in lung cancer. Clin. Lung Cancer 2013, 14, 205–214. [Google Scholar] [CrossRef]
- Scheffler, M.; Ihle, M.A.; Hein, R.; Merkelbach-Bruse, S.; Scheel, A.H.; Siemanowski, J.; Brägelmann, J.; Kron, A.; Abedpour, N.; Ueckeroth, F.; et al. K-ras Mutation Subtypes in NSCLC and Associated Co-occuring Mutations in Other Oncogenic Pathways. J. Thorac. Oncol. 2019, 14, 606–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, F.; Cani, M.; Malapelle, U.; Novello, S.; Napoli, V.M.; Bironzo, P. Targeting KRAS in NSCLC: Old Failures and New Options for “Non-G12c” Patients. Cancers 2021, 13, 6332. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Zhu, J.; Zhang, Y.; Liu, X.; Li, R.; Zhang, Q.; Cheng, Y. The Prevalence and Concurrent Pathogenic Mutations of KRAS (G12C) in Northeast Chinese Non-small-cell Lung Cancer Patients. Cancer Manag. Res. 2021, 13, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- El Osta, B.; Behera, M.; Kim, S.; Berry, L.D.; Sica, G.; Pillai, R.N.; Owonikoko, T.K.; Kris, M.G.; Johnson, B.E.; Kwiatkowski, D.J.; et al. Characteristics and Outcomes of Patients With Metastatic KRAS-Mutant Lung Adenocarcinomas: The Lung Cancer Mutation Consortium Experience. J. Thorac. Oncol. 2019, 14, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Franchini, F.; Alexander, M.; Officer, A.; Wong, H.-L.; Ijzerman, M.; Desai, J.; Solomon, B.J. Real world outcomes in KRAS G12C mutation positive non-small cell lung cancer. Lung Cancer 2020, 146, 310–317. [Google Scholar] [CrossRef]
- Frost, N.; Kollmeier, J.; Vollbrecht, C.; Grah, C.; Matthes, B.; Pultermann, D.; von Laffert, M.; Lüders, H.; Olive, E.; Raspe, M.; et al. KRAS(G12C)/TP53 co-mutations identify long-term responders to first line palliative treatment with pembrolizumab monotherapy in PD-L1 high (≥50%) lung adenocarcinoma. Transl. Lung Cancer Res. 2021, 10, 737–752. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, E.; Strickland, M.; Mendoza, D.; Lipkin, L.; Lennerz, J.; Gainor, J.; Heist, R.; Digumarthy, S. Clinical and Imaging Features of Non-Small Cell Lung Cancer with G12C KRAS Mutation. Cancers 2021, 13, 3572. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M.; Hui, R.; Hochmair, M.J.; Clingan, P.; Powell, S.F.; et al. Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef]
- Lei, L.; Wang, W.-X.; Yu, Z.-Y.; Liang, X.-B.; Pan, W.-W.; Chen, H.-F.; Wang, L.-P.; Fang, Y.; Wang, M.; Xu, C.-W.; et al. A Real-World Study in Advanced Non-Small Cell Lung Cancer with KRAS Mutations. Transl. Oncol. 2020, 13, 329–335. [Google Scholar] [CrossRef]
- Cefalì, M.; Epistolio, S.; Ramelli, G.; Mangan, D.; Molinari, F.; Martin, V.; Freguia, S.; Mazzucchelli, L.; Froesch, P.; Frattini, M.; et al. Correlation of KRAS G12C Mutation and High PD-L1 Expression with Clinical Outcome in NSCLC Patients Treated with Anti-PD1 Immunotherapy. J. Clin. Med. 2022, 11, 1627. [Google Scholar] [CrossRef]
- Jeanson, A.; Tomasini, P.; Souquet-Bressand, M.; Brandone, N.; Boucekine, M.; Grangeon, M.; Chaleat, S.; Khobta, N.; Milia, J.; Mhanna, L.; et al. Efficacy of Immune Checkpoint Inhibitors in KRAS-Mutant Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2019, 14, 1095–1101. [Google Scholar] [CrossRef]
- Mellema, W.W.; Masen-Poos, L.; Smit, E.F.; Hendriks, L.; Aerts, J.G.; Termeer, A.; Goosens, M.J.; Smit, H.J.; Heuvel, M.M.V.D.; van der Wekken, A.J.; et al. Comparison of clinical outcome after first-line platinum-based chemotherapy in different types of KRAS mutated advanced non-small-cell lung cancer. Lung Cancer 2015, 90, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Dietel, M.; Savelov, N.; Salanova, R.; Micke, P.; Bigras, G.; Hida, T.; Antunez, J.; Skov, B.G.; Hutarew, G.; Sua, L.; et al. Real-world prevalence of programmed death ligand 1 expression in locally advanced or metastatic non-small-cell lung cancer: The global, multicenter EXPRESS study. Lung Cancer 2019, 134, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Lopes, G. Association of KRAS Mutation Status with Response to Pembrolizumab Monotherapy Given as First-Line Therapy for PD-L1 Positive Advanced Non-Squamous NSCLC in KEYNOTE-042. Ann. Oncol. 2019, 30 (Suppl. S11), LBA4. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodriguez-Abreu, D. KRAS Mutational Status and Efficacy in KEYNOTE-189: Pembrolizumab Plus Chemotherapy (vs Placebo Plus Chemo as First-Line Therapy for Metastatic Non-Squamous NSCLC. Ann. Oncol. 2019, 30 (Suppl. S11), xi64–xi65. [Google Scholar] [CrossRef]
- Sebastian, M.; Eberhardt, W.E.; Hoffknecht, P.; Metzenmacher, M.; Wehler, T.; Kokowski, K.; Alt, J.; Schütte, W.; Büttner, R.; Heukamp, L.C.; et al. KRAS G12C-mutated advanced non-small cell lung cancer: A real-world cohort from the German prospective, observational, nation-wide CRISP Registry (AIO-TRK-0315). Lung Cancer 2021, 154, 51–61. [Google Scholar] [CrossRef]
- Spira, A.I.; Tu, H.; Aggarwal, S.; Hsu, H.; Carrigan, G.; Wang, X.; Ngarmchamnanrith, G.; Chia, V.; Gray, J.E. A retrospective observational study of the natural history of advanced non-small-cell lung cancer in patients with KRAS p.G12C mutated or wild-type disease. Lung Cancer 2021, 159, 1–9. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Pirker, R.; Prosch, H.; Popper, H.; Klepetko, W.; Dieckmann, K.; Burghuber, O.C.; Klikovits, T.; Hoda, M.A.; Zöchbauer-Müller, S.; Filipits, M. Lung Cancer in Austria. J. Thorac. Oncol. 2021, 16, 725–733. [Google Scholar] [CrossRef] [PubMed]
KRAS Mutation, n (%) 1 | All Patients (N = 665) |
---|---|
G12C | 314 (47.2) |
G12V | 103 (15.5) |
G12D | 86 (12.9) |
G12A | 40 (6.0) |
G13D | 23 (3.5) |
G13C | 23 (3.5) |
Q61H | 16 (2.4) |
G12S | 15 (2.3) |
G12F | 9 (1.4) |
G12R | 6 (0.9) |
G13V | 4 (0.6) |
Q61L | 3 (0.5) |
Q61R | 2 (0.3) |
L19F | 2 (0.3) |
A146T | 2 (0.3) |
E63K | 2 (0.3) |
G12H | 1 (0.2) |
G12I | 1 (0.2) |
G12Y | 1 (0.2) |
G13Dup | 1 (0.2) |
G13E | 1 (0.2) |
G13Y | 1 (0.2) |
G13delinsAGG | 1 (0.2) |
Q22K | 1 (0.2) |
P34R | 1 (0.2) |
A146P | 1 (0.2) |
A59E | 1 (0.2) |
T35P | 1 (0.2) |
A146V | 1 (0.2) |
K5N | 1 (0.2) |
P34R | 1 (0.2) |
Demographics and Clinical Characteristics 1 | All Patients (N = 174) |
---|---|
Age, years | |
Median (range) | 66 (41–87) |
Age groups, n (%) | |
<65 | 77 (44) |
≥65 | 96 (55) |
Unknown | 1 (1) |
Sex, n (%) | |
Male | 93 (53) |
Female | 81 (47) |
Race, n (%) | |
Non-Asian | 174 (100) |
Smoking status, n (%) | |
Never smoker | 6 (3) |
Former smoker | 96 (55) |
Current smoker | 66 (38) |
Unknown | 6 (3) |
Pack-years, n (%) | |
Never Smoker (<30 py) | 30 (17) |
Heavy smoker (≥30 py) 2 | 95 (55) |
Unknown | 43 (25) |
Range | 3–150 |
Performance status (ECOG 3), n (%) | |
0 | 53 (30) |
1 | 80 (46) |
≥2 | 18 (10) |
Unknown | 23 (13) |
Body Mass Index (BMI), n (%) | |
Underweight (<18.5) | 9 (5) |
Normal range (18.5–24.9) | 67 (39) |
Overweight (25.0–29.9) | 50 (29) |
Obese Class I (30.0–34.9) | 23 (13) |
Obese Class II (35.0–39.9) | 5 (3) |
Unknown | 20 (11) |
Charlson Comorbidity Index Score 4, n (%) | |
0 | 0 (0) |
1–3 | 6 (3) |
4–6 | 20 (11) |
7–10 | 124 (71) |
>10 | 24 (14) |
History of other cancer (last 3 years), n (%) | |
Yes | 16 (9) |
No history | 116 (67) |
Unknown | 42 (24) |
Tumor Characteristics 1 | All patients (N = 174) |
---|---|
Stage at initial diagnosis, n (%) | |
Stage I | 3 (2) |
Stage Ia | 2 (1) |
Stage Ib | 1 (1) |
Stage II | 6 (3) |
Stage IIa | 1 (1) |
Stage IIb | 5 (3) |
Stage III | 33 (19) |
Stage IIIa | 7 (4) |
Stage IIIb | 17 (10) |
Stage IIIc | 9 (5) |
Stage IV | 131 (75) |
Unknown | 1 (1) |
Location of metastasis 2, n (%) | |
Bones | 51 (29) |
Brain | 47 (27) |
Lungs | 42 (24) |
Pleura | 36 (21) |
Adrenal glands | 26 (15) |
Liver | 20 (11) |
Other | 15 (9) |
Unknown | 1 (1) |
Sites of metastases 2, n (%) | |
None | 16 (9) |
1 | 99 (57) |
2–3 | 35 (20) |
>3 | 23 (13) |
Unknown | 1 (1) |
Brain metastasis, n (%) | N = 49 |
Asymptomatic | 9 (18) |
Symptomatic | 31 (63) |
Unknown | 9 (18) |
Histology subtype, n (%) | |
Adenocarcinoma | 157 (90) |
NSCLC NOS 3 | 12 (7) |
Squamous Cell Carcinoma | 1 (1) |
Neuroendocrine Tumor | 2 (1) |
Other | 2 (1) |
PD-L1 status (TPS %), n (%) | |
Negative (<1%) | 54 (31) |
1–49% | 59 (34) |
50–89% | 35 (20) |
≥90% | 20 (11) |
Unknown | 6 (3) |
Other genetic alterations in NGS, n (%) | |
Patients without findings | 116 (67) |
Patients with findings | 57 (33) |
TP53 | 31 (18) |
ALK fusion | 1 (1) |
BRAF G464T Exon 11 | 1 (1) |
MET3 | 4 (2) |
Other findings4 | 30 (17) |
Unknown | 1 (1) |
Treatment Patterns and Responses in Palliative Setting 1 | 1st Line N = 138 | 2nd Line N = 56 | 3rd Line N = 25 |
---|---|---|---|
Type of systemic therapy, n (%) | |||
Anti-PD-1/PD-L1 and platinum-based chemotherapy | 56 (41) | 2 (4) | 1 (4) |
Platinum-based chemotherapy alone | 45 (33) | 1 (2) | 2 (8) |
Anti-PD-1/PD-L1 monotherapy | 32 (23) | 26 (46) | 4 (16) |
Targeted therapy 2 | 5 (4) | 11 (20) | 11 (44) |
Non-platinum-based chemotherapy/combination | 0 (0) | 15 (27) | 7 (28) |
Other | 0 (0) | 1 (2) | 0 (0) |
Clinical trial or expanded access program3, n (%) | |||
Yes | 6 (4) | 13 (23) | 10 (40) |
Objective response rate (ORR)4, % (95% CI) | 44 (34–53) | 38 (24–53) | 26 (10–48) |
Disease control rate (DCR)5, % (95% CI) | 66 (56–75) | 67 (61–89) | 52 (31–73) |
Best response, n (%) | |||
Complete response (CR) | 2 (1) | 1 (2) | 0 (0) |
Partial response (PR) | 45 (33) | 16 (29) | 6 (24) |
Stable disease (SD) | 24 (17) | 13 (23) | 6 (24) |
Progressive disease (PD) | 37 (27) | 15 (27) | 11 (44) |
Not evaluable/Unknown | 30 (22) | 11 (20) | 2 (8) |
New metastasis at start of therapy, n (%) | |||
Yes | 20 (14) | 25 (45) | 9 (36) |
No | 105 (76) | 30 (54) | 14 (56) |
Unknown | 13 (9) | 1 (2) | 2 (8) |
Primary reason for treatment discontinuation, n (%) | N = 109 | N = 40 | N = 23 |
Progressive disease | 57 (52) | 31 (78) | 14 (61) |
Adverse event | 23 (21) | 3 (8) | 2 (9) |
Death or reduced general health | 16 (15) | 4 (10) | 3 (13) |
Completed regimen | 9 (8) | 1 (3) | 0 (0) |
Other | 2 (2) | 0 (0) | 1 (4) |
Unknown | 2 (2) | 1 (3) | 3 (13) |
Time to next treatment (TTNT)6 | N = 72 | N = 36 | - |
Median, months (95% CI) | 8.4 (5.2–11.6) | 6.1 (2.7–9.7) | |
Overall survival (OS)7 | N = 133 | N = 54 | N = 25 |
Median, months (95% CI) | 15.3 (8.6–21.9) | 9.4 (5.3–13.5) | 8.4 (1.7–15.1) |
Variable | HR | 95% CI | p-Value |
---|---|---|---|
Sex | |||
Female vs. Male | 1.469 | 0.973–2.219 | 0.067 |
Age | |||
<65 vs. ≥65 years | 0.794 | 0.48–1.293 | 0.354 |
ECOG1 | <0.001 | ||
1 | 1.744 | 1.005–3.027 | 0.048 |
2 | 3.694 | 1.884–7.241 | <0.001 |
3 | 15.540 | 5.417–44.579 | <0.001 |
Heavy smoker(≥30 py)2 | |||
Yes vs. No | 0.956 | 0.633–1.444 | 0.830 |
Charlson Comorbidity Index Score | 0.011 | ||
<7 vs. 7–9 | 5.051 | 1.673–15.251 | 0.004 |
<7 vs. ≥10 | 5.915 | 1.824–19.182 | 0.003 |
Sites of metastases | 3.312 | 2.158–5.082 | <0.001 |
<1 vs. >1 | |||
Brain metastases | |||
No/Unknown vs. Yes | 0.894 | 0.578–1.383 | 0.614 |
TP 53 co-mutation | |||
No vs. Yes | 1.596 | 0.966–2.637 | 0.068 |
STK11 co-mutation 3 | |||
No/Unknown vs. Yes | 1.813 | 0.853–3.852 | 0.122 |
PD-L1 | |||
Negative vs. >1% TPS | 0.513 | 0.330–0.798 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illini, O.; Fabikan, H.; Hochmair, M.J.; Weinlinger, C.; Krenbek, D.; Brcic, L.; Setinek, U.; Terbuch, A.; Absenger, G.; Konjić, S.; et al. Characteristics and Treatment Outcomes in Advanced-Stage Non-Small Cell Lung Cancer Patients with a KRAS G12C Mutation: A Real-World Study. J. Clin. Med. 2022, 11, 4098. https://doi.org/10.3390/jcm11144098
Illini O, Fabikan H, Hochmair MJ, Weinlinger C, Krenbek D, Brcic L, Setinek U, Terbuch A, Absenger G, Konjić S, et al. Characteristics and Treatment Outcomes in Advanced-Stage Non-Small Cell Lung Cancer Patients with a KRAS G12C Mutation: A Real-World Study. Journal of Clinical Medicine. 2022; 11(14):4098. https://doi.org/10.3390/jcm11144098
Chicago/Turabian StyleIllini, Oliver, Hannah Fabikan, Maximilian Johannes Hochmair, Christoph Weinlinger, Dagmar Krenbek, Luka Brcic, Ulrike Setinek, Angelika Terbuch, Gudrun Absenger, Selma Konjić, and et al. 2022. "Characteristics and Treatment Outcomes in Advanced-Stage Non-Small Cell Lung Cancer Patients with a KRAS G12C Mutation: A Real-World Study" Journal of Clinical Medicine 11, no. 14: 4098. https://doi.org/10.3390/jcm11144098
APA StyleIllini, O., Fabikan, H., Hochmair, M. J., Weinlinger, C., Krenbek, D., Brcic, L., Setinek, U., Terbuch, A., Absenger, G., Konjić, S., & Valipour, A. (2022). Characteristics and Treatment Outcomes in Advanced-Stage Non-Small Cell Lung Cancer Patients with a KRAS G12C Mutation: A Real-World Study. Journal of Clinical Medicine, 11(14), 4098. https://doi.org/10.3390/jcm11144098