Impact of Kinesiotherapy and Hydrokinetic Therapy on the Rehabilitation of Balance, Gait and Functional Capacity in Patients with Lower Limb Amputation: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ziegler-Graham, K.; MacKenzie, E.; Ephrain, P.; Tavison, T.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef]
- Gurney, J.K.; Stanley, J.; York, S.; Sarfati, D. Regional variation in the risk of lower-limb amputation among patients with diabetes in New Zealand. ANZ J. Surg. 2019, 89, 868–873. [Google Scholar] [CrossRef]
- Kröger, K.; Berg, C.; Santosa, F.; Malyar, N.; Reinecke, H. Lower Limb Amputation in Germany. Dtsch. Arztebl. Int. 2017, 114, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Stern, J.R.; Wong, C.K.; Yerovinkina, M.; Spindler, S.J.; See, A.S.; Panjaki, S.; Loven, S.L.; D’Andrea, R.F.; Nowygrod, R. A Meta-analysis of Long-term Mortality and Associated Risk Factors following Lower Extremity Amputation. Ann. Vasc. Surg. 2017, 42, 322–327. [Google Scholar] [CrossRef]
- Lin, C.; Liu, J.; Sun, H. Risk factors for lower extremity amputation in patients with diabetic foot ulcers: A meta-analysis. PLoS ONE 2020, 15, e0239236. [Google Scholar] [CrossRef]
- Piwnica-Worms, W.; Stranix, J.T.; Othman, S.; Kozak, G.M.; Moyer, I.; Spencer, A.; Azoury, S.C.; Levin, L.S.; Kovach, S.J. Risk Factors for Lower Extremity Amputation Following Attempted Free Flap Limb Salvage. J. Reconstr. Microsurg. 2020, 36, 528–533. [Google Scholar] [CrossRef]
- Preece, R.A.; Dilaver, N.; Waldron, C.A.; Pallmann, P.; Thomas-Jones, E.; Gwilym, B.L.; Norvell, D.C.; Czerniecki, J.M.; Twine, C.P.; Bosanquet, D.C. A Systematic Review and Narrative Synthesis of Risk Prediction Tools Used to Estimate Mortality, Morbidity, and Other Outcomes Following Major Lower Limb Amputation. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 127–135. [Google Scholar] [CrossRef]
- Bourque, M.O.; Schneider, K.L.; Calamari, J.E.; Reddin, C.; Stachowiak, A.; Major, M.J.; Duncan, C.; Muthukrishnan, R.; Rosenblatt, N.J. Combining physical therapy and cognitive behavioral therapy techniques to improve balance confidence and community participation in people with unilateral transtibial amputation who use lower limb prostheses: A study protocol for a randomized sham-control clinical trial. Trials 2019, 20, 812. [Google Scholar] [CrossRef]
- Eshraghi, A.; Safaeepour, Z.; Geil, M.D.; Andrysek, J. Walking and balance in children and adolescents with lower-limb amputation: A review of literature. Clin. Biomech. 2018, 59, 181–198. [Google Scholar] [CrossRef]
- Batten, H.R.; McPhail, S.M.; Mandrusiak, A.M.; Varghese, P.N.; Kuys, S.S. Gait speed as an indicator of prosthetic walking potential following lower limb amputation. Prosthet. Orthot. Int. 2019, 43, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Sions, J.M.; Beisheim, E.H.; Manal, T.J.; Smith, S.C.; Horne, J.R.; Sarlo, F.B. Differences in Physical Performance Measures Among Patients With Unilateral Lower-Limb Amputations Classified as Functional Level K3 Versus K4. Arch. Phys. Med. Rehabil. 2018, 99, 1333–1341. [Google Scholar] [CrossRef]
- Beisheim, E.H.; Arch, E.S.; Horne, J.R.; Sions, J.M. Performance-based outcome measures are associated with cadence variability during community ambulation among individuals with a transtibial amputation. Prosthet. Orthot. Int. 2020, 44, 215–224. [Google Scholar] [CrossRef]
- Seth, M.; Coyle, P.C.; Pohlig, R.T.; Beisheim, E.H.; Horne, J.R.; E Hicks, G.; Sions, J.M. Gait asymmetry is associated with performance-based physical function among adults with lower-limb amputation. Physiother. Theory Pract. 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Quigley, M.; Dillon, M.P. Quality of life in persons with partial foot or transtibial amputation: A systematic review. Prosthet. Orthot. Int. 2016, 40, 18–30. [Google Scholar] [CrossRef]
- Penn-Barwell, J.G. Outcomes in lower limb amputation following trauma: A systematic review and meta-analysis. Injury 2011, 42, 1474–1479. [Google Scholar] [CrossRef]
- Ladlow, P.; Phillip, R.; Coppack, R.; Etherington, J.; Bilzon, J.; McGuigan, M.P.; Bennett, A.N. Influence of Immediate and Delayed Lower-Limb Amputation Compared with Lower-Limb Salvage on Functional and Mental Health Outcomes Post-Rehabilitation in the U.K. Military. J. Bone Jt. Surg. Am. 2016, 98, 1996–2005. [Google Scholar] [CrossRef]
- Sima, D.; Veresiu, I.; Borzan, C.M. Prevalence, complications and quality of life of people with diabetes and diabetic polyneuropathy. J.M.B. 2018, 1, 4–12. [Google Scholar]
- Veresiu, I.A.; Iancu, S.S.; Bondor, C. Trends in diabetes-related lower extremities amputations in Romania-A five year nationwide evaluation. Diabetes Res. Clin. Pract. 2015, 109, 293–298. [Google Scholar] [CrossRef]
- Bondor, C.I.; Veresiu, I.A.; Florea, B.; Vinik, E.J.; Vinik, A.I.; Gavan, N.A. Epidemiology of diabetic foot ulcers and amputations in Romania: Results of a cross-sectional quality of life questionnaire-based survey. J. Diabetes Res. 2016, 2016, 5439521. [Google Scholar] [CrossRef] [Green Version]
- Popescu, R.M.; Cotuţiu, C.; Graur, M.; Căruntu, I.D. Vascular and nerve lesions of the diabetic foot--a morphological study. Rom. J. Morphol. Embryol. 2010, 51, 483–488. [Google Scholar]
- Morgovan, C.; Cosma, S.A.; Valeanu, M.; Juncan, A.M.; Rus, L.L.; Gligor, F.G.; Buturca, D.; Tit, M.; Bungau, S.; Ghibu, S. An exploratory research of 18 years on the economic burden of diabetes for the Romanian National Health Insurance System. Int. J. Environ. Res. Public Health 2020, 17, 4456. [Google Scholar] [CrossRef]
- Kamrad, I.; Söderberg, B.; Örneholm, H.; Hagberg, K. SwedeAmp-the Swedish Amputation and Prosthetics Registry: 8-year data on 5762 patients with lower limb amputation show sex differences in amputation level and in patient-reported outcome. Acta Orthop. 2020, 91, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Kolossváry, E.; Björck, M.; Behrendt, C.A. Lower Limb Major Amputation Data as a Signal of an East/West Health Divide Across Europe. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 645–646. [Google Scholar] [CrossRef]
- Meffen, A.; Pepper, C.J.; Sayers, R.D.; Gray, L.J. Epidemiology of major lower limb amputation using routinely collected electronic health data in the UK: A systematic review protocol. BMJ Open 2020, 10, e037053. [Google Scholar] [CrossRef]
- Carmona, G.A.; Lacraz, A.; Hoffmeyer, P.; Assal, M. Incidence de l’amputation majeure des membres inférieurs à Genève: Vingt-et-un ans d’observation [Incidence of major lower limb amputation in Geneva: Twenty-one years of observation]. Rev. Med. Suisse 2014, 10, 1997–2001. [Google Scholar]
- Steinberg, N.; Gottlieb, A.; Siev-Ner, I.; Plotnik, M. Fall incidence and associated risk factors among people with a lower limb amputation during various stages of recovery—A systematic review. Disabil. Rehabil. 2019, 41, 1778–1787. [Google Scholar] [CrossRef]
- Nolan, L. A training programme to improve hip strength in persons with lower limb amputation. J. Rehabil. Med. 2012, 44, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Luza, L.P.; da Silva, D.R.P.; Ferreira, E.G.; Pires, G.K.W.; Filho, P.J.B.G.; da Silva, R. Physical Activity Among People With Lower Limb Amputation in Brazil. J. Phys. Act. Health 2021, 18, 1269–1276. [Google Scholar] [CrossRef]
- Hijmans, J.M.; Dekker, R.; Geertzen, J.H.B. Pre-operative rehabilitation in lower-limb amputation patients and its effect on post-operative outcomes. Med. Hypotheses 2020, 143, 110134. [Google Scholar] [CrossRef]
- Ülger, O.; Şahan, T.; Çelik, S. A systematic literature review of physiotherapy and rehabilitation approaches to lower-limb amputation. Physiother. Theory Pract. 2008, 34, 821–834. [Google Scholar] [CrossRef]
- Wong, C.K.; Ehrlich, J.E.; Ersing, J.C.; Maroldi, N.J.; Stevenson, C.E.; Varca, M.J. Exercise programs to improve gait performance in people with lower limb amputation: A systematic review. Prosthet. Orthot. Int. 2016, 40, 8–17. [Google Scholar] [CrossRef]
- Miller, C.A.; Williams, J.E.; Durham, K.L.; Hom, S.C.; Smith, J.L. The effect of a supervised community-based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation. Prosthet. Orthot. Int. 2017, 41, 446–454. [Google Scholar] [CrossRef]
- Lee, J.Y.; Joo, K.C.; Brubaker, P.H. Aqua walking as an alternative exercise modality during cardiac rehabilitation for coronary artery disease in older patients with lower extremity osteoarthritis. BMC Cardiovasc. Disord. 2017, 17, 252. [Google Scholar] [CrossRef] [Green Version]
- Graça, M.; Alvarelhão, J.; Costa, R.; Fernandes, R.J.; Ribeiro, A.; Daly, D.; Vilas-Boas, J.P. Immediate Effects of Aquatic Therapy on Balance in Older Adults with Upper Limb Dysfunction: An Exploratory Study. Int. J. Environ. Res. Public Health. 2020, 17, 9434. [Google Scholar] [CrossRef]
- Terrens, A.F.; Soh, S.E.; Morgan, P. Perceptions of aquatic physiotherapy and health-related quality of life among people with Parkinson’s disease. Health Expect. 2021, 24, 566–577. [Google Scholar] [CrossRef]
- Dionne, A.; Goulet, S.; Leone, M.; Comtois, A.S. Aquatic Exercise Training Outcomes on Functional Capacity, Quality of Life, and Lower Limb Lymphedema: Pilot Study. J. Altern. Complement. Med. 2018, 24, 1007–1009. [Google Scholar] [CrossRef]
- Lopera, C.A.; da Silva, D.F.; Bianchini, J.A.A.; Locateli, J.C.; Moreira, A.C.T.; Dada, R.P.; Thivel, D.; Nardo, N. Effect of water- versus land-based exercise training as a component of a multidisciplinary intervention program for overweight and obese adolescents. Physiol. Behav. 2016, 165, 365–373. [Google Scholar] [CrossRef]
- Leirós-Rodríguez, R.; Soto-Rodríguez, A.; Pérez-Ribao, I.; García-Soidán, J.L. Comparisons of the Health Benefits of Strength Training, Aqua-Fitness, and Aerobic Exercise for the Elderly. Rehabil. Res. Pract. 2018, 2018, 5230971. [Google Scholar] [CrossRef] [Green Version]
- Leirós-Rodríguez, R.; Romo-Pérez, V.; Pérez-Ribao, I.; García-Soidán, J.L. A comparison of three physical activity programs for health and fitness tested with older women: Benefits of aerobic activity, aqua fitness, and strength training. J. Women Aging 2019, 31, 419–431. [Google Scholar] [CrossRef]
- Williams, R.E.; Barreria, T.V.; Tseh, W. Fitness-related benefits: Land-based versus aqua-base. J. Sports Med. Phys. Fit. 2020, 60, 26–31. [Google Scholar] [CrossRef]
- Yang, S.S.; Seo, T.B.; Kim, Y.P. Effect of aqua walking exercise on knee joint angles, muscular strength, and visual analogue scale for patients with limited range of motion of the knee. J. Exerc. Rehabil. 2021, 17, 265–269. [Google Scholar] [CrossRef]
- Mattos, F.; Leite, N.; Pitta, A.; Bento, P.C. Effects of aquatic exercise on muscle strength and functional performance of individuals with osteoarthritis: A systematic review. Rev. Bras. Reumatol. Engl. Ed. 2016, 56, 530–542. [Google Scholar] [CrossRef] [Green Version]
- Fisken, A.L.; Waters, D.L.; Hing, W.A.; Steele, M.; Keogh, J.W. Comparative effects of 2 aqua exercise programs on physical function, balance, and perceived quality of life in older adults with osteoarthritis. J. Geriatr. Phys. Ther. 2015, 38, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Versey, N.G.; Halson, S.L.; Dawson, B.T. Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Med. 2013, 43, 1101–1130. [Google Scholar] [CrossRef]
- Horgan, B.G.; West, N.P.; Tee, N.; Drinkwater, E.J.; Halson, S.L.; Vider, J.; Fonda, C.J.; Haff, G.G.; Chapman, D.W. Acute Inflammatory, Anthropometric, and Perceptual (Muscle Soreness) Effects of Postresistance Exercise Water Immersion in Junior International and Subelite Male Volleyball Athletes. J. Strength Cond. Res. 2021, 10, 1519. [Google Scholar] [CrossRef]
- Klotz, I.N.; Gvozdik, T.E.; Oganesyan, A.O. Water Immersion as a Model of Hypogravity. Bull. Exp. Biol. Med. 2019, 167, 284–286. [Google Scholar] [CrossRef]
- Muller, M.D.; Kim, C.H.; Seo, Y.; Ryan, E.J.; Glickman, E.L. Hemodynamic and thermoregulatory responses to lower body water immersion. Aviat. Space Environ. Med. 2012, 83, 935–941. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, C.H.; Ryan, E.J.; Gunstad, J.; Glickman, E.L.; Muller, M.D. Cognitive function during lower body water immersion and post-immersion afterdrop. Aviat. Space Environ. Med. 2013, 84, 921–926. [Google Scholar] [CrossRef]
- Schafer, Z.A.; Perry, J.L.; Vanicek, N. A personalised exercise programme for individuals with lower limb amputation reduces falls and improves gait biomechanics: A block randomised controlled trial. Gait Posture 2018, 63, 282–289. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Pirotti, E.; Villa, F.D. Benefits and use of aquatic therapy during rehabilitation after acl reconstruction -a clinical commentary. Int. J. Sports Phys. Ther. 2019, 14, 978–993. [Google Scholar] [CrossRef]
- Pieniążek, M.; Mańko, G.; Spieszny, M.; Bilski, J.; Kurzydło, W.; Ambroży, T.; Jaszczur-Nowicki, J. Body Balance and Physiotherapy in the Aquatic Environment and at a Gym. Biomed. Res. Int. 2021, 2021, 9925802. [Google Scholar] [CrossRef]
- Lee, S.Y.; Im, S.H.; Kim, B.R.; Han, E.Y. The Effects of a Motorized Aquatic Treadmill Exercise Program on Muscle Strength, Cardiorespiratory Fitness, and Clinical Function in Subacute Stroke Patients: A Randomized Controlled Pilot Trial. Am. J. Phys. Med. Rehabil. 2018, 97, 533–540. [Google Scholar] [CrossRef]
- Azuma, Y.; Chin, T.; Miuram, Y. The relationship between balance ability and walking ability using the Berg Balance Scale in people with transfemoral amputation. Prosthet. Orthot. Int. 2019, 43, 396–401. [Google Scholar] [CrossRef]
- Pedosmart. Available online: https://www.podosmart.tech/en/ (accessed on 1 August 2021).
- Loukovitis, A.; Ziagkas, E.; Zekakos, D.X.; Petrelis, A.; Grouios, G. Test-Retest Reliability of PODOSmart® Gait Analysis Insoles. Sensors 2021, 21, 7532. [Google Scholar] [CrossRef]
- Ziagkas, E.; Loukovitis, A.; Zekakos, D.X.; Chau, T.D.; Petrelis, A.; Grouios, G. A Novel Tool for Gait Analysis: Validation Study of the Smart Insole PODOSmart®. Sensors 2021, 7, 5972. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Polar Sensor Heart Rate. Available online: https://www.polar.com/us-en/sensors/h10-heart-rate-sensor/ (accessed on 1 August 2021).
- Agarwala, P.; Salzman, S.H. Six-Minute Walk Test: Clinical Role, Technique, Coding, and Reimbursement. Chest 2020, 157, 603–611. [Google Scholar] [CrossRef]
- Esquenazi, A.; DiGiacomo, R. Rehabilitation after amputation. J. Am. Podiatr. Med. Assoc. 2001, 91, 13–22. [Google Scholar] [CrossRef]
- Russell Esposito, E.; Stinner, D.J.; Fergason, J.R.; Wilken, J.M. Gait biomechanics following lower extremity trauma: Amputation vs. reconstruction. Gait Posture 2017, 54, 167–173. [Google Scholar] [CrossRef]
- Ungurean, B.C.; Cojocariu, A.; Abalașei, B.A.; Popescu, L.; Puni, A.R.; Stoica, M.; Pârvu, C. The Analysis of the Correlations between BMI and Body Composition among Children with and without Intellectual Disability. Children 2022, 9, 582. [Google Scholar] [CrossRef]
- Herrador Colmenero, L.; Perez Marmol, J.M.; Martí-García, C.; Zaldivar, M.D.L.Q.; Haro, R.M.T.; Castro-Sánchez, A.M.; Aguilar-Ferrándiz, M.E. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review. Prosthet. Orthot. Int. 2018, 42, 288–298. [Google Scholar] [CrossRef]
- Modest, J.M.; Raducha, J.E.; Testa, E.J.; Eberson, C.P. Management of Post-Amputation Pain. Rhode Isl. Med. J. 2020, 103, 19–22. [Google Scholar]
- Silva, A.D.M.; Furtado, G.; Dos Santos, I.P.; da Silva, C.B.; Caldas, L.R.; Bernardes, K.O.; Ferraz, D.D. Functional capacity of elderly with lower-limb amputation after prosthesis rehabilitation: A longitudinal study. Disabil. Rehabil. Assist. Technol. 2021, 16, 556–560. [Google Scholar] [CrossRef]
- Ontario Health (Quality). Osseointegrated Prosthetic Implants for People with Lower-Limb Amputation: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 2019, 19, 1–126. [Google Scholar]
- Van Velzen, J.M.; van Bennekom, C.A.; Polomski, W.; Slootman, J.R.; van der Woude, L.H.; Houdijk, H. Physical capacity and walking ability after lower limb amputation: A systematic review. Clin. Rehabil. 2006, 20, 999–1016. [Google Scholar] [CrossRef] [Green Version]
- Wezenberg, D.; van der Woude, L.H.; Faber, W.X.; de Haan, A.; Houdijk, H. Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation. Arch. Phys. Med. Rehabil. 2013, 94, 1714–1720. [Google Scholar] [CrossRef]
- Wezenberg, D.; de Haan, A.; Faber, W.X.; Slootman, H.J.; van der Woude, L.H.; Houdijk, H. Peak oxygen consumption in older adults with a lower limb amputation. Arch. Phys. Med. Rehabil. 2012, 93, 1924–1929. [Google Scholar] [CrossRef]
- Pedras, S.; Vilhena, E.; Carvalho, R.; Pereira, M.G. Quality of Life Following a Lower Limb Amputation in Diabetic Patients: A Longitudinal and Multicenter Study. Psychiatry 2020, 83, 47–57. [Google Scholar] [CrossRef]
- Grzebień, A.; Chabowski, M.; Malinowski, M.; Uchmanowicz, I.; Milan, M.; Janczak, D. Analysis of selected factors determining quality of life in patients after lower limb amputation—A review article. Pol. Przegl. Chir. 2017, 89, 57–61. [Google Scholar] [CrossRef]
- Burger, H.; Marincek, C. Return to work after lower limb amputation. Disabil. Rehabil. 2007, 29, 1323–1329. [Google Scholar] [CrossRef]
- Schoppen, T.; Boonstra, A.; Groothoff, J.W.; de Vries, J.; Göeken, L.N.; Eisma, W.H. Employment status, job characteristics, and work-related health experience of people with a lower limb amputation in The Netherlands. Arch. Phys. Med. Rehabil. 2001, 82, 239–245. [Google Scholar] [CrossRef]
- Patel, R.S. Team Approach to Critical Limb Ischemia Care and Research. Tech. Vasc. Interv. Radiol. 2016, 19, 101–103. [Google Scholar] [CrossRef]
- Crawford, P.E.; Fields-Varnado, M.; WOCN Society. Guideline for the management of wounds in patients with lower-extremity neuropathic disease: An executive summary. J. Wound Ostomy. Cont. Nurs. 2013, 40, 34–45. [Google Scholar] [CrossRef]
- Melo, V.H.; Sousa, R.A.L.; Improta-Caria, A.C.; Nunes, M.A.P. Physical activity and quality of life in adults and elderly individuals with lower limb amputation. Rev. Assoc. Med. Bras. 2021, 67, 985–990. [Google Scholar] [CrossRef]
- Ene-Voiculescu, V.; Ene-Voiculescu, C. Psychomotricity: The body as self-expression. Sci. Bull. Mircea Cel Batran Nav. Acad. 2018, 21, 1–6. [Google Scholar]
- Ene-Voiculescu, V.; Ene-Voiculescu, C. The study about sport and health: A critical review of the UK situation. Sci. Bull. Mircea Cel Batran Nav. Acad. 2017, 21, 16–19. [Google Scholar]
- Mihai, I. Progressive neuromuscular control improvement by using extrinsic feedback as learning tool, in swimming. New Trends Issues Proc. Humanit. Soc. Sci. 2017, 4, 126–135. [Google Scholar]
- Muhlfay, G.; Fabian, Z.; Neagoe, R.M.; Horvath, K.U. Applications of 3D Planning, Plastic Materials and Additive Manufacturing in Functional Rehabilitations in the Head and Neck Surgery. Mater. Plast. 2018, 55, 431–433. [Google Scholar] [CrossRef]
- Neagoe, R.M. Sala, D.; Voidazan, S.; Bancu, S.; Kiss, L.; Suciu, H. Transthoracic versus Transhiatal esophagectomy: A permanent dilemma. our 15-year experience. Chirurgia 2013, 108, 780–787. [Google Scholar]
- Bobescu, E.; Radoi, M.; Datcu, G.; Galajda, Z.; Burducea, A.; Neculoiu, C.D.; Bârsăşteanu, R.; Popa, D.; Paler, V.; Anghel, M. Selective inhibition of long chain 3-ketoacyl-Coenzyme-A-thiolase by Trimetazidine MR in coronary heart disease induced reduction of inflammatory syndrome and oxidative stress in concordance with recovery of ECG and echocardiographic changes. Rev. Romana Med. Lab. 2008, 11, 29–38. [Google Scholar]
- Halmaciu, I.; Suciu, B.A.; Trambitas, C.; Vunvulea, V.; Ivanescu, A.; Clipa, A.; Adascalitei, P.; Brinzaniuc, K.; Fodor, D. It is Useful to Use Plastic Anatomical Models in Teaching Human Anatomy? Mater. Plast. 2018, 55, 414–418. [Google Scholar] [CrossRef]
- Suciu, B.A.; Halmaciu, I.; Vunvulea, V.; Brinzaniuc, K. Is there any correlation between the occurrence of spontaneous pneumothorax and changes in the weather conditions worldwide? Eur. J. Cardio-Thorac. Surg. 2018, 53, 895–896. [Google Scholar] [CrossRef]
- Sloan, G.; Selvarajah, D.; Tesfaye, S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 2021, 17, 400–420. [Google Scholar] [CrossRef]
- Zdzioch, M. Preventing amputation. Nurs. Stand. 2016, 30, 61–62. [Google Scholar] [CrossRef]
- Thomas, E. Preventing amputation in adults with diabetes: Identifying the risks. Nurs. Stand. 2015, 29, 49–58. [Google Scholar] [CrossRef]
- Masiero, S.; Maccarone, M.C. Health resort therapy interventions in the COVID-19 pandemic era: What next? Int. J. Biometeorol. 2021, 65, 1995–1997. [Google Scholar] [CrossRef]
- Masiero, S.; Maccarone, M.C.; Agostini, F. Health resort medicine can be a suitable setting to recover disabilities in patients tested negative for COVID-19 discharged from hospital? A challenge for the future. Int. J. Biometeorol. 2020, 64, 1807–1809. [Google Scholar] [CrossRef]
- Masiero, S.; Pranovi, G.; Di Pumpo, M.; Bernardini, S.; Dattilo, A.; Del Felice, A.; Sale, P. Does aquatic thermal therapy improve quality of life after total hip replacement? A retrospective preliminary pilot study. Int. J. Biometeorol. 2019, 64, 1023–1026. [Google Scholar] [CrossRef]
Group | Parameters | Age | Height (cm) | Weight (kg) | IMC | Period Amputation (Month) | TFA (No.) | TTA (No.) | Traumatic Amputation (No.) | Vascular Amputation (No.) |
---|---|---|---|---|---|---|---|---|---|---|
HKT | X | 51.75 | 178.87 | 84.37 | 25.37 | 8.6 | 3 | 5 | 6 | 2 |
Median | 53 | 179 | 85 | 25.68 | - | - | - | - | - | |
IQR (Q1; Q3) | 12 (45.75; 57.75) | 6.5 (175.25; 181.75) | 8.75 (79.75; 85) | 10.25 (24.25; 27.75) | - | - | - | - | - | |
KT | X | 52.77 | 179.37 | 85.11 | 26.45 | 8.4 | 4 | 4 | 5 | 3 |
Median | 51.50 | 179 | 86.50 | 26.29 | - | - | - | - | - | |
IQR (Q1; Q3) | 11.25 (45.25; 56.5) | 15.50 (170.25; 185.75) | 13.25 (76.25; 89.5) | 11.25 (24.5; 27.5) | - | - | - | - | - |
Parameters | Group | It-X | Ft-X | ΔX Ft-It | Median-It | Median-It | ΔMedian Ft-It |
---|---|---|---|---|---|---|---|
Sitting unsupported | HKT | 3.875 | 4.000 | 0.125 | 4 | 4 | - |
KT | 3.875 | 4.000 | 0.125 | 4 | 4 | - | |
Standing to sitting | HKT | 1.875 | 3.000 | 1.125 | 1.5 | 3 | 1.5 |
KT | 2.000 | 3.250 | 1.250 | 2 | 3 | 1 | |
Sitting to standing | HKT | 2.750 | 3.125 | 0.375 | 3 | 3 | - |
KT | 2.625 | 3.125 | 0.500 | 3 | 3 | - | |
Transfers | HKT | 3.000 | 3.125 | 0.125 | 3 | 3.5 | 0.5 |
KT | 3.125 | 3.250 | 0.125 | 3 | 3 | - | |
Standing unsupported | HKT | 2.875 | 3.500 | 0.625 | 3 | 4 | 1 |
KT | 3.000 | 3.625 | 0.625 | 4 | 4 | - | |
Standing with eyes closed | HKT | 3.750 | 3.750 | 0.000 | 4 | 4 | - |
KT | 3.750 | 3.750 | 0.000 | 4 | 4 | - | |
Standing with feet together | HKT | 3.500 | 3.750 | 0.250 | 3 | 4 | 1 |
KT | 3.625 | 3.750 | 0.125 | 4 | 3 | 1 | |
Standing with one foot in front | HKT | 3.125 | 3.750 | 0.625 | 3 | 4 | 1 |
KT | 3.250 | 3.750 | 0.500 | 3 | 4 | 1 | |
Standing on one foot | HKT | .625 | 1.125 | 0.500 | 0.5 | 1 | 0.5 |
KT | .625 | 1.125 | 0.625 | 0.5 | 1.5 | 1 | |
Turning to look behind | HKT | 3.625 | 4.000 | 0.375 | 4 | 4 | |
KT | 3.625 | 3.875 | 0.250 | 4 | 4 | - | |
Retrieving object from floor | HKT | 2.875 | 3.500 | 0.625 | 3 | 3.5 | 0.5 |
KT | 2.750 | 3.500 | 0.750 | 3 | 3.5 | 0.5 | |
Turning 360 degrees | HKT | 2.125 | 2.875 | 0.750 | 2 | 3 | 1 |
KT | 3.250 | 3.000 | 0.750 | 3 | 3 | - | |
Placing alternate foot on stool | HKT | 0.875 | 2.250 | 1.375 | 0.5 | 2.5 | 2 |
KT | 1.500 | 2.625 | 1.125 | 2 | 3 | 1 | |
Reaching forward with outstretched arm | HKT | 3.000 | 3.750 | 0.750 | 3 | 4 | 1 |
KT | 3.000 | 3.750 | 0.750 | 3 | 4 | 1 |
Test | Group | It-X | It-Median | It-IQR (Q1; Q3) | Ft-X | Ft-Median | Ft-IQR (Q1; Q3) | ΔX Ft-It |
---|---|---|---|---|---|---|---|---|
Berg Scale (points) | HKT | 37.87 | 37.50 | 16.75 (29; 25.45) | 45.50 | 48 | 14 (37; 51) | 10.24 |
KT | 39 | 46.50 | 13.75 (32.25; 46) | 46.50 | 48 | 9.50 (41.50; 51) | 7.50 | |
Four Square Step Test (s) | HKT | 27.62 | 28.50 | 6.25 (23.75; 30) | 21.50 | 21.50 | 3.75 (20; 23.75) | 6.12 |
KT | 28.25 | 28.50 | 6.75 (24; 30.75) | 22.25 | 22 | 3.25 (20; 23.25) | 6 |
Test | Group | It-X | It-Median | It-IQR (Q1; Q3) | Ft-X | Ft-Median | Ft-IQR (Q1; Q3) | ΔX Ft-It |
---|---|---|---|---|---|---|---|---|
Foot symmetry (%) | HKT | 85.75 | 85 | 8.25 (81.25; 89.50) | 90.62 | 89 | 7 (87.25; 94.25) | 4.87 |
KT | 82.87 | 81.50 | 8 (79.25; 87.25) | 89.62 | 89 | 6.75 (87; 93.75) | 6.75 | |
Cadence (number of steps per minute) | HKT | 89.25 | 86 | 14.75 (83.50; 98.25) | 96.00 | 95 | 13.50 (90; 103.50) | 6.75 |
KT | 86.12 | 87 | 8 (83.50; 91.50) | 95.62 | 99 | 14.50 (89; 103.50) | 9.50 |
Test | Group | It-X | It-Median | It-IQR (Q1; Q3) | Ft-X | It-Median | It-IQR (Q1; Q3) | ΔX Ft-It |
---|---|---|---|---|---|---|---|---|
Travelled distance (m) | HKT | 268.75 | 250 | 142.50 (195.50; 338) | 301.12 | 295 | 124.50 (230.50; 355) | 32.37 |
KT | 230.50 | 197 | 175 (159.75; 334.75) | 278 | 258.50 | 168.25 (201.75; 370) | 47.50 | |
HRmin (BPM) | HKT | 85.50 | 85 | 9.25 (80.75; 90) | 96.87 | 96 | 10.50 (92.75; 103.25) | 11.37 |
KT | 85 | 86 | 8.25 (81.25; 89.50) | 98.12 | 98.50 | 16 (91.25; 107.25) | 13.12 | |
HRmax (BPM) | HKT | 129.50 | 129.50 | 14 (122.25; 136.25) | 133.37 | 133.50 | 4.50 (130.50; 135) | 3.87 |
KT | 128.75 | 128 | 11.50 (121.50; 133) | 133.12 | 133.50 | 5.25 (129.75; 135) | 4.37 | |
HRavg (BPM) | HKT | 112.12 | 112.50 | 8 (108.50; 116.50) | 118.37 | 118 | 9.5 (115; 124.50) | 6.25 |
KT | 111.87 | 113 | 12 (105.25; 117.25) | 117.75 | 117.50 | 4.75 (115; 119.75) | 5.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotrobas-Dascalu, V.-T.; Badau, D.; Stoica, M.; Dreve, A.A.; Predescu, C.M.L.; Gherghel, C.L.; Bratu, M.; Raducu, P.; Oltean, A.; Badau, A. Impact of Kinesiotherapy and Hydrokinetic Therapy on the Rehabilitation of Balance, Gait and Functional Capacity in Patients with Lower Limb Amputation: A Pilot Study. J. Clin. Med. 2022, 11, 4108. https://doi.org/10.3390/jcm11144108
Cotrobas-Dascalu V-T, Badau D, Stoica M, Dreve AA, Predescu CML, Gherghel CL, Bratu M, Raducu P, Oltean A, Badau A. Impact of Kinesiotherapy and Hydrokinetic Therapy on the Rehabilitation of Balance, Gait and Functional Capacity in Patients with Lower Limb Amputation: A Pilot Study. Journal of Clinical Medicine. 2022; 11(14):4108. https://doi.org/10.3390/jcm11144108
Chicago/Turabian StyleCotrobas-Dascalu, Vlad-Theodor, Dana Badau, Marius Stoica, Adina Andreea Dreve, Corina Michaela Lorenta Predescu, Carmen Liliana Gherghel, Mircea Bratu, Popescu Raducu, Antoanela Oltean, and Adela Badau. 2022. "Impact of Kinesiotherapy and Hydrokinetic Therapy on the Rehabilitation of Balance, Gait and Functional Capacity in Patients with Lower Limb Amputation: A Pilot Study" Journal of Clinical Medicine 11, no. 14: 4108. https://doi.org/10.3390/jcm11144108
APA StyleCotrobas-Dascalu, V. -T., Badau, D., Stoica, M., Dreve, A. A., Predescu, C. M. L., Gherghel, C. L., Bratu, M., Raducu, P., Oltean, A., & Badau, A. (2022). Impact of Kinesiotherapy and Hydrokinetic Therapy on the Rehabilitation of Balance, Gait and Functional Capacity in Patients with Lower Limb Amputation: A Pilot Study. Journal of Clinical Medicine, 11(14), 4108. https://doi.org/10.3390/jcm11144108