Mucosal Eosinophil Abundance in Non-Inflamed Colonic Tissue Is Associated with Response to Vedolizumab Induction Therapy in Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Definition of Study Outcomes
2.3. Histopathological Data
2.4. Measurement of Serum Eotaxin-1 Levels
2.5. Statistics
2.6. External Validation of the Serum Eotaxin-1 Biomarker
2.7. Ethical Considerations
3. Results
3.1. Study Population Characteristics
3.2. Eosinophil Counts and Vedolizumab Induction Therapy Response
3.3. The Eosinophil Chemoattractant Eotaxin-1 Is Associated with Response to Vedolizumab Induction Therapy
3.4. Identification of Predictors of Response to Vedolizumab Induction Therapy
3.5. Overall Classification Performance of Mucosal Eosinophil Abundance and Serum Eotaxin-1 Levels Regarding Clinical Response to Vedolizumab Induction Therapy
3.6. External Validation of Serum Eotaxin-1 Levels as Predictor of Clinical Response to Vedolizumab Induction Therapy in the GEMINI Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abraham, C.; Cho, J.H. Inflammatory bowel disease. N. Engl. J. Med. 2009, 361, 2066–2078. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, G.R.; Loftus, E.V., Jr.; Isaacs, K.L.; Regueiro, M.D.; Gerson, L.B.; Sands, B.E. Correction: ACG Clinical Guideline: Management of Crohn’s Disease in Adults. Am. J. Gastroenterol. 2018, 113, 1101. [Google Scholar] [CrossRef] [PubMed]
- Kornbluth, A.; Sachar, D.B.; Practice Parameters Committee of the American College of Gastroenterology. Ulcerative colitis practice guidelines in adults (update): American College of Gastroenterology, Practice Parameters Committee. Am. J. Gastroenterol. 2004, 99, 1371–1385. [Google Scholar] [CrossRef] [PubMed]
- Wyant, T.; Fedyk, E.; Abhyankar, B. An Overview of the Mechanism of Action of the Monoclonal Antibody Vedolizumab. J. Crohn’s. Colitis 2016, 10, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Feagan, B.G.; Greenberg, G.R.; Wild, G.; Fedorak, R.N.; Pare, P.; McDonald, J.W.; Cohen, A.; Bitton, A.; Baker, A.; Dubé, R.; et al. Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin. Gastroenterol. Hepatol. 2008, 6, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Parikh, A.; Leach, T.; Wyant, T.; Scholz, C.; Sankoh, S.; Mould, D.R.; Ponich, T.; Fox, I.; Feagan, B.G. Vedolizumab for the treatment of active ulcerative colitis: A randomized controlled phase 2 dose-ranging study. Inflamm. Bowel Dis. 2012, 18, 1470–1479. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.F.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.; et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 2013, 369, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.-F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.-J.; Danese, S.; et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.R.; Bergman, A.; Chevrou-Severac, H.; Selby, R.; Smyth, M.; Kerrigan, M.C. Cost-effectiveness of vedolizumab compared with infliximab, adalimumab, and golimumab in patients with ulcerative colitis in the United Kingdom. Eur. J. Health Econ. 2018, 19, 229–240. [Google Scholar] [CrossRef]
- Schreiber, S.; Dignass, A.; Peyrin-Biroulet, L.; Hather, G.; Demuth, D.; Mosli, M.; Curtis, R.; Khalid, J.M.; Loftus, E.V., Jr. Systematic review with meta-analysis: Real-world effectiveness and safety of vedolizumab in patients with inflammatory bowel disease. J. Gastroenterol. 2018, 53, 1048–1064. [Google Scholar] [CrossRef] [Green Version]
- Kopylov, U.; Ron, Y.; Avni-Biron, I.; Koslowsky, B.; Waterman, M.; Daher, S.; Ungar, B.; Yanai, H.; Maharshak, N.; Ben-Bassat, O.; et al. Efficacy and Safety of Vedolizumab for Induction of Remission in Inflammatory Bowel Disease-the Israeli Real-World Experience. Inflamm. Bowel Dis. 2017, 23, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.V.; Sandborn, W.J.; Travis, S.P. Introducing vedolizumab to clinical practice: Who, when, and how? J. Crohn’s Colitis 2015, 9, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Grimaud, J.C.; Peyrin-Biroulet, L.; Filippi, J.; Pariente, B.; Roblin, X.; Buisson, A.; Stefanescu, C.; Trang-Poisson, C.; Altwegg, R.; et al. Effectiveness and Safety of Vedolizumab Induction Therapy for Patients With Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 1593–1601.e2. [Google Scholar] [CrossRef] [Green Version]
- Baumgart, D.C.; Bokemeyer, B.; Drabik, A.; Stallmach, A.; Schreiber, S.; Vedolizumab Germany Consortium. Vedolizumab induction therapy for inflammatory bowel disease in clinical practice—A nationwide consecutive German cohort study. Aliment. Pharmacol. Ther. 2016, 43, 1090–1102. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Loftus, E.V., Jr.; Colombel, J.-F.; Feagan, B.G.; Sandborn, W.J.; Sands, B.E.; Danese, S.; D’Haens, G.R.; Kaser, A.; Panaccione, R.; et al. Long-term Efficacy of Vedolizumab for Crohn’s Disease. J. Crohn’s Colitis 2017, 11, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Loftus, E.V., Jr.; Colombel, J.F.; Feagan, B.G.; Vermeire, S.; Sandborn, W.J.; Sands, B.E.; Danese, S.; D’Haens, G.R.; Kaser, A.; Panaccione, R.; et al. Long-term Efficacy of Vedolizumab for Ulcerative Colitis. J. Crohn’s Colitis 2017, 11, 400–411. [Google Scholar] [CrossRef] [Green Version]
- Click, B.; Anderson, A.; Koutroubakis, I.E.; Rivers, C.R.; Babichenko, D.; Machicado, J.D.; Hartman, D.J.; Hashash, J.G.; Dunn, M.A.; Schwartz, M.; et al. Peripheral eosinophilia in patients with inflammatory bowel disease defines an aggressive disease phenotype. Am. J. Gastroenterol. 2017, 112, 1849–1858. [Google Scholar] [CrossRef]
- Walker, M.M.; Potter, M.D.; Talley, N.J. Eosinophilic colitis and colonic eosinophilia. Curr. Opin. Gastroenterol. 2019, 35, 42–50. [Google Scholar] [CrossRef]
- Filippone, R.T.; Sahakian, L.; Apostolopoulos, V.; Nurgali, K. Eosinophils in inflammatory bowel disease. Inflamm. Bowel Dis. 2019, 25, 1140–1151. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Wedemeyer, J.; Herrmann, A.; Meier, P.N.; Trautwein, C.; Cetin, Y.; Maschek, H.; Stolte, M.; Gebel, M.; Manns, M.P. Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology 1996, 28, 1–13. [Google Scholar] [CrossRef]
- Kim, E.M.; Randall, C.; Betancourt, R.; Keene, S.; Lilly, A.; Fowler, M.; Dellon, E.S.; Herfarth, H.H. Mucosal Eosinophilia Is an Independent Predictor of Vedolizumab Efficacy in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2020, 26, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.F.; Bradshaw, J.M. A simple index of Crohn’s-disease activity. Lancet 1980, 1, 514. [Google Scholar] [CrossRef]
- Walmsley, R.S.; Ayres, R.C.; Pounder, R.E.; Allan, R.N. A simple clinical colitis activity index. Gut 1998, 43, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowichik, A.; Weinberg, A.G. A quantitative evaluation of mucosal eosinophils in the pediatric gastrointestinal tract. Modern Pathol. 1996, 9, 110–114. [Google Scholar]
- Rusin, S.; Covey, S.; Perjar, I.; Hollyfield, J.; Speck, O.; Woodward, K.; Woosley, J.T.; Dellon, E.S. Determination of esophageal eosinophil counts and other histologic features of eosinophilic esophagitis by pathology trainees is highly accurate. Hum. Pathol. 2017, 62, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Bourgonje, A.R.; von Martels, J.Z.H.; de Vos, P.; Faber, K.N.; Dijkstra, G. Increased fecal calprotectin levels in Crohn’s disease correlate with elevated serum Th1- and Th17-associated cytokines. PLoS ONE 2018, 13, e0193202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barre, A.; Colombel, J.F.; Ungaro, R. Review article: Predictors of response to vedolizumab and ustekinumab in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2018, 47, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Vivio, E.E.; Kanuri, N.; Gilbertsen, J.J.; Monroe, K.; Dey, N.; Chen, C.-H.; Gutierrez, A.M.; Ciorba, M.A. Vedolizumab Effectiveness and Safety Over the First Year of Use in an IBD Clinical Practice. J. Crohn’s Colitis 2016, 10, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Davoine, F.; Lacy, P. Eosinophil cytokines, chemokines, and growth factors: Emerging roles in immunity. Front. Immunol. 2014, 5, 570. [Google Scholar] [CrossRef] [Green Version]
- Rothenberg, M.E.; Mishra, A.; Brandt, E.B.; Hogan, S.P. Gastrointestinal eosinophils. Immunol. Rev. 2001, 179, 139–155. [Google Scholar] [CrossRef]
- Rothenberg, M.E.; Hogan, S.P. The eosinophil. Annu. Rev. Immunol. 2006, 24, 147–174. [Google Scholar] [CrossRef] [PubMed]
- Makiyama, K.; Kanzaki, S.; Yamasaki, K.; Zea-Iriarte, W.; Tsuji, Y. Activation of eosinophils in the pathophysiology of ulcerative colitis. J. Gastroenterol. 1995, 30 (Suppl. 8), 64–69. [Google Scholar] [PubMed]
- Bischoff, S.C. Mucosal allergy: Role of mast cells and eosinophil granulocytes in the gut. Baillieres Clin. Gastroenterol. 1996, 10, 443–459. [Google Scholar] [CrossRef]
- Kitaura, M.; Suzuki, N.; Imai, T.; Takagi, S.; Suzuki, R.; Nakajima, T.; Hirai, K.; Nomiyama, H.; Yoshie, O. Molecular cloning of a novel human CC chemokine (Eotaxin-3) that is a functional ligand of CC chemokine receptor 3. J. Biol. Chem. 1999, 274, 27975–27980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothenberg, M.E.; Mishra, A.; Brandt, E.B.; Hogan, S.P. Gastrointestinal eosinophils in health and disease. Adv. Immunol. 2001, 78, 291–328. [Google Scholar]
- Chen, W.; Paulus, B.; Shu, D.; Wilson, I.; Chadwick, V. Increased serum levels of eotaxin in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 2001, 36, 515–520. [Google Scholar] [CrossRef]
- Mir, A.; Minguez, M.; Tatay, J.; Pascual, I.; Peña, A.; Sanchiz, V.; Almela, P.; Mora, F.; Benages, A. Elevated serum eotaxin levels in patients with inflammatory bowel disease. Am. J. Gastroenterol. 2002, 97, 1452–1457. [Google Scholar] [CrossRef]
- Garcia-Zepeda, E.A.; Rothenberg, M.E.; Ownbey, R.T.; Celestin, J.; Leder, P.; Luster, A.D. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat. Med. 1996, 2, 449–456. [Google Scholar] [CrossRef]
- Mishra, A.; Hogan, S.P.; Lee, J.J.; Foster, P.S.; Rothenberg, M.E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Investig. 1999, 103, 1719–1727. [Google Scholar] [CrossRef] [Green Version]
- Waddell, A.; Ahrens, R.; Steinbrecher, K.; Donovan, B.; Rothenberg, M.E.; Munitz, A.; Hogan, S.P. Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6C(high) CCR2(+) inflammatory monocyte/macrophage-derived CCL11. J. Immunol. 2011, 186, 5993–6003. [Google Scholar] [CrossRef] [Green Version]
- Hogan, S.P.; Mishra, A.; Brandt, E.B.; Royalty, M.P.; Pope, S.M.; Zimmermann, N.; Foster, P.S.; Rothenberg, M.E. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat. Immunol. 2001, 2, 353–360. [Google Scholar] [CrossRef] [PubMed]
IBD | Response | Non-Response | p-Value ‡ |
---|---|---|---|
n = 38 | n = 46 | ||
Age (years) | 43.6 ± 15.6 | 43.3 ± 15.3 | 0.95 |
Female sex, n (%) | 16 (42.1) | 31 (67.4) | 0.02 |
BMI (kg/m2) † | 23.4 [20.5;27.1] | 24.2 [21.3;28.0] | 0.35 |
IBD diagnosis | 0.10 | ||
CD, n (%) | 13 (34.2) | 24 (52.2) | |
UC, n (%) | 25 (65.8) | 22 (47.8) | |
Smoking status | 0.33 | ||
Never, n (%) | 24 (63.2) | 22 (47.8) | |
Former, n (%) | 7 (18.4) | 14 (30.4) | |
Current, n (%) | 7 (18.4) | 10 (21.7) | |
Prior anti-TNF usage * | 0.58 | ||
None, n (%) | 3 (7.9) | 4 (8.7) | |
One, n (%) | 21 (55.3) | 19 (41.3) | |
Two, n (%) | 12 (31.6) | 18 (39.1) | |
Three, n (%) | 2 (5.3) | 5 (10.9) | |
Montreal Age (A) | 0.86 | ||
A1 (≤16 years), n (%) | 5 (13.2) | 8 (17.4) | |
A2 (17–40 years), n (%) | 24 (63.2) | 27 (58.7) | |
A3 (>40 years), n (%) | 9 (23.7) | 11 (23.9) | |
Montreal Location (L, CD) | 0.12 | ||
L1 (ileal), n (%) | 2 (15.4) | 2 (8.3) | |
L2 (colonic), n (%) | 0 (0.0) | 4 (16.7) | |
L3 (ileocolonic), n (%) | 9 (69.2) | 17 (70.8) | |
L1 + L4 (upper GI), n (%) | 0 (0.0) | 1 (4.2) | |
L2 + L4 (upper GI), n (%) | 0 (0.0) | 0 (0.0) | |
L3 + L4 (upper GI), n (%) | 2 (15.4) | 0 (0.0) | |
Montreal Behavior (B, CD) | 0.75 | ||
B1 (non-stricturing, non-penetrating), n (%) | 5 (38.5) | 10 (41.7) | |
B2 (stricturing), n (%) | 6 (46.2) | 8 (33.3) | |
B3 (penetrating), n (%) | 2 (15.4) | 6 (25.0) | |
Montreal Perianal disease (p, CD) | 0.30 | ||
No, n (%) | 10 (76.9) | 15 (62.5) | |
Yes, n (%) | 3 (23.1) | 9 (37.5) | |
Montreal Extension (E, UC) | 0.52 | ||
E1 (proctitis) | 0 (0.0) | 0 (0.0) | |
E2 (left-sided colitis) | 6 (24.0) | 8 (36.4) | |
E3 (pancolitis) | 19 (76.0) | 14 (63.6) | |
Montreal Severity (S, UC) | 0.58 | ||
S1 (mild) | 2 (8.0) | 3 (13.6) | |
S2 (moderate) | 12 (48.0) | 13 (59.1) | |
S3 (severe) | 11 (44.0) | 6 (27.3) | |
Concomitant Medication | |||
None, n (%) | 17 (44.7) | 15 (32.6) | 0.27 |
Aminosalicylates, n (%) | 12 (31.6) | 11 (23.9) | 0.47 |
Thiopurines/MTX, n (%) | 5 (13.2) | 13 (28.3) | 0.11 |
Steroids, n (%) | 2 (5.3) | 3 (6.5) | 1.00 |
Combination therapy, n (%) | 2 (5.3) | 4 (8.7) | 0.69 |
Laboratory Parameters | |||
Hemoglobin (mmol/L) | 7.6 ± 1.3 | 7.4 ± 1.0 | 0.41 |
CRP (mg/L) † | 3.4 [1.3;9,5] | 7.0 [3.2;16.8] | 0.03 |
ESR (mm/h) † | 22 [7;45] | 23 [10;46] | 0.41 |
WBC (×109/L) † | 8.0 [6.3;10.0] | 7.6 [6.0;10.6] | 0.69 |
Thrombocytes (×109/L) † | 309 [255;386] | 335 [288;392] | 0.25 |
Eosinophils (×109/L) † | 0.07 [0.01;0.26] | 0.10 [0.04;0.20] | 0.64 |
Clinical Disease Activity § | |||
HBI (CD) | 1.00 | ||
Remission (<5), n (%) | 1 (8.3) | 2 (9.5) | |
Active disease (≥5), n (%) | 11 (91.7) | 19 (90.5) | |
SCCAI (UC) | 1.00 | ||
Remission (≤2), n (%) | 1 (5.3) | 1 (5.0) | |
Active disease (>2), n (%) | 18 (94.7) | 19 (95.0) | |
Surgical History | |||
Ileocecal resection, n (%) | 8 (21.1) | 13 (28.3) | 0.61 |
Colectomy, n (%) | 0 (0.0) | 1 (2.2) | 1.00 |
IBD (n = 84) | CD (n = 37) | UC (n = 47) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Age (years) | 1.00 | 0.97–1.03 | 1.01 | 0.97–1.05 | 1.00 | 0.96–1.03 |
Female sex | 0.35 * | 0.14–0.86 | 0.66 | 0.16–2.73 | 0.27 * | 0.08–0.90 |
BMI (kg/m2) | 0.97 | 0.89–1.07 | 0.93 | 0.78–1.11 | 0.97 | 0.86–1.09 |
Active smoking (yes/no) | 0.64 | 0.21–1.98 | 0.94 | 0.21–4.29 | 0.72 | 0.09–5.81 |
Co-medication (yes/no) | 0.60 | 0.25–1.45 | 0.38 | 0.09–1.51 | 0.67 | 0.19–2.31 |
Prior anti-TNF therapy | 1.11 | 0.23–5.30 | 0.52 | 0.03–9.10 | 1.82 | 0.27–12.0 |
Prior surgery (yes/no) | 0.61 | 0.22–1.66 | 1.35 | 0.34–5.36 | § | § |
Clinically active disease vs. remission (HBI/SCCAI) | 1.15 | 0.18–7.30 | 1.16 | 0.09–14.3 | 0.95 | 0.06–16.3 |
Baseline CRP (mg/L) * | 0.75 * | 0.59–0.95 | 0.69 | 0.47–1.03 | 0.84 | 0.61–1.14 |
Baseline Eotaxin-1 (ng/mL) * | 2.99 * | 1.34–6.68 | 5.98 * | 1.24–28.8 | 1.98 | 0.78–5.02 |
Baseline mucosal eosinophils/hpf * | 9.59 * | 1.54–59.9 | ‡ | ‡ | 4.09 | 0.88–19.0 |
Baseline blood eosinophils * | 0.90 | 0.73–1.12 | 1.03 | 0.69–1.56 | 0.88 | 0.67–1.14 |
IBD (n = 84) | CD (n = 37) | UC (n = 47) | |||||
---|---|---|---|---|---|---|---|
Predictors † | Model | OR | 95% CI | OR | 95% CI | OR | 95% CI |
CRP (mg/L) | 1 | 0.75 * | 0.59–0.95 | 0.69 | 0.47–1.03 | 0.84 | 0.61–1.14 |
2 | 0.79 | 0.62–1.02 | - | - | - | - | |
3 | 0.77 | 0.60–1.01 | - | - | - | - | |
Mucosal eosinophils/hpf | 1 | 9.59 * | 1.54–59.9 | ¶ | ¶ | ¶ | ¶ |
2 | ¶ | ¶ | ¶ | ¶ | ¶ | ¶ | |
3 | ¶ | ¶ | ¶ | ¶ | ¶ | ¶ | |
Eotaxin-1 (ng/mL) | 1 | 2.99 * | 1.34–6.68 | 5.98 * | 1.24–28.8 | 1.98 | 0.78–5.02 |
2 | 2.49 * | 1.03–6.00 | 8.29 * | 1.23–55.9 | - | - | |
3 | 2.87 * | 1.09–7.55 | ¶ | ¶ | - | - |
AUC (95% CI) | CV-AUC (95% CI) | p-Value | Sensitivity | Specificity | Optimal Cut-Off | Youden’s J Statistic | |
---|---|---|---|---|---|---|---|
IBD | |||||||
CRP | 0.64 (0.52–0.76) | 0.66 (0.59–0.73) | 0.03 | 63.2% | 63.0% | <4.6 mg/L | 0.26 |
Eotaxin-1 | 0.72 (0.59–0.85) | 0.74 (0.66–0.82) | <0.01 | 54.8% | 87.9% | >0.31 ng/mL | 0.43 |
Eotaxin-1 (adjusted) | 0.79 (0.67–0.91) | 0.81 (0.76–0.86) | <0.01 | 64.5% | 87.9% | - | 0.52 |
Mucosal eosinophils | 0.90 (0.75–1.00) | 0.90 (0.80–1.00) | <0.01 | 90.9% | 92.3% | >30/hpf | 0.83 |
CD | |||||||
CRP | 0.70 (0.52–0.88) | 0.64 (0.53–0.75) | 0.05 | 53.8% | 87.5% | <3.4 mg/L | 0.41 |
Eotaxin-1 | 0.75 (0.57–0.94) | 0.80 (0.79–0.91) | 0.03 | 72.7% | 52.7% | >0.22 ng/mL | 0.49 |
Eotaxin-1 (adjusted) | 0.73 (0.53–0.93) | 0.65 (0.50–0.80) | 0.05 | 45.5% | 100% | - | 0.46 |
Mucosal eosinophils | † | † | † | † | † | † | † |
UC | |||||||
CRP | 0.57 (0.40–0.73) | 0.50 (0.42–0.58) | 0.45 | 28.0% | 90.9% | <1.1 mg/L | 0.19 |
Eotaxin-1 | 0.66 (0.48–0.84) | 0.60 (0.48–0.72) | 0.10 | 55.0% | 87.5% | >0.32 ng/mL | 0.43 |
Mucosal eosinophils | † | † | † | † | † | † | † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriëls, R.Y.; Bourgonje, A.R.; von Martels, J.Z.H.; Blokzijl, T.; Weersma, R.K.; Galinsky, K.; Juarez, J.; Faber, K.N.; Kats-Ugurlu, G.; Dijkstra, G. Mucosal Eosinophil Abundance in Non-Inflamed Colonic Tissue Is Associated with Response to Vedolizumab Induction Therapy in Inflammatory Bowel Disease. J. Clin. Med. 2022, 11, 4141. https://doi.org/10.3390/jcm11144141
Gabriëls RY, Bourgonje AR, von Martels JZH, Blokzijl T, Weersma RK, Galinsky K, Juarez J, Faber KN, Kats-Ugurlu G, Dijkstra G. Mucosal Eosinophil Abundance in Non-Inflamed Colonic Tissue Is Associated with Response to Vedolizumab Induction Therapy in Inflammatory Bowel Disease. Journal of Clinical Medicine. 2022; 11(14):4141. https://doi.org/10.3390/jcm11144141
Chicago/Turabian StyleGabriëls, Ruben Y., Arno R. Bourgonje, Julius Z. H. von Martels, Tjasso Blokzijl, Rinse K. Weersma, Kevin Galinsky, Julius Juarez, Klaas Nico Faber, Gursah Kats-Ugurlu, and Gerard Dijkstra. 2022. "Mucosal Eosinophil Abundance in Non-Inflamed Colonic Tissue Is Associated with Response to Vedolizumab Induction Therapy in Inflammatory Bowel Disease" Journal of Clinical Medicine 11, no. 14: 4141. https://doi.org/10.3390/jcm11144141
APA StyleGabriëls, R. Y., Bourgonje, A. R., von Martels, J. Z. H., Blokzijl, T., Weersma, R. K., Galinsky, K., Juarez, J., Faber, K. N., Kats-Ugurlu, G., & Dijkstra, G. (2022). Mucosal Eosinophil Abundance in Non-Inflamed Colonic Tissue Is Associated with Response to Vedolizumab Induction Therapy in Inflammatory Bowel Disease. Journal of Clinical Medicine, 11(14), 4141. https://doi.org/10.3390/jcm11144141