Digital Cognitive Biomarker for Mild Cognitive Impairments and Dementia: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Criteria for Study Inclusion and Exclusion
2.2. Search Methods
2.3. Selection of Studies
2.4. Data Collection
2.5. Data Analysis
2.6. Quality Assessment
3. Results
3.1. Literature Search and Study Selection
3.2. Demographics of the Included Studies
3.3. Characteristics of the Computerized Tests
3.4. Group Difference in Cognitive Outcomes of Computerized Tests
3.4.1. MCI vs. Control
3.4.2. Dementia vs. Control
3.4.3. Cognitively Impaired (CI) vs. Control
3.5. Diagnostic Information
3.5.1. MCI
3.5.2. Dementia
3.5.3. Cognitively Impaired (CI)
3.6. Quality of Included Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutteridge, D.S.; Tully, P.J.; Ghezzi, E.S.; Jamadar, S.; Smith, A.E.; Commerford, T.; Keage, H.A.D. Blood Pressure Variability and Structural Brain Changes: A Systematic Review. J. Hypertens. 2022, 40, 1060–1070. [Google Scholar] [CrossRef]
- Alster, P.; Dunalska, A.; Migda, B.; Madetko, N.; Królicki, L. The Rate of Decrease in Brain Perfusion in Progressive Supranuclear Palsy and Corticobasal Syndrome May Be Impacted by Glycemic Variability—A Pilot Study. Front. Neurol. 2021, 12, 767480. [Google Scholar] [CrossRef] [PubMed]
- Global Status Report on the Public Health Response to Dementia; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240033245 (accessed on 1 June 2022).
- Aldus, C.F.; Arthur, A.; Dennington-Price, A.; Millac, P.; Richmond, P.; Dening, T.; Fox, C.; Matthews, F.E.; Robinson, L.; Stephan, B.C.; et al. Undiagnosed Dementia in Primary Care: A Record Linkage Study. Health Serv. Res. 2020, 8, 1–108. [Google Scholar] [CrossRef] [Green Version]
- Waldemar, G.; Phung, K.T.T.; Burns, A.; Georges, J.; Hansen, F.R.; Iliffe, S.; Marking, C.; Rikkert, M.O.; Selmes, J.; Stoppe, G.; et al. Access to Diagnostic Evaluation and Treatment for Dementia in Europe. Int. J. Geriatr. Psychiatr. 2006, 22, 47–54. [Google Scholar] [CrossRef]
- Seeher, K.; Cataldi, R.; Dua, T.; Kestel, D. Inequitable Access to Dementia Diagnosis and Care in Low-Resource Settings—A Global Perspective. Clin. Gerontol. 2022, 1–5. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Kokmen, E.; Tangelos, E.G. Aging, Memory, and Mild Cognitive Impairment. Int. Psychogeriatr 1997, 9, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; et al. Mild Cognitive Impairment. Lancet 2006, 367, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of Progression of Mild Cognitive Impairment to Dementia—Meta-Analysis of 41 Robust Inception Cohort Studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef] [PubMed]
- DeKosky, S. Early Intervention Is Key to Successful Management of Alzheimer Disease. Alzheimer. Dis. Assoc Disord. 2003, 17 (Suppl. S4), S99–S104. [Google Scholar] [CrossRef]
- Mowszowski, L.; Batchelor, J.; Naismith, S.L. Early Intervention for Cognitive Decline: Can Cognitive Training Be Used as a Selective Prevention Technique? Int. Psychogeriatr 2010, 22, 537–548. [Google Scholar] [CrossRef]
- Prince, M.; Bryce, R.; Ferri, C. World Alzheimer Report 2011: The Benefits of Early Diagnosis and Intervention. 2011. Available online: https://apps.who.int/iris/bitstream/handle/10665/344479/9789240033269-eng.pdf (accessed on 1 June 2022).
- Piau, A.; Wild, K.; Mattek, N.; Kaye, J. Current State of Digital Biomarker Technologies for Real-Life, Home-Based Monitoring of Cognitive Function for Mild Cognitive Impairment to Mild Alzheimer Disease and Implications for Clinical Care: Systematic Review. J. Med. Internet Res. 2019, 21, e12785. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation and Research. Patient-Focused Drug Development: Collecting Comprehensive and Representative Input. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-collecting-comprehensive-and-representative-input (accessed on 1 June 2022).
- Chin, J.; Kim, D.E.; Lee, H.; Yun, J.; Lee, B.H.; Park, J.; Yeom, J.; Shin, D.-S.; Na, D.L. A Validation Study of the Inbrain CST: A Tablet Computer-Based Cognitive Screening Test for Elderly People with Cognitive Impairment. J. Korean Med. Sci. 2020, 35, E292. [Google Scholar] [CrossRef]
- Maki, Y.; Yoshida, H.; Yamaguchi, H. Computerized Visuo-Spatial Memory Test as a Supplementary Screening Test for Dementia. Psychogeriatrics 2010, 10, 77–82. [Google Scholar] [CrossRef]
- Gielis, K.; Vanden Abeele, M.-E.; De Croon, R.; Dierick, P.; Ferreira-Brito, F.; Van Assche, L.; Verbert, K.; Tournoy, J.; Vanden Abeele, V. Dissecting Digital Card Games to Yield Digital Biomarkers for the Assessment of Mild Cognitive Impairment: A Methodological Approach and Exploratory Study. JMIR Serious Games 2021, 9, e18359. [Google Scholar] [CrossRef]
- Gielis, K.; Vanden Abeele, M.-E.; Verbert, K.; Tournoy, J.; De Vos, M.; Vanden Abeele, V. Detecting Mild Cognitive Impairment via Digital Biomarkers of Cognitive Performance Found in Klondike Solitaire: A Machine-Learning Study. Digit. Biomark. 2021, 5, 44–52. [Google Scholar] [CrossRef]
- Isernia, S.; Cabinio, M.; Di Tella, S.; Pazzi, S.; Vannetti, F.; Gerli, F.; Mosca, I.E.; Lombardi, G.; Macchi, C.; Sorbi, S.; et al. Diagnostic Validity of the Smart Aging Serious Game: An Innovative Tool for Digital Phenotyping of Mild Neurocognitive Disorder. J. Alzheimer’s Dis. 2021, 83, 1789–1801. [Google Scholar] [CrossRef]
- Robin, J.; Harrison John, E.; Kaufman Liam, D.; Rudzicz, F.; Simpson, W.; Yancheva, M. Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations. Digit. Biomark. 2020, 4, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Kim, J.; Oh, D.H.; Ryu, H.; Choi, H. Virtual Daily Living Test to Screen for Mild Cognitive Impairment Using Kinematic Movement Analysis. PLoS ONE 2017, 12, e0181883. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Yin, H.; Meng, Q.; Wang, S.; Ding, Y.; Li, G.; Wang, C.; Chen, L. A Virtual Supermarket Program for the Screening of Mild Cognitive Impairment in Older Adults: Diagnostic Accuracy Study. JMIR Serious Games 2021, 9, e30919. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, L.C.; Regele, O.B.; Wright, J.M.; Jones, G.B. Digital Biomarkers for Alzheimer’s Disease: The Mobile/Wearable Devices Opportunity. NPJ Digit. Med. 2019, 2, 9. [Google Scholar] [CrossRef]
- Chan, J.Y.C.; Yau, S.T.Y.; Kwok, T.C.Y.; Tsoi, K.K.F. Diagnostic Performance of Digital Cognitive Tests for the Identification of MCI and Dementia: A Systematic Review. Ageing Res. Rev. 2021, 72, 101506. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current Version and Scoring Rules. Neurology 1993, 43, 2412. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild Cognitive Impairment: Clinical Characterization and Outcome. Arch. Neurol. 1999, 56, 303. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ Open. 2021, 372, n71. [Google Scholar] [CrossRef]
- PlotDigitizer: Extract Data from Graph Image Online. Available online: https://plotdigitizer.com/ (accessed on 8 June 2022).
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: San Diego, CA, USA, 1985. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 8 June 2022).
- Ursenbach, J.; O’Connell, M.E.; Neiser, J.; Tierney, M.C.; Morgan, D.; Kosteniuk, J.; Spiteri, R.J. Scoring Algorithms for a Computer-Based Cognitive Screening Tool: An Illustrative Example of Overfitting Machine Learning Approaches and the Impact on Estimates of Classification Accuracy. Psychol. Assess 2019, 31, 1377–1382. [Google Scholar] [CrossRef]
- Saxton, J.; Morrow, L.; Eschman, A.; Archer, G.; Luther, J.; Zuccolotto, A. Computer Assessment of Mild Cognitive Impairment. Postgrad Med. 2009, 121, 177–185. [Google Scholar] [CrossRef]
- Müller, S.; Preische, O.; Heymann, P.; Elbing, U.; Laske, C. Increased Diagnostic Accuracy of Digital vs. Conventional Clock Drawing Test for Discrimination of Patients in the Early Course of Alzheimer’s Disease from Cognitively Healthy Individuals. Front. Aging Neurosci. 2017, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.; Herde, L.; Preische, O.; Zeller, A.; Heymann, P.; Robens, S.; Elbing, U.; Laske, C. Diagnostic Value of Digital Clock Drawing Test in Comparison with CERAD Neuropsychological Battery Total Score for Discrimination of Patients in the Early Course of Alzheimer’s Disease from Healthy Individuals. Sci. Rep. 2019, 9, 3543. [Google Scholar] [CrossRef] [Green Version]
- Valladares-Rodriguez, S.; Pérez-Rodriguez, R.; Fernandez-Iglesias, J.M.; Anido-Rifón, L.E.; Facal, D.; Rivas-Costa, C. Learning to Detect Cognitive Impairment through Digital Games and Machine Learning Techniques. Methods Inf. Med. 2018, 57, 197–207. [Google Scholar]
- Valladares-Rodriguez, S.; Fernández-Iglesias, M.J.; Anido-Rifón, L.; Facal, D.; Pérez-Rodríguez, R. Episodix: A Serious Game to Detect Cognitive Impairment in Senior Adults. A Psychometric Study. PeerJ 2018, 6, e5478. [Google Scholar] [CrossRef] [PubMed]
- Higins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3. 2020. Available online: https://training.cochrane.org/handbook (accessed on 1 June 2022).
- Égerházi, A.; Berecz, R.; Bartók, E.; Degrell, I. Automated Neuropsychological Test Battery (CANTAB) in Mild Cognitive Impairment and in Alzheimer’s Disease. Prog. Neuropsychopharmacol. 2007, 31, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Zhang, S.; Wang, Q.; Wang, X.; Qin, Y.; Wang, J.; Li, C.; Wu, Y.; Wang, W.; Lin, H. Development of a Computerized Tool for the Chinese Version of the Montreal Cognitive Assessment for Screening Mild Cognitive Impairment. Int. Psychogeriatr. 2015, 27, 213–219. [Google Scholar] [CrossRef]
- Maruff, P.; Lim, Y.Y.; Darby, D.; Ellis, K.A.; Pietrzak, R.H.; Snyder, P.J.; Bush, A.I.; Szoeke, C.; Schembri, A.; Ames, D.; et al. Clinical Utility of the Cogstate Brief Battery in Identifying Cognitive Impairment in Mild Cognitive Impairment and Alzheimer’s Disease. BMC Psychol. 2013, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Salgado, A.M.; Llibre-Guerra, J.J.; Tsoy, E.; Peñalver-Guia, A.I.; Bringas, G.; Erlhoff, S.J.; Kramer, J.H.; Allen, I.E.; Valcour, V.; Miller, B.L.; et al. A Brief Digital Cognitive Assessment for Detection of Cognitive Impairment in Cuban Older Adults. J. Alzheimer’s Dis. 2021, 79, 85–94. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Vidal, J.-S.; de Rotrou, J.; Sikkes, S.A.M.; Rigaud, A.-S.; Plichart, M. Can a Tablet-Based Cancellation Test Identify Cognitive Impairment in Older Adults? PLoS ONE 2017, 12, e0181809. [Google Scholar] [CrossRef] [Green Version]
- Bonney, K.; Almeida, O.; Flicker, L.; Davies, S.; Clarnette, R.; Anderson, M.; Lautenschlager, N. Inspection Time in Non-Demented Older Adults with Mild Cognitive Impairment. Neuropsychologia 2006, 44, 1452–1456. [Google Scholar] [CrossRef]
- Simfukwe, C.; Youn, Y.C.; Kim, S.Y.; An, S.S. Digital Trail Making Test-Black and White: Normal vs MCI. Appl. Neuropsychol. Adult 2021, 1–7. [Google Scholar] [CrossRef]
- Yu, N.-Y.; Chang, S.-H. Characterization of the Fine Motor Problems in Patients with Cognitive Dysfunction—a Computerized Handwriting Analysis. Hum. Mov. Sci. 2019, 65, 71–79. [Google Scholar] [CrossRef]
- Robens, S.; Heymann, P.; Gienger, R.; Hett, A.; Müller, S.; Laske, C.; Loy, R.; Ostermann, T.; Elbing, U. The Digital Tree Drawing Test for Screening of Early Dementia: An Explorative Study Comparing Healthy Controls, Patients with Mild Cognitive Impairment, and Patients with Early Dementia of the Alzheimer Type. J. Alzheimer’s Dis. 2019, 68, 1561–1574. [Google Scholar] [CrossRef]
- Fukui, Y.; Yamashita, T.; Hishikawa, N.; Kurata, T.; Sato, K.; Omote, Y.; Kono, S.; Yunoki, T.; Kawahara, Y.; Hatanaka, N.; et al. Computerized Touch-Panel Screening Tests for Detecting Mild Cognitive Impairment and Alzheimer’s Disease. Intern. Med. 2015, 54, 895–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapp, S.R.; Barnard, R.T.; Sink, K.M.; Chamberlain, D.G.; Wilson, V.; Lu, L.; Ip, E.H. Computer Simulations for Assessing Cognitively Intensive Instrumental Activities of Daily Living in Older Adults. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018, 10, 237–244. [Google Scholar] [CrossRef]
- Junkkila, J.; Oja, S.; Laine, M.; Karrasch, M. Applicability of the CANTAB-PAL Computerized Memory Test in Identifying Amnestic Mild Cognitive Impairment and Alzheimer’S Disease. Dement. Geriatr. Cogn. Disord. 2012, 34, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Vacante, M.; Wilcock, G.K.; de Jager, C.A. Computerized Adaptation of the Placing Test for Early Detection of Both Mild Cognitive Impairment and Alzheimer’s Disease. J. Clin. Exp. Neuropsychol. 2013, 35, 846–856. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Singh, A.; Chen, S.; Sun, F.-J.; Huang, C.-R.; Liu, S.-I. Validity of a Novel Touch Screen Tablet-Based Assessment for Mild Cognitive Impairment and Probable AD in Older Adults. Assessment 2017, 26, 1540–1553. [Google Scholar] [CrossRef]
- Dwolatzky, T.; Whitehead, V.; Doniger, G.M.; Simon, E.S.; Schweiger, A.; Jaffe, D.; Chertkow, H. Validity of a Novel Computerized Cognitive Battery for Mild Cognitive Impairment. BMC Geriatr. 2003, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-C.; Weng, C.-Y.; Hsiao, S.; Tsao, W.-L.; Koo, M. Cognitive Decline and Slower Reaction Time in Elderly Individuals with Mild Cognitive Impairment. Psychogeriatrics 2017, 17, 364–370. [Google Scholar] [CrossRef]
- Davoudi, A.; Dion, C.; Amini, S.; Tighe, P.J.; Price, C.C.; Libon, D.J.; Rashidi, P. Classifying Non-Dementia and Alzheimer’s Disease/Vascular Dementia Patients Using Kinematic, Time-Based, and Visuospatial Parameters: The Digital Clock Drawing Test. J. Alzheimer’s Dis. 2021, 82, 47–57. [Google Scholar] [CrossRef]
- Kokubo, N.; Yokoi, Y.; Saitoh, Y.; Murata, M.; Maruo, K.; Takebayashi, Y.; Shinmei, I.; Yoshimoto, S.; Horikoshi, M. A New Device-Aided Cognitive Function Test, User EXperience-Trail Making Test (UX-TMT), Sensitively Detects Neuropsychological Performance in Patients with Dementia and Parkinson’s Disease. BMC Psychiatry 2018, 18, 220. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.; Yang, J.; Kim, S.; Yang, D.W.; Park, M.; Chey, J. The Validity and Reliability of a Computerized Dementia Screening Test Developed in Korea. J. Neurol. Sci. 2002, 203–204, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Fong, C.; Mok, V.C.; Leung, K.; Tong, R.K. Computerized Cognitive Screen (CoCoSc): A Self-Administered Computerized Test for Screening for Cognitive Impairment in Community Social Centers. J. Alzheimer’s Dis. 2017, 59, 1299–1306. [Google Scholar] [CrossRef]
- Takahashi, J.; Kawai, H.; Suzuki, H.; Fujiwara, Y.; Watanabe, Y.; Hirano, H.; Kim, H.; Ihara, K.; Miki, A.; Obuchi, S. Development and Validity of the Computer-Based Cognitive Assessment Tool for Intervention in Community-Dwelling Older Individuals. Geriatr. Gerontol. Int. 2020, 20, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Vyshedskiy, A.; Netson, R.; Fridberg, E.; Jagadeesan, P.; Arnold, M.; Barnett, S.; Gondalia, A.; Maslova, V.; de Torres, L.; Ostrovsky, S.; et al. Boston Cognitive Assessment (BOCA)—A Comprehensive Self-Administered Smartphone- and Computer-Based At-Home Test for Longitudinal Tracking of Cognitive Performance. BMC Neurol. 2022, 22, 92. [Google Scholar] [CrossRef]
- Harvey, P.D.; Forero, D.B.; Ahern, L.B.; Tibiriçá, L.; Kallestrup, P.; Czaja, S.J. The Computerized Functional Skills Assessment and Training Program: Sensitivity to Global Cognitive Impairment, Correlations with Cognitive Abilities, and Factor Structure. Am. J. Geriatr. Psychiatry 2021, 29, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Curiel, R.E.; Crocco, E.; Rosado, M.; Duara, R.; Greig, M.T.; Raffo, A.; Loewenstein, D.A. A Brief Computerized Paired Associate Test for the Detection of Mild Cognitive Impairment in Community-Dwelling Older Adults. J. Alzheimer’s Dis. 2016, 54, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Possin, K.L.; Moskowitz, T.; Erlhoff, S.J.; Rogers, K.M.; Johnson, E.T.; Steele, N.Z.R.; Higgins, J.J.; Stiver, J.; Alioto, A.G.; Farias, S.T.; et al. The Brain Health Assessment for Detecting and Diagnosing Neurocognitive Disorders. J. Am. Geriatr. Soc. 2018, 66, 150–156. [Google Scholar]
- Ruano, L.; Severo, M.; Sousa, A.; Ruano, C.; Branco, M.; Barreto, R.; Moreira, S.; Araújo, N.; Pinto, P.; Pais, J.; et al. Tracking Cognitive Performance in the General Population and in Patients with Mild Cognitive Impairment with a Self-Applied Computerized Test (Brain on Track). J. Alzheimer’s Dis. 2019, 71, 541–548. [Google Scholar] [CrossRef]
- Cheah, W.-T.; Hwang, J.-J.; Hong, S.-Y.; Fu, L.-C.; Chang, Y.-L.; Chen, T.-F.; Chen, I.-A.; Chou, C.-C. A Digital Screening System for Alzheimer Disease Based on a Neuropsychological Test and a Convolutional Neural Network: System Development and Validation. Int. J. Med. Inform. 2022, 10, e31106. [Google Scholar] [CrossRef]
- Garre-Olmo, J.; Faúndez-Zanuy, M.; López-de-Ipiña, K.; Calvó-Perxas, L.; Turró-Garriga, O. Kinematic and Pressure Features of Handwriting and Drawing: Preliminary Results between Patients with Mild Cognitive Impairment, Alzheimer Disease and Healthy Controls. Curr. Alzheimer Res. 2017, 14, 960–968. [Google Scholar] [CrossRef]
- Dougherty, J.H.; Cannon, R.L.; Nicholas, C.R.; Hall, L.; Hare, F.; Carr, E.; Dougherty, A.; Janowitz, J.; Arunthamakun, J. The Computerized Self Test (CST): An Interactive, Internet Accessible Cognitive Screening Test for Dementia. J. Alzheimer’s Dis. 2010, 20, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, L.; O’Shea, E.; O’Caoimh, R.; Timmons, S. Usability and Validity of a Battery of Computerised Cognitive Screening Tests for Detecting Cognitive Impairment. Gerontology 2016, 62, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Memória, C.M.; Yassuda, M.S.; Nakano, E.Y.; Forlenza, O.V. Contributions of the Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment (CANS-MCI) for the Diagnosis of MCI in Brazil. Int. Psychogeriatr. 2014, 26, 1483–1491. [Google Scholar] [CrossRef]
- Scharre, D.W.; Chang, S.; Nagaraja, H.N.; Vrettos, N.E.; Bornstein, R.A. Digitally Translated Self-Administered Gerocognitive Examination (eSAGE): Relationship with Its Validated Paper Version, Neuropsychological Evaluations, and Clinical Assessments. Alzheimer’s Res. Ther. 2017, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Inoue, M.; Jinbo, D.; Nakamura, Y.; Taniguchi, M.; Urakami, K. Development and Evaluation of a Computerized Test Battery for Alzheimer’s Disease Screening in Community-Based Settings. Am. J. Alzheimers. Dis. Other Demen. 2009, 24, 129–135. [Google Scholar] [CrossRef]
- Rafii, M.; Taylor, C.; Coutinho, A.; Kim, K.; Galasko, D. Comparison of the Memory Performance Index with Standard Neuropsychological Measures of Cognition. Am. J. Alzheimers. Dis. Other Demen. 2011, 26, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Heyman, A.; Fillenbaum, G.G.; Mir-ra, S.S. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): Clinical, Neuropsychological, and Neuropathological Components. Aging Clin. Exp. Res. 1990, 2, 415–424. [Google Scholar] [CrossRef]
- Bissig, D.; Kaye, J.; Erten-Lyons, D. Validation of SATURN, a Free, Electronic, Self-Administered Cognitive Screening Test. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12116. [Google Scholar] [CrossRef]
- Inoue, M.; Urakami, K.; Taniguchi, M.; Kimura, Y.; Saito, J.; Nakashima, K. Evaluation of a Computerized Test System to Screen for Mild Cognitive Impairment. Psychogeriatrics 2005, 5, 36–41. [Google Scholar] [CrossRef]
- Wouters, H.; van Campen, J.; Appels, B.; Lindeboom, R.; Buiter, M.; de Haan, R.J.; Zwinderman, A.H.; van Gool, W.A.; Schmand, B. Does Adaptive Cognitive Testing Combine Efficiency with Precision? Prospective Findings. J. Alzheimer’s Dis. 2011, 25, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Mayeda, E.R.; Glymour, M.M.; Quesenberry, C.P.; Whitmer, R.A. Inequalities in Dementia Incidence between Six Racial and Ethnic Groups over 14 Years. Alzheimer’s Dement. 2016, 12, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Rubino, G.; Bulati, M.; Aiello, A.; Aprile, S.; Gambino, C.M.; Gervasi, F.; Caruso, C.; Accardi, G. Sicilian Centenarian Offspring Are More Resistant to Immune Ageing. Aging Clin. Exp. Res. 2018, 31, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Deleidi, M.; Jäggle, M.; Rubino, G. Immune Aging, Dysmetabolism, and Inflammation in Neurological Diseases. Front. Neurosci. 2015, 9, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutshumba, J.; Nikolajczyk, B.S.; Bachstetter, A.D. Dysregulation of Systemic Immunity in Aging and Dementia. Front. Cell. Neurosci. 2021, 15, 652111. [Google Scholar] [CrossRef] [PubMed]
- Groppell, S.; Soto-Ruiz, K.M.; Flores, B.; Dawkins, W.; Smith, I.; Eagleman, D.M.; Katz, Y. A Rapid, Mobile Neurocognitive Screening Test to Aid in Identifying Cognitive Impairment and Dementia (BrainCheck): Cohort Study. JMIR Aging 2019, 2, e12615. [Google Scholar] [CrossRef]
- Mortimer, J.A. Do Psychosocial Risk Factors Contribute to Alzheimer’s Disease? In Etiology of Dementia of the Alzheimer’s Type; Henderson, A.S., Henderson, J.H., Eds.; John Wiley & Sons: New York, NY, USA, 1988; pp. 39–52. [Google Scholar]
- Sharp, E.S.; Gatz, M. The Relationship between Education and Dementia: An Updated Review. Alzheimer Dis. Assoc. Disord. 2011, 25, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Sabbagh, M.; Wyman, R.; Liebsack, C.; Kunik, M.E.; Najafi, B. Instrumented Trail-Making Task to Differentiate Persons with No Cognitive Impairment, Amnestic Mild Cognitive Impairment, and Alzheimer Disease: A Proof of Concept Study. Gerontology 2016, 63, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Cho, A.; Sugimura, M.; Nakano, S.; Yamada, T. The Japanese MCI Screen for Early Detection of Alzheimer’s Disease and Related Disorders. Am. J. Alzheimers Dis. Other Demen. 2008, 23, 162–166. [Google Scholar] [CrossRef]
- Alegret, M.; Muñoz, N.; Roberto, N.; Rentz, D.M.; Valero, S.; Gil, S.; Marquié, M.; Hernández, I.; Riveros, C.; Sanabria, A.; et al. A Computerized Version of the Short Form of the Face-Name Associative Memory Exam (FACEmemory®) for the Early Detection of Alzheimer’s Disease. Alzheimer’s Res. Ther. 2020, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, X.; Zhou, X.; Shang, Y.; Xu, F.; Zhang, J.; He, J.; Zhao, F.; Du, B.; Wang, X.; et al. Validity of the MemTrax Memory Test Compared to the Montreal Cognitive Assessment in the Detection of Mild Cognitive Impairment and Dementia due to Alzheimer’s Disease in a Chinese Cohort. J. Alzheimer’s Dis. 2021, 80, 1257–1267. [Google Scholar] [CrossRef]
- Ramratan, W.S.; Rabin, L.A.; Wang, C.; Zimmerman, M.E.; Katz, M.J.; Lipton, R.B.; Buschke, H. Level of Recall, Retrieval Speed, and Variability on the Cued-Recall Retrieval Speed Task (CRRST) in Individuals with Amnestic Mild Cognitive Impairment. J. Int. Neuropsychol. Soc. 2012, 18, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Troyer, A.K.; Vandermorris, S.; Murphy, K.J. Intraindividual Variability in Performance on Associative Memory Tasks Is Elevated in Amnestic Mild Cognitive Impairment. Neuropsychologia 2016, 90, 110–116. [Google Scholar] [CrossRef] [PubMed]
- van der Hoek, M.D.; Nieuwenhuizen, A.; Keijer, J.; Ashford, J.W. The MemTrax Test Compared to the Montreal Cognitive Assessment Estimation of Mild Cognitive Impairment. J. Alzheimer’s Dis. 2019, 67, 1045–1054. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; de Jager, C.; Wilcock, G. A Comparison of Screening Tools for the Assessment of Mild Cognitive Impairment: Preliminary Findings. Neurocase 2012, 18, 336–351. [Google Scholar] [CrossRef]
- Cerino, E.S.; Katz, M.J.; Wang, C.; Qin, J.; Gao, Q.; Hyun, J.; Hakun, J.G.; Roque, N.A.; Derby, C.A.; Lipton, R.B.; et al. Variability in Cognitive Performance on Mobile Devices Is Sensitive to Mild Cognitive Impairment: Results from the Einstein Aging Study. Front. Public Health 2021, 3, e039960. [Google Scholar] [CrossRef]
- Chan, J.Y.C.; Wong, A.; Yiu, B.; Mok, H.; Lam, P.; Kwan, P.; Chan, A.; Mok, V.C.T.; Tsoi, K.K.F.; Kwok, T.C.Y. Electronic Cognitive Screen Technology for Screening Older Adults with Dementia and Mild Cognitive Impairment in a Community Setting: Development and Validation Study. J. Med. Internet Res. 2020, 22, e17332. [Google Scholar] [CrossRef] [PubMed]
- Darby, D.; Maruff, P.; Collie, A.; McStephen, M. Mild Cognitive Impairment Can Be Detected by Multiple Assessments in a Single Day. Neurology 2002, 59, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Dorociak, K.E.; Mattek, N.; Lee, J.; Leese, M.I.; Bouranis, N.; Imtiaz, D.; Doane, B.M.; Bernstein, J.P.K.; Kaye, J.A.; Hughes, A.M. The Survey for Memory, Attention, and Reaction Time (SMART): Development and Validation of a Brief Web-Based Measure of Cognition for Older Adults. Gerontology 2021, 67, 740–752. [Google Scholar] [CrossRef]
- Fichman, H.C.; Nitrini, R.; Caramelli, P.; Sameshima, K. A New Brief Computerized Cognitive Screening Battery (CompCogs) for Early Diagnosis of Alzheimer’s Disease. Dement. Neuropsychol. 2008, 2, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Green, R.C. Screening for Cognitive Impairment in Older Individuals: Validation Study of a Computer-Based Test. Arch. Neurol. 1994, 51, 779. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Neurocognitive Testing Supports a Broader Concept of Mild Cognitive Impairment. Am. J. Alzheimers Dis. Other Demen. 2005, 20, 359–366. [Google Scholar] [CrossRef]
- Mundt, J.C.; Kinoshita, L.M.; Hsu, S.; Yesavage, J.A.; Greist, J.H. Telephonic Remote Evaluation of Neuropsychological Deficits (TREND): Longitudinal Monitoring of Elderly Community-Dwelling Volunteers Using Touch-Tone Telephones. Alzheimer Dis. Assoc. Disord. 2007, 21, 218–224. [Google Scholar] [CrossRef]
- Ruano, L.; Sousa, A.; Severo, M.; Alves, I.; Colunas, M.; Barreto, R.; Mateus, C.; Moreira, S.; Conde, E.; Bento, V.; et al. Development of a Self-Administered Web-Based Test for Longitudinal Cognitive Assessment. Sci. Rep. 2016, 6, 19114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veroff, A.E.; Cutler, N.R.; Sramek, J.J.; Prior, P.L.; Mickelson, W.; Hartman, J.K. A New Assessment Tool for Neuropsychopharmacologic Research: The Computerized Neuropsychological Test Battery. J. Geriatr Psychiatry Neurol. 1991, 4, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Sun, K.; Huynh, D.; Phi, H.Q.; Ko, B.; Huang, B.; Hosseini Ghomi, R. A Computerized Cognitive Test Battery for Detection of Dementia and Mild Cognitive Impairment: Instrument Validation Study. JMIR Aging 2022, 5, e36825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Lin, C.-C.; Yu, T.-C.; Sun, J.; Hsu, W.-C.; Wong, A.M.-K. Fun Cube Based Brain Gym Cognitive Function Assessment System. Comput. Biol. Med. 2017, 84, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Angelillo, M.T.; Balducci, F.; Impedovo, D.; Pirlo, G.; Vessio, G. Attentional Pattern Classification for Automatic Dementia Detection. IEEE Access 2019, 7, 57706–57716. [Google Scholar] [CrossRef]
- García-Casal, J.A.; Martínez-Abad, F.; Cid-Bartolomé, T.; Smith, S.J.; Llano-Ordóñez, K.; Perea-Bartolomé, M.V.; Goñi-Imizcoz, M.; Soto-Pérez, F.; Franco-Martín, M. Usability study and pilot validation of a computer-based emotion recognition test for older adults with Alzheimer’s disease and amnestic mild cognitive impairment. Aging Ment. Health 2019, 23, 365–375. [Google Scholar]
- Kalová, E.; Vlček, K.; Jarolímová, E.; Bureš, J. Allothetic Orientation and Sequential Ordering of Places Is Impaired in Early Stages of Alzheimer’s Disease: Corresponding Results in Real Space Tests and Computer Tests. Behav. Brain Res. 2005, 159, 175–186. [Google Scholar] [CrossRef]
- Lunardini, F.; Luperto, M.; Romeo, M.; Basilico, N.; Daniele, K.; Azzolino, D.; Damanti, S.; Abbate, C.; Mari, D.; Cesari, M.; et al. Supervised Digital Neuropsychological Tests for Cognitive Decline in Older Adults: Usability and Clinical Validity Study. JMIR mHealth uHealth 2020, 8, e17963. [Google Scholar] [CrossRef]
- Mollica, M.A.; Navarra, J.; Fernández-Prieto, I.; Olives, J.; Tort, A.; Valech, N.; Coll-Padrós, N.; Molinuevo, J.L.; Rami, L. Subtle Visuomotor Difficulties in Preclinical Alzheimer’s Disease. J Neuropsychol. 2015, 11, 56–73. [Google Scholar] [CrossRef] [Green Version]
- Amini, S.; Zhang, L.; Hao, B.; Gupta, A.; Song, M.; Karjadi, C.; Lin, H.; Kolachalama, V.B.; Au, R.; Paschalidis, I.C. An Artificial Intelligence-Assisted Method for Dementia Detection Using Images from the Clock Drawing Test. J. Alzheimer’s Dis. 2021, 83, 581–589. [Google Scholar] [CrossRef]
- Binaco, R.; Calzaretto, N.; Epifano, J.; McGuire, S.; Umer, M.; Emrani, S.; Wasserman, V.; Libon, D.J.; Polikar, R. Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes versus Alzheimer’s Disease. J. Int. Neuropsychol. Soc. 2020, 26, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Nemoto, M.; Nemoto, K.; Takeuchi, T.; Numata, Y.; Watanabe, R.; Tsukada, E.; Ota, M.; Higashi, S.; Arai, T.; et al. Handwriting Features of Multiple Drawing Tests for Early Detection of Alzheimer’s Disease: A Preliminary Result. Stud. Health Technol. Inform. 2019, 264, 168–172. [Google Scholar] [CrossRef]
- Matusz, E.F.; Price, C.C.; Lamar, M.; Swenson, R.; Au, R.; Emrani, S.; Wasserman, V.; Libon, D.J.; Thompson, L.I. Dissociating Statistically Determined Normal Cognitive Abilities and Mild Cognitive Impairment Subtypes with DCTclock. J. Int. Neuropsychol. Soc. 2022, 1–11. [Google Scholar] [CrossRef]
- Souillard-Mandar, W.; Penney, D.; Schaible, B.; Pascual-Leone, A.; Au, R.; Davis, R. DCTclock: Clinically-Interpretable and Automated Artificial Intelligence Analysis of Drawing Behavior for Capturing Cognition. Front. Public Health 2021, 3, 750661. [Google Scholar] [CrossRef]
- Cabinio, M.; Rossetto, F.; Isernia, S.; Saibene, F.L.; Di Cesare, M.; Borgnis, F.; Pazzi, S.; Migliazza, T.; Alberoni, M.; Blasi, V.; et al. The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG). J. Clin. Med. 2020, 9, 1355. [Google Scholar] [CrossRef]
- Vallejo, V.; Wyss, P.; Rampa, L.; Mitache, A.V.; Müri, R.M.; Mosimann, U.P.; Nef, T. Evaluation of a Novel Serious Game Based Assessment Tool for Patients with Alzheimer’s Disease. PLoS ONE 2017, 12, e0175999. [Google Scholar] [CrossRef] [Green Version]
MCI vs. Control | Dementia vs. Control | CI vs. Control | ||||
---|---|---|---|---|---|---|
gRange | Most Sensitive Digital Biomarkers | g Range | Most Sensitive Digital Biomarkers | g Range | Most Sensitive Digital Biomarkers | |
Memory test | 0.7–1.6 | MITSI-L (PAL correct pairs A2 and B2); Associative memory tasks (word-word) accuracy; CANTAB-PAL total erros adjusted | 2.5–4.9 | CANTAB-PAL total errors adjusted The Placing Test | - | - |
Test battery | 0.1–2.9 | CANTAB (paired associate learning, rapid visual processing, spatial recognition memory); MoCA-CC (total score, delayed recall, attention); CogState (learning/working memory composite) total score | 0.3–7.2 | CANTAB (paired association learning); NeuroTrax Mindstreams (verbal memory accuracy); Inbrain CST (memory score) | 0.2–2.1 | BHA (“Favorite (memory)” total correct); CDST (“memory impairment screen” score; “spatial span test” total span); CoCoSc total score; CompBased-CAT total z-score; BoCA (attention score, total score) |
Handwriting/ drawing tasks | 0.1–2.1 | dCDT (time on surface, time in air, total time); Chinese handwriting task (stroke position control, stroke length, stroke orientation, ratio of in air to on paper trajectory length) | 0.2–2.4 | Chinese Handwriting task (stroke position control, pause time per stroke, stroke orientation); dCDT (total completion time, time in air, minute hand distance from center in command trial, hour hand distance from center in copy trial) | - | - |
Daily living task and Serious game | 0.1–1.3 | Computer-based Klondike Solitaire (average think time, average accuracy, total time SD); SIMBAC (total completion time); Computerized Touch-Panel Games (“flipping cards” completion time) | 0.8–2.9 | SIMBAC (total accuracy, total completion time); Computerized Touch-Panel Games (“arranging pictures (processing and remote memory)” completion time; “beating devils (judgment)” accuracy; “flipping cards (recent memory)” completion time; “finding mistakes (attention and discrimination)” completion time) | 0.7–1.2 | CFSAT accuracy (“Ugreens website”, “Internet banking”, “medication management”, “ATM task”, “Ticket task”) |
Other single/multiple cognitive tests | 0.7–1.2 | correct cancellations in e-CT; inspection Time (IT) test score; dTMT-B&W-A completion time | 0.9–3.1 | Computerized SRT task and FRT score adjusted for age and education; Correct cancellation in e-CT | 1.0–2.0 | TMT (total score, total completion time, total response time) |
Sen (%) | Spec (%) | AUC | Computerized Tests vs. Paper-and-Pencil Tests | Whether Computerized Test Is Better | |
---|---|---|---|---|---|
MCI | |||||
Memory test | 42.0–85.8 | 66.0–93.3 | 0.53–0.93 | CANTAB-PAL vs. CERAD wordlist learning delay recall | inferior |
MemTrax vs. MoCA-BJ | better | ||||
Digital VSM vs. Cube-copying test | much better | ||||
digital TPT vs. paper-and-pencil TPT | better | ||||
Test battery | 41.4–100.0 | 64.0–100.0 | 0.65–0.97 | CANS-MCI vs. MoCA, ACE-R | comparable |
subsets in NeuroTrax MindStreams vs. subsets in WMS-III, RAVLT, CDT, TMT-A, Boston Naming Test, COWA | comparable and some subsets are even better | ||||
memory factor in Tablet-based cognitive assessments vs. MMSE | inferior | ||||
BHA vs. MoCA | better | ||||
CAMCI vs. MMSE | better | ||||
COMCOG-CAT vs. CAMCOG | comparable | ||||
Handwriting/drawing test | 71.4–100.0 | 56.0–100.0 | 0.77–0.89 | machine learning on dCDT features vs. CERAD | comparable |
Daily living task and Serious game | 76.9–84.4 | 58.0–88.9 | 0.77–0.90 | SASG vs. MoCA | comparable |
SIMBAC vs. MMSE, Composite score of RAVLT-Delayed recall, Boston Naming Test, Digit Span, Digit Symbol Coding, and TMT-B | comparable | ||||
Other single/multiple cognitive test | 56.3–84.7 | 53.6–90.5 | 0.67–0.91 | e-CT vs. K-T CT | comparable |
Dementia | |||||
Memory test | 88.9 | 92.9 | - | digital TPT vs. paper-and-pencil TPT | comparable |
Test battery | 52.9–100.0 | 56.0–100.0 | 0.54–0.99 | CST vs. MMSE | better |
CCS vs. MoCA | inferior | ||||
BHA vs. MoCA | comparable | ||||
Handwriting/drawing test | 82.0–97.7 | 71.4–86.0 | 0.90–0.92 | dCDT parameters vs. CERAD | comparable |
Daily living task and Serious game | 86.0 | 75.0 | 0.97 | SIMBAC vs. MMSE, Composite score of RAVLT-Delayed recall, Boston Naming Test, Digit Span, Digit Symbol Coding, and TMT-B | comparable |
Other single/multiple cognitive tests | 62.7–86.1 | 75.0–95.3 | 0.76–0.95 | e-CT vs. K-T CT | comparable |
CI | |||||
Memory test | 91.8 | 72.0 | 0.89 | - | - |
Test battery | 70.7–91.0 | 69.0–94.2 | 0.78–0.95 | BHA vs. MoCA | better |
eSAGE vs. paper version of SAGE | better | ||||
Handwriting/drawing test | 74.0–89.7 | 70.0–100.0 | 0.84–0.92 | machine learning on dCDT vs. MMSE | better |
Daily living task and Serious game | 70.0 | 82.0 | 0.84 | - | - |
Other single/multiple cognitive tests | 77.0–97.0 | 80.6–92.6 | 0.77–0.97 | TMT vs. MMSE | comparable |
e-CT vs. K-T CT | comparable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Lee, T.-l.; Chan, A.S. Digital Cognitive Biomarker for Mild Cognitive Impairments and Dementia: A Systematic Review. J. Clin. Med. 2022, 11, 4191. https://doi.org/10.3390/jcm11144191
Ding Z, Lee T-l, Chan AS. Digital Cognitive Biomarker for Mild Cognitive Impairments and Dementia: A Systematic Review. Journal of Clinical Medicine. 2022; 11(14):4191. https://doi.org/10.3390/jcm11144191
Chicago/Turabian StyleDing, Zihan, Tsz-lok Lee, and Agnes S. Chan. 2022. "Digital Cognitive Biomarker for Mild Cognitive Impairments and Dementia: A Systematic Review" Journal of Clinical Medicine 11, no. 14: 4191. https://doi.org/10.3390/jcm11144191
APA StyleDing, Z., Lee, T. -l., & Chan, A. S. (2022). Digital Cognitive Biomarker for Mild Cognitive Impairments and Dementia: A Systematic Review. Journal of Clinical Medicine, 11(14), 4191. https://doi.org/10.3390/jcm11144191