Blood Biomarkers for Triaging Patients for Suspected Stroke: Every Minute Counts
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Individual Biomarkers
3.2. Biomarker Panels
4. Our Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donkor, E.S. Stroke in the 21(st) Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 3238165. [Google Scholar] [PubMed] [Green Version]
- Antipova, D.; Eadie, L.; Macaden, A.; Wilson, P. Diagnostic accuracy of clinical tools for assessment of acute stroke: A systematic review. BMC Emerg. Med. 2019, 19, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcione, S.; Kamtchum-Tatuene, J.; Sykes, G.; Jickling, G.C. RNA expression studies in stroke: What can they tell us about stroke mechanism? Curr. Opin. Neurol. 2020, 33, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Mokin, M.; Ansari, S.A.; McTaggart, R.A.; Bulsara, K.R.; Goyal, M.; Chen, M.; Fraser, J.F. Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): Report of the SNIS Standards and Guidelines Committee. J. Neurointerv. Surg. 2019, 11, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Laskowitz, D.T.; Kasner, S.E.; Saver, J.; Remmel, K.S.; Jauch, E.C. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: The Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke 2009, 40, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Yan, A.-R.; Naunton, M.; Peterson, G.M.; Fernandez-Cadenas, I.; Mortazavi, R. Effectiveness of Platelet Function Analysis-Guided Aspirin and/or Clopidogrel Therapy in Preventing Secondary Stroke: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 3907. [Google Scholar] [CrossRef]
- Purrucker, J.C.; Hametner, C.; Engelbrecht, A.; Bruckner, T.; Popp, E.; Poli, S. Comparison of stroke recognition and stroke severity scores for stroke detection in a single cohort. J. Neurol. Neurosurg. Psychiatr. 2015, 86, 1021–1028. [Google Scholar] [CrossRef]
- Smajlović, D. Strokes in young adults: Epidemiology and prevention. Vasc. Health Risk Manag. 2015, 11, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2013; 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Mackay, M.T.; Churilov, L.; Donnan, G.A.; Babl, F.E.; Monagle, P. Performance of bedside stroke recognition tools in discriminating childhood stroke from mimics. Neurology 2016, 86, 2154–2161. [Google Scholar] [CrossRef]
- Babuin, L.; Jaffe, A.S. Troponin: The biomarker of choice for the detection of cardiac injury. CMAJ Can. Med. Assoc. J. J. L’assoc. Med. Can. 2005, 173, 1191–1202. [Google Scholar] [CrossRef] [Green Version]
- Viji Babu, P.K.; Radmacher, M. Mechanics of Brain Tissues Studied by Atomic Force Microscopy: A Perspective. Front. Neurosci. 2019, 13, 600. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kim, M.H.; Kim, O.J.; Ahn, H.J.; Song, J.Y.; Jeong, J.Y.; Oh, S.-H. Plasma heart-type fatty acid binding protein level in acute ischemic stroke: Comparative analysis with plasma S100B level for diagnosis of stroke and prediction of long-term clinical outcome. Clin. Neurol. Neurosurg. 2013, 115, 405–410. [Google Scholar] [CrossRef]
- Dambinova, S.A.; Bettermann, K.; Glynn, T.; Tews, M.; Olson, D.; Weissman, J.D.; Sowell, R.L. Diagnostic Potential of the NMDA Receptor Peptide Assay for Acute Ischemic Stroke. PLoS ONE 2012, 7, e42362. [Google Scholar] [CrossRef] [Green Version]
- Allard, L.; Burkhard, P.R.; Lescuyer, P.; Burgess, J.A.; Walter, N.; Hochstrasser, D.F.; Sanchez, J.-C. PARK7 and Nucleoside Diphosphate Kinase A as Plasma Markers for the Early Diagnosis of Stroke. Clin. Chem. 2005, 51, 2043–2051. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Y.; Xu, W.; Dong, L.; Wang, Y.; Gao, B.; Li, G.; Zhang, W. Apolipoprotein A1-Unique Peptide as a Diagnostic Biomarker for Acute Ischemic Stroke. Int. J. Mol. Sci. 2016, 17, 458. [Google Scholar] [CrossRef] [Green Version]
- Park, K.Y.; Ay, I.; Avery, R.; Caceres, J.A.; Siket, M.S.; Pontes-Neto, O.M.; Zheng, H.; Rost, N.S.; Furie, K.L.; Sorensen, A.G.; et al. New biomarker for acute ischaemic stroke: Plasma glycogen phosphorylase isoenzyme BB. J. Neurol. Neurosurg. Psychiatr. 2018, 89, 404–409. [Google Scholar] [CrossRef]
- Zhou, S.; Bao, J.; Wang, Y.; Pan, S. S100β as a biomarker for differential diagnosis of intracerebral hemorrhage and ischemic stroke. Neurol. Res. 2016, 38, 327–332. [Google Scholar] [CrossRef]
- Losy, J.; Zaremba, J. Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke 2001, 32, 2695–2696. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Macy, S.; Richardson, K.; Lokhnygina, Y.; Laskowitz, D.T. A blood-based biomarker panel to detect acute stroke. J. Stroke Cereb. Dis. 2014, 23, 910–918. [Google Scholar] [CrossRef]
- Supanc, V.; Biloglav, Z.; Kes, V.B.; Demarin, V. Role of cell adhesion molecules in acute ischemic stroke. Ann. Saudi. Med. 2011, 31, 365–370. [Google Scholar] [CrossRef]
- Katan, M.; Elkind, M.S. Inflammatory and neuroendocrine biomarkers of prognosis after ischemic stroke. Expert. Rev. Neurother. 2011, 11, 225–239. [Google Scholar] [CrossRef]
- Kamtchum-Tatuene, J.; Jickling, G.C. Blood Biomarkers for Stroke Diagnosis and Management. Neuromol. Med. 2019, 21, 344–368. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, W.E.; Ahmed, S.; Mahmoud El reweny, E.; Elfatatry, A.; Elmesky, M.; Hashad, D. The role of s100b as a predictor of the functional outcome in geriatric patients with acute cerebrovascular stroke. Egypt. J. Neurol. Psychiatr. Neurosurg. 2019, 55, 75. [Google Scholar] [CrossRef] [Green Version]
- Sen, J.; Belli, A. S100B in neuropathologic states: The CRP of the brain? J. Neurosci. Res. 2007, 85, 1373–1380. [Google Scholar] [CrossRef]
- Kalev-Zylinska, M.L.; Symes, W.; Little, K.C.; Sun, P.; Wen, D.; Qiao, L.; Young, D.; During, M.J.; Barber, P.A. Stroke patients develop antibodies that react with components of N-methyl-D-aspartate receptor subunit 1 in proportion to lesion size. Stroke 2013, 44, 2212–2219. [Google Scholar] [CrossRef] [Green Version]
- Lakhan, S.E.; Kirchgessner, A.; Tepper, D.; Leonard, A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front. Neurol. 2013, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.J.; Morrow, J.D.; Ning, M.; Koroshetz, W.; Lo, E.H.; Terry, E.; Ginger, L.M.; Hubbard, J.; Lee, H.; Stevenson, E.; et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: The Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke 2008, 39, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, M.; Sobrino, T.; Millán, M.; García, M.; Arenillas, J.; Nombela, F.; Brea, D.; de la Ossa, N.P.; Serena, J.; Vivancos, J.; et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: A multicenter confirmatory study. Stroke 2007, 38, 1855–1859. [Google Scholar] [CrossRef] [Green Version]
- Eldeeb, M.A.; Zaki, A.S.; Ashour, S.; Abdel Nasser, A.; El Bassiouny, A.; Abdulghani, K.O. Serum apolipoprotein A1: A predictor and prognostic biomarker in acute ischemic stroke. Egypt. J. Neurol. Psychiatr. Neurosurg. 2020, 56, 3. [Google Scholar] [CrossRef]
- Kawata, K.; Liu, C.Y.; Merkel, S.F.; Ramirez, S.H.; Tierney, R.T.; Langford, D. Blood biomarkers for brain injury: What are we measuring? Neurosci. Biobehav. Rev. 2016, 68, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, M.A.; Kirchick, H.J.; Dahlen, J.R.; Anderberg, J.M.; McPherson, P.H.; Nakamura, K.K.; Laskowitz, D.T.; Valkirs, G.E.; Buechler, K.F. Early biomarkers of stroke. Clin. Chem. 2003, 49, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.R.; Blessing, R.; White, W.D.; Grocott, H.P.; Newman, M.F.; Laskowitz, D.T. Novel diagnostic test for acute stroke. Stroke 2004, 35, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskowitz, D.T.; Blessing, R.; Floyd, J.; White, W.D.; Lynch, J.R. Panel of biomarkers predicts stroke. Ann. N. Y. Acad. Sci. 2005, 1053, 30. [Google Scholar] [CrossRef]
- Moore, D.F.; Li, H.; Jeffries, N.; Wright, V.; Cooper, R.A., Jr.; Elkahloun, A.; Gelderman, M.P.; Zudaire, E.; Blevins, G.; Yu, H.; et al. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: A pilot investigation. Circulation 2005, 111, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Rosell, A.; Ortega-Aznar, A.; Alvarez-Sabín, J.; Fernández-Cadenas, I.; Ribó, M.; Molina, C.A.; Lo, E.H.; Montaner, J. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006, 37, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Ishida, K.; Cucchiara, B. Blood Biomarkers for Stroke: Wolters Kluwer. 2014. Available online: https://www.uptodate.com/contents/blood-biomarkers-for-stroke (accessed on 27 April 2022).
- Toyoda, K.; Koga, M.; Iguchi, Y.; Itabashi, R.; Inoue, M.; Okada, Y.; Ogasawara, K.; Tsujino, A.; Hasegawa, Y.; Hatano, H.; et al. Guidelines for Intravenous Thrombolysis (Recombinant Tissue-type Plasminogen Activator), the Third Edition, March 2019: A Guideline from the Japan Stroke Society. Neurol. Med. Chir. 2019, 59, 449–491. [Google Scholar] [CrossRef] [Green Version]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar]
Author/s (Year), Reference Number | Type of Study, Country | Numbers of Participants and Controls, Mean or Median Age (Age Range When Available) | Type of Stroke | Biomarkers/Biomarker Panels Studied |
---|---|---|---|---|
Park S. Y., et al., (2013) [13] | Cohort study, Korea | Patients: n = 111, mean age 67; controls: n = 127, mean age 63 | IS | H-FABP and S100B |
Dambinova S. A., et al., (2012) [14] | Cohort study, USA | Patients: n = 101, median age 62 (26–95); non-stroke patients (stroke mimics): n = 91, median age 61 (24–95); healthy controls: n = 52, median age 59 (29–92) | IS or TIA | NR2 peptide |
Allard L., et al., (2005) [15] | Cohort studies; one European (Switzerland) and two American (USA) cohorts. | European study: patients: n = 36, mean age 71.3 (25–92); controls: n = 35 mean age 71.1 (28–91); American study 1: patients: n = 53, controls: n = 30 (non-age or sex-matched); American study 2: patients: n = 533, controls: 100 (age matched with patients). | IS (most of the patients), TIA, HS | PARK7 and NDKA |
Zhao X., et al., (2016) [16] | Cohort study, China | Patients: n = 94, mean age 61.8; controls: n = 37, mean age 47.1 | IS | APOA1-UP |
Park K. Y., et al., (2018) [17] | Cohort study, USA | Patients: n = 172, mean age 68.8; controls: n = 133, mean age 71.0 | IS | GPBB |
Zhou, S. et al., (2016) [18] | Single-centre pilot study, China | Patients: HS: n = 46, mean age 68.1; IS: n = 71, mean age 69.3; no control group | HS and IS | S100B |
Losy, J. and Zaremba, J. (2001) [19] | Cohort study, Poland | Patients: n = 23, mean age 72.2; controls: n = 15 (age and sex-matched) | IS | MCP-1 |
Sharma, R., et al., (2014) [20] | Cohort study, USA | Patients: IS: n = 56, mean age 66.9; HS: n = 32, mean age 64.7; TIA: n = 41, mean age 63.1; mimic: n = 37, mean age 61.8 | Mixed patient group (IS, HS, TIA, and mimics) | A 5-biomarker model was developed consisting of eotaxin, EGFR, metalloproteinase inhibitor-4, prolactin, and S100A12 |
Supanc, V., et al., (2011) [21] | Cohort study, Croatia | Patients: n = 110; mean age 70.2 (36–86); controls: n = 93, median age 70 (47–86) | IS | ICAM-1 and VCAM-1 |
Katan, M., Elkind, M. S. V. (2011) [22] | Review article, USA | N/A | IS | IL-1, IL-6, MM-9, TNF-alpha, TNF-a receptor, ICAM-1, VCAM, Lipoprotein-associated phospholipase A2, vWF; Fibrinogen; D-dimer, BNP, NT-proBNP, cortisol; PAI-1, and others |
Kamtchum-Tatuene, J. and Jickling, G. C. (2019) [23] | Review article, Canada | N/A | IS and HS | S100B, GFAP, MBP, NSE, H-FABP, anti-NMDA receptors antibodies, vWF, D-dimer, fibrinogen, PAI, Fibronectin, MMP-9, caspase-3, thrombomodulin, and others |
Abdel-Ghaffar, W. E. et al., (2019) [24] | Cohort study, Egypt | Patients: n = 40, age above 65 years old; no control group | IS and HS | S100B |
Sen, J. and Belli, A. (2007) [25] | Review article, UK | N/A | N/A | S100B |
Kalev-Zylinska, M. L. et al., (2013) [26] | Cohort study, New Zealand | Patients: n = 48, Mean age 70; control group 1: health laboratory workers: n = 46, age range 30 years of age or younger; control group 2: healthy blood donors: n = 50, age range 50 years of age or older | IS | Anti-NMDAR antibodies |
Lakhan S. E. et al., (2013) [27] | Review article, USA | N/A | IS | MMP-9 |
Kelly, P. J. et al., (2008) [28] | Case–control study, Ireland | Patients: n = 52; mean age 70.1; controls: n = 27, mean age 68.2 | IS | MMP-9 and F2Ips |
Castellanos, et al., (2007) [29] | Cohort study, Spain | Patients: n = 134, mean age 62; no control group | IS | MMP-9 |
Eldeeb, M. A. et al., (2020) [30] | Case–control, Egypt | Patients: n = 60, mean age 60, age range 28–88; healthy controls: n = 30 (age and sex-matched) | IS | Apo-A1 |
Kawata, K. et al., (2016) [31] | Review article, USA | N/A | IS and HS | S100B, NSE, MMP-9, sCD40L, TIMP-1, MDA, and others |
Reynolds, M. A. (2003) [32] | Cohort study, USA | Patients: n = 223 (including 82 patients with IS), age not available; controls (healthy donors): n = 214, age not available | IS and HS (a mixed patient group) | A 5-biomarker panel was developed consisting of S100B, BNGF, vWF, MMP-9, MCP-1, |
Lynch, J. R. et al., (2004) [33] | Cohort study, USA | Patients: n = 65, mean age 62; controls (non-stroke): n = 157, mean age 63.3 | IS | A 3-biomarker panel was developed consisting of vWF, MMP-9, and VCAM |
Laskowitz, D. T. et al., (2005) [34] | Cohort study, USA | Patients: n = 130, age not available; controls: n = 10, age not available | IS | A 5-biomarker panel was developed using BNP, CRP, D-dimer, MMP-9, and S100B. |
Moore, D. F. et al., (2005) [35] | Cohort study, Canada | Patients (IS): n= 20, mean age 75.5; controls (healthy): n = 20, mean age 66.0 | IS | A 22-gene expression panel was developed using peripheral blood mononuclear cells. |
Biomarker | Reference | Sample Size (n) | Cut-Off | Time from Symptoms Onset to Sample Collection (up to) |
---|---|---|---|---|
S100B | Zhou et al., (2016) [18] | 46 (ICH) 71 (IS) | 67 pg/mL | 6 h |
GPBB | Park et al., (2018) [17] | 172 (IS) 133 (C) | 7.0 ng/mL | 4.5 h |
NR2 peptide | Dambinova et al., (2012) [14] | 101 (IS) 91 (C) | 1.0 μg/L | 3 h |
APOA1-UP | Zhao et al., (2016) [16] | 94 (IS) 37 (C) | APOA1-UP/LRP ratio 1.80 | 72 h |
PARK-7 | Allard et al., (2005) [15] | 622 (S) 165 (C) | 9.33 μg/L | 3 h |
NDKA | Allard et al., (2005) [15] | 622 (S) 165 (C) | 2 μg/L | 3 h |
H-FABP | Park et al., (2013) [13] | 111 (IS) 127 (C) | 9.70 ng/ml | 24 h |
Panel A | Reynolds et al., (2003) [32] | 223 (S) 214 (C) | - | 6 h |
Panel B | Lynch et al., (2004) [33] | 65 (IS) 157 (C) | - | 6 h |
Panel C | Sharma et al., (2014) [20] | 167 (S) | - | 24 h |
Panel D | Laskowitz et al., (2005) [34] | 130 (IS) 10 (C) | - | 6 h |
Panel E | Moore et al., 2005 [35] | 20 (IS) 20 (C) | - | <24 h (n = 7), 24–48 h (n = 10), >48 h (n = 3) |
Biomarker Panel | Composition of Biomarkers |
---|---|
Panel A (5 proteins) | BNGF, MCP-1, MMP-9, S100B, vWF |
Panel B (3 proteins) | vWF, MMP-9, VCAM |
Panel C (5 proteins) | Eotaxin, EGFR, S100A12, Metalloproteinase inhibitor-4, Prolactin |
Panel D (5 proteins) | S100B, MMP-9, D-dimer, BNP, CRP |
Panel E (22 genes) | CD163; Hypothetical protein FLJ22662 Laminin A motif; Amyloid β(A4) precursor-like protein 2; N-acetylneuraminate pyruvate lysase; v-fos FBJ murine osteosarcoma viral oncogene homolog; Toll-like receptor 2; Ectonucleoside triphosphate diphosphohydrolase 1; Chondroitin sulfate proteoglycan 2 (versican); Interleukin 13 receptor, α1; CD14 antigen; Bone marrow stromal cell antigen 1/CD157; Complement component 1, q subcomponent, receptor 1; Paired immunoglobulin-like type 2 receptor α; Fc fragment of IgG, high-affinity Ia, receptor for (CD64); Adrenomedullin; Dual-specificity phosphatase 1; Cytochrome b-245, β polypeptide (chronic granulomatous disease); Leukotriene A4 hydrolase; v-ets Erythroblastosis virus E26 oncogene homolog 2 (avian); CD36 antigen (thrombospondin receptor); Baculoviral IAP repeat-containing protein 1 (Neuronal apoptosis inhibitory protein); and KIAA0146 protein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadav, R.K.; Mortazavi, R.; Yee, K.C. Blood Biomarkers for Triaging Patients for Suspected Stroke: Every Minute Counts. J. Clin. Med. 2022, 11, 4243. https://doi.org/10.3390/jcm11144243
Jadav RK, Mortazavi R, Yee KC. Blood Biomarkers for Triaging Patients for Suspected Stroke: Every Minute Counts. Journal of Clinical Medicine. 2022; 11(14):4243. https://doi.org/10.3390/jcm11144243
Chicago/Turabian StyleJadav, Radhika Kiritsinh, Reza Mortazavi, and Kwang Choon Yee. 2022. "Blood Biomarkers for Triaging Patients for Suspected Stroke: Every Minute Counts" Journal of Clinical Medicine 11, no. 14: 4243. https://doi.org/10.3390/jcm11144243
APA StyleJadav, R. K., Mortazavi, R., & Yee, K. C. (2022). Blood Biomarkers for Triaging Patients for Suspected Stroke: Every Minute Counts. Journal of Clinical Medicine, 11(14), 4243. https://doi.org/10.3390/jcm11144243