Endogenous Risk Factors of Cardiovascular Diseases (CVDs) in Military Professionals with a Special Emphasis on Military Pilots
Abstract
:1. Introduction
2. CVD Risk in Cockpit Crew and Military Personnel
3. CVDs Risk Scores
4. Endogenous CVD Risk Factors
4.1. Hypertension
4.2. Overweight and Obesity
4.3. Diabetes
4.4. Hyperlipidemia
4.5. Metabolic Syndrome
5. Atherosclerosis
6. Oxidative Stress
7. Inflammation
8. Genetic Background
9. Sex Hormones
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO CVDs. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 10 December 2021).
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In NCBI Bookshelf. A Service of the National Library of Medicine, National Institutes of Health. StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Parastouei, K.; Sepandi, M.; Eskandari, E. Predicting the 10-year risk of cardiovascular diseases and its relation to healthy diet indicator in Iranian military personnel. BMC Cardiovasc. Disord. 2021, 21, 419. [Google Scholar] [CrossRef]
- O’Donnell, F.L.; Stahlman, S.; Oetting, A.A. Incidence Rates of Diagnoses of Cardiovascular Diseases and Associated Risk Factors, Active Component, U.S. Armed Forces, 2007–2016. MSMR Med. Surveill. Mon. Rep. 2018, 25, 12–18. [Google Scholar]
- Incalcaterra, E.; Accardi, G.; Balistreri, C.R.; Caimi, G.; Candore, G.; Caruso, M.; Caruso, C. Pro-inflammatory genetic markers of atherosclerosis topical collection on genetics. Curr. Atheroscler. Rep. 2013, 15, 329. [Google Scholar] [CrossRef] [Green Version]
- Gielerak, G.; Krzesiński, P.; Piotrowicz, K.; Murawski, P.; Skrobowski, A.; Stańczyk, A.; Galas, A.; Uziȩbło-Życzkowska, B.; Kaźmierczak-Dziuk, A.; Maksimczuk, J.; et al. The Prevalence of Cardiovascular Risk Factors among Polish Soldiers: The Results from the MIL-SCORE Program. Cardiol. Res. Pract. 2020, 2020, 3973526. [Google Scholar] [CrossRef]
- Tigbe, W.W.; Granat, M.H.; Sattar, N.; Lean, M.E.J. Time spent in sedentary posture is associated with waist circumference and cardiovascular risk. Int. J. Obes. 2017, 41, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Katzmarzyk, P.T.; Church, T.S.; Craig, C.L.; Bouchard, C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med. Sci. Sports Exerc. 2009, 41, 998–1005. [Google Scholar] [CrossRef]
- Qiang, Y.; Li, G.; Rebok, G.W.; Baker, S.P. Body mass index and cardiovascular disease in a birth cohort of commuter air carrier and air taxi pilots. Ann. Epidemiol. 2005, 15, 247–252. [Google Scholar] [CrossRef]
- Simons, R.; Maire, R. Extending the age limit of commercial pilots? Eur. Heart J. 2020, 41, 2239–2242. [Google Scholar] [CrossRef]
- Newman, D.G. Pilot Incapacitation: Analysis of Medical Conditions Affecting Pilots Involved in Accidents and Incidents; Australian Transport Safety Bureau: Canberra, Australia, 2007; Volume 29. [Google Scholar]
- Nicol, E.D.; Rienks, R.; Gray, G.; Guettler, N.J.; Manen, O.; Syburra, T.; D’Arcy, J.L.; Bron, D.; Davenport, E.D. An introduction to aviation cardiology. Heart 2019, 105, S3–S8. [Google Scholar] [CrossRef] [Green Version]
- Radjen, S.D.; Jovelic, A.S.; Radjen, G.S.; Hajdukovic, Z.V.; Radakovic, S.S. Metabolic syndrome and carotid artery intima-media thickness in military pilots. Aviat. Space Environ. Med. 2011, 82, 622–626. [Google Scholar] [CrossRef]
- Zeeb, H.; Langner, I.; Blettner, M. Cardiovascular mortality of cockpit crew in germany: Cohort study. Z. Kardiol. 2003, 92, 483–489. [Google Scholar] [CrossRef]
- Solovieva, K.B.; Dolbin, I.V.; Koroleva, E.B. Hemodynamic indicators varying in different flight phases in hypertensive pilots of the Arctic transport aviation. Hum. Physiol. 2015, 41, 780–784. [Google Scholar] [CrossRef]
- Lord, D.; Conlon, H.A. Cardiovascular Risk Factors in Airline Pilots. Workplace Health Saf. 2018, 66, 471–474. [Google Scholar] [CrossRef]
- Wirawan, I.M.A.; Wu, R.; Abernethy, M.; Aldington, S.; Larsen, P.D. Calcium scores in the risk assessment of an asymptomatic population: Implications for airline pilots. Aviat. Space Environ. Med. 2014, 85, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Weber, F. Metabolic syndrome in the German air force: Prevalence and associations with BMI and physical fitness. Aerosp. Med. Hum. Perform. 2018, 89, 469–472. [Google Scholar] [CrossRef]
- Grósz, A.; Tóth, E.; Péter, I. A 10-year follow-up of ischemic heart disease risk factors in military pilots. Mil. Med. 2007, 172, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Wirawan, I.M.A.; Aldington, S.; Griffiths, R.F.; Ellis, C.J.; Larsen, P.D. Cardiovascular investigations of airline pilots with excessive cardiovascular risk. Aviat. Space Environ. Med. 2013, 84, 608–612. [Google Scholar] [CrossRef]
- Huster, K.M.; Müller, A.; Prohn, M.J.; Nowak, D.; Herbig, B. Medical risks in older pilots: A systematic review on incapacitation and age. Int. Arch. Occup. Environ. Health 2014, 87, 567–578. [Google Scholar] [CrossRef]
- Stuck, A.E.; van Gorp, W.G.; Josephson, K.R.; Morgenstern, H.; Beck, J.C. Multidimensional Risk Assessment versus Age v as Criterion for Retirement of Airline Pilots. J. Am. Geriatr. Soc. 1992, 40, 526–532. [Google Scholar] [CrossRef]
- Blettner, M.; Zeeb, H.; Auvinen, A.; Ballard, T.J.; Caldora, M.; Eliasch, H.; Gundestrup, M.; Haldorsen, T.; Hammar, N.; Hammer, G.P.; et al. Mortality from cancer and other causes among male airline cockpit crew in Europe. Int. J. Cancer 2003, 106, 946–952. [Google Scholar] [CrossRef]
- Stavola, B.L.D.; Pizzi, C.; Clemens, F.; Evans, S.A.; Evans, A.D.; Silva, I.D.S. Cause-specific mortality in professional flight crew and air traffc control officers: Findings from two UK population-based cohorts of over 20,000 subjects. Int. Arch. Occup. Environ. Health 2012, 85, 283–293. [Google Scholar] [CrossRef]
- Sucipta, I.J.; Adi, N.P.; Kaunang, D. Relationship of fatigue, physical fitness and cardiovascular endurance to the hypoxic response of military pilots in Indonesia. J. Phys. Conf. Ser. 2018, 1073, 042044. [Google Scholar] [CrossRef]
- Wilson, D.; Driller, M.; Johnston, B.; Gill, N. The Prevalence of Cardiometabolic Health Risk Factors among Airline Pilots: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4848. [Google Scholar] [CrossRef]
- Mohammad, Z.; Ismail, R.; Mohamed Rus, M.R.; Haron, M.H. Return to flying after coronary artery disease: A case series among Malaysian pilots. J. Occup. Health 2021, 63, e12241. [Google Scholar] [CrossRef]
- Mirzaeipour, F.; Seyedmazhari, M.; Pishgooie, A.H.; Hazaryan, M. Assessment of risk factors for coronary artery disease in military personnel: A study from Iran. J. Fam. Med. Prim. Care 2019, 8, 1347–1351. [Google Scholar]
- Nikolova, R.; Danev, S.; Nantcheva, R.; Vukov, M. Age Effect on Autonomic Cardiovascular Control in Pilots in Operational Issues of Aging Crewmembers; National Center of Hygiene Sofia (Bulgaria) Medical Ecology and Nutrition: Sofia, Bulgaria, 1999. [Google Scholar]
- Florea, M.; Zdrenghea, D. Cardiovascular Disease in the Active Military Population. Acta Med. Transilv. 2010, 2, 187–191. [Google Scholar]
- Stoney, C.M.; Niaura, R.; Bausserman, L.; Matacin, M. Lipid reactivity to stress: I. Comparison of chronic and acute stress responses in middle-aged airline pilots. Health Psychol. 1999, 18, 241–250. [Google Scholar] [CrossRef]
- Mulloy, A.; Wielosz, A. Cardiovascular Risk Assessment in Pilots. Aerosp. Med. Hum. Perform. 2019, 90, 730–734. [Google Scholar] [CrossRef]
- Wirawan, I.M.A.; Griffiths, R.F.; Larsen, P.D. Cardiovascular tests for risk assessment in asymptomatic adults and implications for pilots. Aerosp. Med. Hum. Perform. 2018, 89, 648–656. [Google Scholar] [CrossRef]
- Assmann, G.; Cullen, P.; Schulte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Münster (PROCAM) study. Circulation 2002, 105, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Khazai, B.; Golden, S.H.; Colangelo, L.A.; Swerdloff, R.; Wang, C.; Honoris, L.; Gapstur, S.M.; Ouyang, P.; Cushman, M.; Li, D.; et al. Association of endogenous testosterone with subclinical atherosclerosis in men: The multi-ethnic study of atherosclerosis. Clin. Endocrinol. (Oxf.) 2016, 84, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Wirawan, I.M.A.; Griffiths, R.F.; Hons, C.; Aldington, S.; Larsen, P.D. Proposing a new system for cardiovascular risk assessment in pilots. Int. Public Health J. 2020, 12, 80232. [Google Scholar]
- Gray, G.; Bron, D.; Davenport, E.D.; D’Arcy, J.; Guettler, N.; Manen, O.; Syburra, T.; Rienks, R.; Nicol, E.D. Assessing aeromedical risk: A three-dimensional risk matrix approach. Heart 2019, 105, S9–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdsworth, D.A.; Eveson, L.J.; Manen, O.; Nicol, E.D. Assessment of clinical and occupational cardiovascular risk. Eur. Heart J. 2019, 40, 2393–2395. [Google Scholar] [CrossRef] [Green Version]
- Davenport, E.; Palileo, E.; Gore, S. Cardiovascular screening for pilots, aircrew, and high performance & spaceflight passengers. Reach 2021, 21–22, 100040. [Google Scholar]
- WHO. WHO|Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 10 December 2021).
- Siagian, M. Hypertension in Indonesian air force pilots. Med. J. Indones. 2012, 21, 38–43. [Google Scholar] [CrossRef]
- Siagian, M.; Basuki, B.; Kusmana, D. High intensity interior aircraft noise increases the risk of high diastolic blood pressure in Indonesian Air Force pilots. Med. J. Indones. 2009, 18, 276–282. [Google Scholar] [CrossRef] [Green Version]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 December 2021).
- Mazurek, K.; Wielgosz, A.; Efenberg, B.; Orzel, A. Cardiovascular risk factors in supersonic pilots in Poland. Aviat. Space Environ. Med. 2000, 71, 1202–1205. [Google Scholar]
- WHO. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 10 December 2021).
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care Clin. Off. Pract. 2013, 40, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.F.; Bordoni, B. Hyperlipidemia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021; p. 559182. [Google Scholar]
- Lewis, B. Risk factors for coronary heart disease—Assessment in airline pilots. Eur. Heart J. 1984, 4, 17–24. [Google Scholar] [CrossRef]
- Sammito, S.; Güttler, N. Cardiovascular risk profiles in German Air Force pilots. BMJ Mil. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rad, M.P.; Momenzadeh, M. Carotid Intima-Media Thickness Correlation with Metabolic Syndrome Parameters in Military Pilots. Res. Sq. 2020, 1–13. [Google Scholar] [CrossRef]
- Buja, L.M. Innovators in atherosclerosis research: A historical review. Int. J. Cardiol. 2020, 307, 8–14. [Google Scholar] [CrossRef]
- Harrison, D.; Griendling, K.K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003, 91, 7–11. [Google Scholar] [CrossRef]
- Heinecke, J.W. Oxidative stress: New approaches to diagnosis and prognosis in atherosclerosis. Am. J. Cardiol. 2003, 91, 12–16. [Google Scholar] [CrossRef]
- Peluso, I.; Morabito, G.; Urban, L.; Ioannone, F.; Serafi, M. Oxidative Stress in Atherosclerosis Development: The Central Role of LDL and Oxidative Burst. Endocr. Metab. Immune Disord. Targets 2012, 12, 351–360. [Google Scholar] [CrossRef]
- Vogiatzi, G.; Tousoulis, D.; Stefanadis, C. Role oxidative stress atherosclerosis. Hell. J. Cardiol. 2009, 50, 402–409. [Google Scholar]
- Yang, X.; Li, Y.; Li, Y.; Ren, X.; Zhang, X.; Hu, D.; Gao, Y.; Xing, Y.; Shang, H. Oxidative stress-mediated atherosclerosis: Mechanisms and therapies. Front. Physiol. 2017, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Petraki, K.; Grammatikopoulou, M.G.; Tekos, F.; Skaperda, Z.; Orfanou, M.; Mesnage, R.; Vassilakou, T.; Kouretas, D. Estimation of Redox Status in Military Pilots during Hypoxic Flight-Simulation Conditions—A Pilot Study. Antioxidants 2022, 11, 1241. [Google Scholar] [CrossRef]
- Corsi, M.M.; Massaccesi, L.; Dogliotti, G.; Vianello, E.; Agrifoglio, M.; Palumbo, F.; Goi, G. O-β-N-acetyl-D-glucosaminidase in erythrocytes of Italian air force acrobatic pilots. Clin. Chem. Lab. Med. 2010, 48, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Dogliotti, G.; Dozio, E.; Agrifoglio, M.; Costa, E.; Broich, G.; Malavazos, A.E.; Palumbo, F.; Corsi, M.M. Italian Air Force acrobatic pilots are protected against flight-induced oxidative stress. In Vivo 2011, 25, 1013–1018. [Google Scholar]
- Zawadzka-Bartczak, E. Activities of red blood cell anti-oxidative enzymes (SOD, GPx) and total anti-oxidative capacity of serum (TAS) in men with coronary atherosclerosis and in healthy pilots. Med. Sci. Monit. 2005, 11, CR440. [Google Scholar] [PubMed]
- Zawadzka-Bartczak, E.; Kopka, L.; Gancarz, A.; Błaszczyk, J. Correlation between superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in red blood cells, total antioxidative serum ability (TAS) and serum concentrations of lipids and lipoproteins in supersonic aircraft pilots. Biol. Sport 2002, 19, 121–131. [Google Scholar]
- Zawadzka-Bartczak, E.; Kopka, L.; Gancarz, A. Antioxidative enzyme profiles in fighter pilots. Aviat. Space Environ. Med. 2003, 74, 654–658. [Google Scholar]
- Ianni, M.; Callegari, S.; Rizzo, A.; Pastori, P.; Moruzzi, P.; Corradi, D.; Porcellini, E.; Campo, G.; Ferrari, R.; Ferrario, M.M.; et al. Pro-inflammatory genetic profile and familiarity of acute myocardial infarction. Immun. Ageing 2012, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Mirzaii-Dizgah, I.; Khademi, A. Serum and Stimulated Saliva C-reactive Protein Changes in Altitude Chamber. Ann. Mil. Health Sci. Res. 2017, 15, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Lusis, A.J.; Fogelman, A.M.; Fonarow, G.C. Genetic basis of atherosclerosis: Part II—Clinical implications. Circulation 2004, 110, 2066–2071. [Google Scholar] [CrossRef]
- Nordlie, M.A.; Wold, L.E.; Kloner, R.A. Genetic contributors toward increased risk for ischemic heart disease. J. Mol. Cell. Cardiol. 2005, 39, 667–679. [Google Scholar] [CrossRef]
- Lusis, A.J.; Fogelman, A.M.; Fonarow, G.C. Genetic basis of atherosclerosis: Part I. New genes and pathways. Circulation 2004, 110, 1868–1873. [Google Scholar] [CrossRef]
- Johansen, C.T.; Hegele, R.A. Predictive genetic testing for coronary artery disease. Crit. Rev. Clin. Lab. Sci. 2009, 46, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Hamsten, A.; Eriksson, P. Identifying the susceptibility genes for coronary artery disease: From hyperbole through doubt to cautious optimism. J. Intern. Med. 2008, 263, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.Q.; Li, L.; Rao, S.; Abdullah, K.G.; Ban, J.M.; Lee, B.S.; Park, J.E.; Wang, Q.K. Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lv, S.; Guo, C.; Shi, C.; Chi, Y.; Zhao, L.; Wang, G.; Wang, Z. Gene-gene interaction between PPARG and CYP1A1 gene on coronary artery disease in the Chinese Han Population. Oncotarget 2017, 8, 34398–34404. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N.; Sakamoto, K.; Kaneto, H.; Matsuhisa, M.; Shimizu, I.; Ishibashi, F.; Osonoi, T.; Kashiwagi, A.; Kawamori, R.; Hori, M.; et al. Combined effect of oxidative stress-related gene polymorphisms on atherosclerosis. Biochem. Biophys. Res. Commun. 2009, 379, 861–865. [Google Scholar] [CrossRef]
- Pollard, H.B.; Shivakumar, C.; Starr, J.; Eidelman, O.; Jacobowitz, D.M.; Dalgard, C.L.; Srivastava, M.; Wilkerson, M.D.; Stein, M.B.; Ursano, R.J. “Soldiers heart”: A genetic basis for elevated cardiovascular disease risk associated with post-traumatic stress disorder. Front. Mol. Neurosci. 2016, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.C.; Yang, S.H.; Yan, Y.Q.; Zhang, X.; Zhang, L.; Jiao, B.; Jiang, S.; Yu, Z. Bin Identification of differential gene expression profile from peripheral blood cells of military pilots with hypertension by RNA sequencing analysis. BMC Med. Genom. 2018, 11, 59. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Guallar, E.; Ouyang, P.; Subramanya, V.; Vaidya, D.; Ndumele, C.E.; Lima, J.A.; Allison, M.A.; Shah, S.J.; Bertoni, A.G.; et al. Endogenous Sex Hormones and Incident Cardiovascular Disease in Post-Menopausal Women. J. Am. Coll. Cardiol. 2018, 71, 2555–2566. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Goodman-Gruen, D. Prospective study of endogenous sex hormones and fatal cardiovascular disease in postmenopausal women. BMJ 1995, 311, 1193. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.; Van Der Schouw, Y.T.; Thijssen, J.H.H.; Grobbee, D.E. Endogenous Sex Hormones and Cardiovascular Disease in Men. J. Clin. Endocrinol. Metab. 2003, 88, 5076–5086. [Google Scholar] [CrossRef]
- Srinath, R.; Golden, S.H.; Carson, K.A.; Dobs, A. Endogenous testosterone and its relationship to preclinical and clinical measures of cardiovascular disease in the atherosclerosis risk in communities study. J. Clin. Endocrinol. Metab. 2015, 100, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maculewicz, E.; Pabin, A.; Kowalczuk, K.; Dziuda, Ł.; Białek, A. Endogenous Risk Factors of Cardiovascular Diseases (CVDs) in Military Professionals with a Special Emphasis on Military Pilots. J. Clin. Med. 2022, 11, 4314. https://doi.org/10.3390/jcm11154314
Maculewicz E, Pabin A, Kowalczuk K, Dziuda Ł, Białek A. Endogenous Risk Factors of Cardiovascular Diseases (CVDs) in Military Professionals with a Special Emphasis on Military Pilots. Journal of Clinical Medicine. 2022; 11(15):4314. https://doi.org/10.3390/jcm11154314
Chicago/Turabian StyleMaculewicz, Ewelina, Agata Pabin, Krzysztof Kowalczuk, Łukasz Dziuda, and Agnieszka Białek. 2022. "Endogenous Risk Factors of Cardiovascular Diseases (CVDs) in Military Professionals with a Special Emphasis on Military Pilots" Journal of Clinical Medicine 11, no. 15: 4314. https://doi.org/10.3390/jcm11154314
APA StyleMaculewicz, E., Pabin, A., Kowalczuk, K., Dziuda, Ł., & Białek, A. (2022). Endogenous Risk Factors of Cardiovascular Diseases (CVDs) in Military Professionals with a Special Emphasis on Military Pilots. Journal of Clinical Medicine, 11(15), 4314. https://doi.org/10.3390/jcm11154314