Study to Explore the Association of the Renin-Angiotensin System and Right Ventricular Function in Mechanically Ventilated Patients
Abstract
:1. Introduction
2. Methods
2.1. Objectives
2.2. Study Design
2.3. Participants
2.4. Endpoints and Assessments
2.5. Statistical Methods
3. Results
3.1. Study Population
3.2. Association between Plasma Ang II Concentration and PCD
3.3. Association between Plasma Ang(1–7) Concentration, Ang II/Ang(1–7) Ratio, and PCD
3.4. Incidence of PCD
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ventetuolo, C.E.; Klinger, J.R. Management of Acute Right Ventricular Failure in the Intensive Care Unit. Ann. Am. Thorac. Soc. 2014, 11, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Dushianthan, A.; Grocott, M.P.W.; Postle, A.D.; Cusack, R. Acute Respiratory Distress Syndrome and Acute Lung Injury. Postgrad. Med. J. 2011, 87, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Legras, A.; Caille, A.; Begot, E.; Lhéritier, G.; Lherm, T.; Mathonnet, A.; Frat, J.-P.; Courte, A.; Martin-Lefèvre, L.; Gouëllo, J.-P.; et al. Acute Respiratory Distress Syndrome (ARDS)-Associated Acute Cor Pulmonale and Patent Foramen Ovale: A Multicenter Noninvasive Hemodynamic Study. Crit. Care 2015, 19, 174. [Google Scholar] [CrossRef] [Green Version]
- Boissier, F.; Katsahian, S.; Razazi, K.; Thille, A.W.; Roche-Campo, F.; Leon, R.; Vivier, E.; Brochard, L.; Vieillard-Baron, A.; Brun-Buisson, C.; et al. Prevalence and Prognosis of Cor Pulmonale during Protective Ventilation for Acute Respiratory Distress Syndrome. J. Intensive Care Med. 2013, 39, 1725–1733. [Google Scholar] [CrossRef]
- Mekontso Dessap, A.; Boissier, F.; Charron, C.; Begot, E.; Repesse, X.; Legras, A.; Brun-Buisson, C.; Vignon, P.; Vieillard-Baron, A. Acute Cor Pulmonale during Protective Ventilation for Acute Respiratory Distress Syndrome: Prevalence, Predictors, and Clinical Impact. J. Intensive Care Med. 2016, 42, 862–870. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Vapaatalo, H.; Mervaala, E. Angiotensin II and Vascular Inflammation. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2005, 11, 194–205. [Google Scholar]
- Bitker, L.; Burrell, L.M. Classic and Nonclassic Renin-Angiotensin Systems in the Critically Ill. Crit. Care Clin. 2019, 35, 213–227. [Google Scholar] [CrossRef]
- Kleinsasser, A.; Pircher, I.; Treml, B.; Schwienbacher, M.; Schuster, M.; Janzek, E.; Loibner, H.; Penninger, J.M.; Loeckinger, A. Recombinant Angiotensin-Converting Enzyme 2 Suppresses Pulmonary Vasoconstriction in Acute Hypoxia. Wilderness Environ. Med. 2012, 23, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Maron, B.A.; Leopold, J.A. The Role of the Renin-Angiotensin-Aldosterone System in the Pathobiology of Pulmonary Arterial Hypertension (2013 Grover Conference Series). Pulm. Circ. 2014, 4, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Yang, Y.; Huang, Y.; Pan, C.; Liu, L.; Qiu, H. Angiotensin-(1-7) Attenuates Lung Fibrosis by Way of Mas Receptor in Acute Lung Injury. J. Surg. Res. 2013, 185, 740–747. [Google Scholar] [CrossRef]
- Durand, M.J.; Raffai, G.; Weinberg, B.D.; Lombard, J.H. Angiotensin-(1-7) and Low-Dose Angiotensin II Infusion Reverse Salt-Induced Endothelial Dysfunction via Different Mechanisms in Rat Middle Cerebral Arteries. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1024–H1033. [Google Scholar] [CrossRef] [Green Version]
- Melo, E.M.; Del Sarto, J.; Vago, J.P.; Tavares, L.P.; Rago, F.; Gonçalves, A.P.F.; Machado, M.G.; Aranda-Pardos, I.; Valiate, B.V.S.; Cassali, G.D.; et al. Relevance of Angiotensin-(1–7) and Its Receptor Mas in Pneumonia Caused by Influenza Virus and Post-Influenza Pneumococcal Infection. Pharmacol. Res. 2021, 163, 105292. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Shang, J.; Yuan, Z.; Ping, F.; Yao, S.; Guo, Y.; Li, Y. Ang-(1-7) Treatment Attenuates Lipopolysaccharide-Induced Early Pulmonary Fibrosis. Lab. Investig. 2019, 99, 1770–1783. [Google Scholar] [CrossRef]
- Clarke, N.E.; Turner, A.J. Angiotensin-Converting Enzyme 2: The First Decade. Int. J. Hypertens. 2012, 2012, 307315. [Google Scholar] [CrossRef] [Green Version]
- Brojakowska, A.; Narula, J.; Shimony, R.; Bander, J. Clinical Implications of SARS-CoV-2 Interaction with Renin Angiotensin System. J. Am. Coll. Cardiol. 2020, 75, 3085–3095. [Google Scholar] [CrossRef]
- Andersen, S.; Andersen, A.; Nielsen-Kudsk, J.E. The Renin–Angiotensin–Aldosterone-System and Right Heart Failure in Congenital Heart Disease. IJC Heart Vasc. 2016, 11, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.A.; West, J.; Maynard, K.B.; Hemnes, A.R. ACE2 Improves Right Ventricular Function in a Pressure Overload Model. PLoS ONE 2011, 6, e20828. [Google Scholar] [CrossRef] [Green Version]
- Reddy, R.; Asante, I.; Liu, S.; Parikh, P.; Liebler, J.; Borok, Z.; Rodgers, K.; Baydur, A.; Louie, S.G. Circulating Angiotensin Peptides Levels in Acute Respiratory Distress Syndrome Correlate with Clinical Outcomes: A Pilot Study. PLoS ONE 2019, 14, e0213096. [Google Scholar] [CrossRef]
- Humbert, M.; Ghofrani, H.-A. The Molecular Targets of Approved Treatments for Pulmonary Arterial Hypertension. Thorax 2016, 71, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Hemnes, A.R.; Rathinasabapathy, A.; Austin, E.A.; Brittain, E.L.; Carrier, E.J.; Chen, X.; Fessel, J.P.; Fike, C.D.; Fong, P.; Fortune, N.; et al. A Potential Therapeutic Role for Angiotensin-Converting Enzyme 2 in Human Pulmonary Arterial Hypertension. Eur. Respir. J. 2018, 51, 1702638. [Google Scholar] [CrossRef]
- Khan, A.; Benthin, C.; Zeno, B.; Albertson, T.E.; Boyd, J.; Christie, J.D.; Hall, R.; Poirier, G.; Ronco, J.J.; Tidswell, M.; et al. A Pilot Clinical Trial of Recombinant Human Angiotensin-Converting Enzyme 2 in Acute Respiratory Distress Syndrome. Crit. Care 2017, 21, 234. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Sanfilippo, F.; Herpain, A.; Balik, M.; Chew, M.; Clau-Terré, F.; Corredor, C.; De Backer, D.; Fletcher, N.; Geri, G.; et al. Systematic Review and Literature Appraisal on Methodology of Conducting and Reporting Critical-Care Echocardiography Studies: A Report from the European Society of Intensive Care Medicine PRICES Expert Panel. Ann. Intensive Care 2020, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Ards Definition Task Force; Ranieri, V.M.; Huang, S.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Teng, W.; McCall, P.; Shelley, B. The Utility of Eccentricity Index as a Measure of the Right Ventricular Function in a Lung Resection Cohort. J. Cardiovasc. Echogr. 2019, 29, 103. [Google Scholar] [CrossRef]
- Harris, P.; Kuppurao, L. Quantitative Doppler Echocardiography. BJA Educ. 2016, 16, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Franco, C.; Little, R.J.A.; Louis, T.A.; Slud, E.V. Comparative Study of Confidence Intervals for Proportions in Complex Sample Surveys. J. Surv. Stat. Methodol. 2019, 7, 334–364. [Google Scholar] [CrossRef]
- Haschke, M.; Schuster, M.; Poglitsch, M.; Loibner, H.; Salzberg, M.; Bruggisser, M.; Penninger, J.; Krähenbühl, S. Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects. Clin. Pharmacokinet. 2013, 52, 783–792. [Google Scholar] [CrossRef]
- Roig, E. Clinical Implications of Increased Plasma Angiotensin II despite ACE Inhibitor Therapy in Patients with Congestive Heart Failure. Eur. Heart J. 2000, 21, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Dandapat, A.; Sun, L.; Marwali, M.R.; Inoue, N.; Sugawara, F.; Inoue, K.; Kawase, Y.; Jishage, K.; Suzuki, H.; et al. Modulation of Angiotensin II–Mediated Hypertension and Cardiac Remodeling by Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Deletion. Hypertension 2008, 52, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Mekontso Dessap, A.; Vieillard-Baron, A. Scrutinizing the Mechanisms of West Non-Zone 3 Conditions During Tidal Ventilation. Am. J. Respir. Crit. Care Med. 2022, 205, 1262–1265. [Google Scholar] [CrossRef]
- Mekontso Dessap, A.; Charron, C.; Devaquet, J.; Aboab, J.; Jardin, F.; Brochard, L.; Vieillard-Baron, A. Impact of Acute Hypercapnia and Augmented Positive End-Expiratory Pressure on Right Ventricle Function in Severe Acute Respiratory Distress Syndrome. J. Intensive Care Med. 2009, 35, 1850–1858. [Google Scholar]
- Gendreau, S.; Geri, G.; Pham, T.; Vieillard-Baron, A.; Mekontso Dessap, A. The Role of Acute Hypercapnia on Mortality and Short-Term Physiology in Patients Mechanically Ventilated for ARDS: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2022, 48, 517–534. [Google Scholar] [CrossRef]
- Khanna, A.; English, S.W.; Wang, X.S.; Ham, K.; Tumlin, J.; Szerlip, H.; Busse, L.W.; Altaweel, L.; Albertson, T.E.; Mackey, C.; et al. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017, 377, 419–430. [Google Scholar] [CrossRef]
- Senatore, F.; Jagadeesh, G.; Rose, M.; Pillai, V.C.; Hariharan, S.; Liu, Q.; Tzu-Yun, M.; Sapru, M.K.; Southworth, M.R.; Stockbridge, N. FDA Approval of Angiotensin II for the Treatment of Hypotension in Adults with Distributive Shock. Am. J. Cardiovasc. Drugs 2019, 19, 11–20. [Google Scholar] [CrossRef]
- Bethesda, A. Dose-Escalation Study in Subjects With Pulmonary Arterial Hypertension (PAH). Available online: https://clinicaltrials.gov/ct2/show/NCT03177603 (accessed on 1 January 2020).
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Cavaleiro, P.; Masi, P.; Bagate, F.; d’Humières, T.; Mekontso Dessap, A. Acute Cor Pulmonale in COVID-19 Related Acute Respiratory Distress Syndrome. Crit. Care Lond. Engl. 2021, 25, 346. [Google Scholar] [CrossRef]
Demographics | Total (n = 57) | No PCD (n = 28) | Any PCD (n = 29) |
---|---|---|---|
Age, years (mean (SD)) * | 63.7 (12.8) | 64.3 (13.3) | 63.2 (12.5) |
Male (n (%)) | 33 (58) | 15 (54) | 18 (62) |
BMI, kg/m2 (mean (SD)) | 24.8 (5.2) | 24.3 (5.2) | 25.2 (5.1) |
Height, cm (mean (SD)) | 169 (10) | 170 (10) | 168 (9) |
Weight, kg (mean (SD)) | 71 (16) | 71 (18) | 71 (15) |
Clinical characteristics | |||
Total SOFA component score (excluding CNS) (mean (SD)) | 7.8 (3.7) | 7.5 (3.6) | 8.1 (3.9) |
Managed with vasopressors, inotropes and other vasoactive agents (n (%)) | |||
Yes | 40 (70) | 19 (68) | 21 (72) |
No | 17 (30) | 9 (32) | 8 (28) |
PaO2/FiO2 (mean (SD)) | 208 (103) | 223 (113) | 193 (92) |
SAPS II at screening | 53 (21) | 59 (19) | 48 (21) |
Reason for intubation (n (%)) | |||
Acute respiratory failure | 25 (44) | 11 (39) | 14 (48) |
Sepsis | 10 (18) | 7 (25) | 3 (10) |
Impaired neurological status or post-surgery management | 16 (28) | 6 (21) | 10 (34) |
Low GCS | 2 (4) | 0 | 2 (7) |
No reason for intubation supplied | 4 (7) | 4 (14) | 0 |
Tidal volume, mL (mean (SD)) | 434 (112) | 441 (141) | 427 (79) |
PEEP, cm H2O (mean (SD)) | 6 (4) | 6 (4) | 7 (4) |
Plateau pressure, cm H2O (mean (SD)) | 18 (5) | 16 (3) | 19 (5) |
Disease Status | Frequency, n (N = 57) | Rate, % (95% CI) |
---|---|---|
No PCD or ACP | 28 | 49 (36, 63) |
Any PCD or ACP | 29 | 51 (37, 64) |
PCD | 14 | 25 (15, 38) |
ACP | 12 | 21 (12, 34) |
Severe ACP | 3 | 5 (1, 16) |
ARDS | 15 | 26 (16, 40) |
ARDS and no PCD or ACP | 5 | 9 (3, 20) |
ARDS and PCD | 4 | 7 (2, 18) |
ARDS and ACP | 6 | 11 (4, 22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekontso Dessap, A.; Hanrott, K.; Powley, W.M.; Fowler, A.; Bayliffe, A.; Bagate, F.; Hall, D.A.; Lazaar, A.L.; Budd, D.C.; Vieillard-Baron, A. Study to Explore the Association of the Renin-Angiotensin System and Right Ventricular Function in Mechanically Ventilated Patients. J. Clin. Med. 2022, 11, 4362. https://doi.org/10.3390/jcm11154362
Mekontso Dessap A, Hanrott K, Powley WM, Fowler A, Bayliffe A, Bagate F, Hall DA, Lazaar AL, Budd DC, Vieillard-Baron A. Study to Explore the Association of the Renin-Angiotensin System and Right Ventricular Function in Mechanically Ventilated Patients. Journal of Clinical Medicine. 2022; 11(15):4362. https://doi.org/10.3390/jcm11154362
Chicago/Turabian StyleMekontso Dessap, Armand, Kate Hanrott, William M. Powley, Andrew Fowler, Andrew Bayliffe, François Bagate, David A. Hall, Aili L. Lazaar, David C. Budd, and Antoine Vieillard-Baron. 2022. "Study to Explore the Association of the Renin-Angiotensin System and Right Ventricular Function in Mechanically Ventilated Patients" Journal of Clinical Medicine 11, no. 15: 4362. https://doi.org/10.3390/jcm11154362
APA StyleMekontso Dessap, A., Hanrott, K., Powley, W. M., Fowler, A., Bayliffe, A., Bagate, F., Hall, D. A., Lazaar, A. L., Budd, D. C., & Vieillard-Baron, A. (2022). Study to Explore the Association of the Renin-Angiotensin System and Right Ventricular Function in Mechanically Ventilated Patients. Journal of Clinical Medicine, 11(15), 4362. https://doi.org/10.3390/jcm11154362