Effect of Sarcopenia on Mortality in Type 2 Diabetes: A Long-Term Follow-Up Propensity Score-Matched Diabetes Cohort Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Data Sources and Study Cohort
2.2. Participant Selection
2.3. PSM and Covariates
2.4. Hazard Ratios of All-Cause Death between Patients with Diabetes
2.5. Statistical Analysis
3. Results
3.1. PSM and Study Cohort
3.2. Prognostic Factors for All-Cause Death after Multivariate Cox Regression Analysis
3.3. Kaplan–Meier Survival Curve of the Sarcopenia and Nonsarcopenia Diabetes Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | hazard ratio |
aHR | adjusted hazard ratio |
CI | confidence interval |
RCT | randomized controlled trial |
PSM | propensity score matching |
ICD-9-CM | International Classification of Diseases, Ninth Revision, Clinical Modification |
ICD-10-CM | International Classification of Diseases, Tenth Revision, Clinical Modification |
OS | overall survival |
CCI | Charlson comorbidity index |
ESRD | end-stage renal disease |
IQR | interquartile range |
SD | standard deviation |
NTD | New Taiwan dollar |
N | number |
y | years old |
aDCSI | adapted Diabetes Complications Severity Index |
SMD | standardized mean difference |
NHI | National Health Insurance |
NHIRD | National Health Insurance Research Database |
References
- Weiss, R.; Caprio, S.; Trombetta, M.; Taksali, S.E.; Tamborlane, W.V.; Bonadonna, R. Beta-cell function across the spectrum of glucose tolerance in obese youth. Diabetes 2005, 54, 1735–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divers, J.; Mayer-Davis, E.J.; Lawrence, J.M.; Isom, S.; Dabelea, D.; Dolan, L.; Imperatore, G.; Marcovina, S.; Pettitt, D.J.; Pihoker, C.; et al. Trends in Incidence of Type 1 and Type 2 Diabetes Among Youths-Selected Counties and Indian Reservations, United States, 2002–2015. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M. Why young adults hold the key to assessing the obesity epidemic in children. Arch. Pediatr. Adolesc. Med. 2008, 162, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Okumura, M.J.; Freed, G.L.; Menon, R.K.; Davis, M.M. Trends in hospitalizations for diabetes among children and young adults: United States, 1993 2004. Diabetes Care 2007, 30, 3035–3039. [Google Scholar] [CrossRef] [Green Version]
- Investigators, O.T.; Gerstein, H.C.; Bosch, J.; Dagenais, G.R.; Diaz, R.; Jung, H.; Maggioni, A.P.; Pogue, J.; Probstfield, J.; Ramachandran, A.; et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 2012, 367, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.H.; Whiting, D.; Forouhi, N.; Guariguata, L.; Hambleton, I.; Li, R.; Majeed, A.; Mbanya, J.C.; Montoya, P.A.; Motala, A.; et al. Atlas, D.J.I.D.A., 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Tancredi, M.; Rosengren, A.; Svensson, A.M.; Kosiborod, M.; Pivodic, A.; Gudbjornsdottir, S.; Wedel, H.; Clements, M.; Dahlqvist, S.; Lind, M. Excess Mortality among Persons with Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 1720–1732. [Google Scholar] [CrossRef] [Green Version]
- Roglic, G.; Unwin, N. Mortality attributable to diabetes: Estimates for the year 2010. Diabetes Res. Clin. Pract. 2010, 87, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.Y.; Kang, H.T.; Lee, D.C.; Lee, H.R.; Lee, Y.J. Body composition and its association with cardiometabolic risk factors in the elderly: A focus on sarcopenic obesity. Arch. Gerontol. Geriatr. 2013, 56, 270–278. [Google Scholar] [CrossRef]
- Cleasby, M.E.; Jamieson, P.M.; Atherton, P.J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 2016, 229, R67–R81. [Google Scholar] [CrossRef] [PubMed]
- Bachettini, N.P.; Bielemann, R.M.; Barbosa-Silva, T.G.; Menezes, A.M.B.; Tomasi, E.; Gonzalez, M.C. Sarcopenia as a mortality predictor in community-dwelling older adults: A comparison of the diagnostic criteria of the European Working Group on Sarcopenia in Older People. Eur. J. Clin. Nutr. 2020, 74, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R. Origins and clinical relevance of sarcopenia. Can. J. Appl. Physiol. 2001, 26, 78–89. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I. Influence of sarcopenia on the development of physical disability: The Cardiovascular Health Study. J. Am. Geriatr. Soc. 2006, 54, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I. The epidemiology of sarcopenia. Clin. Geriatr. Med. 2011, 27, 355–363. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Greco, E.A.; Pietschmann, P.; Migliaccio, S. Osteoporosis and Sarcopenia Increase Frailty Syndrome in the Elderly. Front. Endocrinol. 2019, 10, 255. [Google Scholar] [CrossRef]
- Smith, U.; Kahn, B.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 2016, 280, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, F.; Hashimoto, Y.; Kaji, A.; Sakai, R.; Okamura, T.; Kitagawa, N.; Okada, H.; Nakanishi, N.; Majima, S.; Senmaru, T.; et al. Sarcopenia Is Associated With a Risk of Mortality in People With Type 2 Diabetes Mellitus. Front. Endocrinol. 2021, 12, 783363. [Google Scholar] [CrossRef]
- Sun, M.Y.; Chang, C.L.; Lu, C.Y.; Wu, S.Y.; Zhang, J.Q. Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study. Nutrients 2022, 14, 1910. [Google Scholar] [CrossRef]
- Chien, M.Y.; Huang, T.Y.; Wu, Y.T. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J. Am. Geriatr. Soc. 2008, 56, 1710–1715. [Google Scholar] [CrossRef]
- Chang, H.Y.; Weiner, J.P.; Richards, T.M.; Bleich, S.N.; Segal, J.B. Validating the adapted Diabetes Complications Severity Index in claims data. Am. J. Manag. Care 2012, 18, 721–726. [Google Scholar]
- Austin, P.C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat. 2011, 10, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.C. The performance of different propensity score methods for estimating marginal hazard ratios. Stat. Med. 2013, 32, 2837–2849. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Collins, G.S.; Spence, J.; Daures, J.P.; Devereaux, P.J.; Landais, P.; Le Manach, Y. Double-adjustment in propensity score matching analysis: Choosing a threshold for considering residual imbalance. BMC Med. Res. Methodol. 2017, 17, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y.; on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance diagnostics after propensity score matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef]
- Yuan, Y.; Yung, Y.-F.; Stokes, M. Propensity Score Methods for Causal Inference with the PSMATCH Procedure. In Proceedings of the SAS Global Forum 2017 Conference, Orlando, FL, USA, 2–5 April 2017. [Google Scholar]
- Austin, P.C. The use of propensity score methods with survival or time-to-event outcomes: Reporting measures of effect similar to those used in randomized experiments. Stat. Med. 2014, 33, 1242–1258. [Google Scholar] [CrossRef] [Green Version]
- Koon-Yee Lee, G.; Chun-Ming Au, P.; Hoi-Yee Li, G.; Chan, M.; Li, H.L.; Man-Yung Cheung, B.; Chi-Kei Wong, I.; Ho-Fun Lee, V.; Mok, J.; Hon-Kei Yip, B.; et al. Sarcopenia and mortality in different clinical conditions: A meta-analysis. Osteoporos. Sarcopenia 2021, 7, S19–S27. [Google Scholar] [CrossRef]
- Baggerman, M.R.; van Dijk, D.P.J.; Winkens, B.; van Gassel, R.J.J.; Bol, M.E.; Schnabel, R.M.; Bakers, F.C.; Olde Damink, S.W.M.; van de Poll, M.C.G. Muscle wasting associated co-morbidities, rather than sarcopenia are risk factors for hospital mortality in critical illness. J. Crit. Care 2020, 56, 31–36. [Google Scholar] [CrossRef]
- Martini, K.; Chassagnon, G.; Fournel, L.; Prieto, M.; Hoang-Thi, T.N.; Halm, N.; Bobbio, A.; Revel, M.P.; Alifano, M. Sarcopenia as independent risk factor of postpneumonectomy respiratory failure, ARDS and mortality. Lung Cancer 2020, 149, 130–136. [Google Scholar] [CrossRef]
- Zhuang, C.L.; Huang, D.D.; Pang, W.Y.; Zhou, C.J.; Wang, S.L.; Lou, N.; Ma, L.L.; Yu, Z.; Shen, X. Sarcopenia is an Independent Predictor of Severe Postoperative Complications and Long-Term Survival After Radical Gastrectomy for Gastric Cancer: Analysis from a Large-Scale Cohort. Medicine 2016, 95, e3164. [Google Scholar] [CrossRef]
- Zhang, X.M.; Dou, Q.L.; Zeng, Y.; Yang, Y.; Cheng, A.S.K.; Zhang, W.W. Sarcopenia as a predictor of mortality in women with breast cancer: A meta-analysis and systematic review. BMC Cancer 2020, 20, 172. [Google Scholar] [CrossRef]
- Lehner, P.; Cohen, J.; Chapnick, E.; Lutwick, L.; Boardman, H.S. Monoclonal antibody HA-1A for gram-negative shock. Lancet 1991, 337, 1036–1037. [Google Scholar] [CrossRef]
- Kim, T.N.; Park, M.S.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: The Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 2010, 33, 1497–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Feng, X.; Zhou, J.; Gong, H.; Xia, S.; Wei, Q.; Hu, X.; Tao, R.; Li, L.; Qian, F.; et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci. Rep. 2016, 6, 38937. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Rasmussen, B.B.; Cadenas, J.G.; Grady, J.J.; Volpi, E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E745–E754. [Google Scholar] [CrossRef] [Green Version]
- Marzetti, E.; Lees, H.A.; Wohlgemuth, S.E.; Leeuwenburgh, C. Sarcopenia of aging: Underlying cellular mechanisms and protection by calorie restriction. Biofactors 2009, 35, 28–35. [Google Scholar] [CrossRef]
- Westbury, L.D.; Fuggle, N.R.; Syddall, H.E.; Duggal, N.A.; Shaw, S.C.; Maslin, K.; Dennison, E.M.; Lord, J.M.; Cooper, C. Relationships Between Markers of Inflammation and Muscle Mass, Strength and Function: Findings from the Hertfordshire Cohort Study. Calcif. Tissue Int. 2018, 102, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, F. Systemic Inflammation Is a Key Factor for Mortality Risk Stratification in Chronic Kidney Disease Patients With Coronary Artery Calcification. Circ. J. 2016, 80, 1537–1538. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Kaji, A.; Sakai, R.; Hamaguchi, M.; Okada, H.; Ushigome, E.; Asano, M.; Yamazaki, M.; Fukui, M. Sarcopenia is associated with blood pressure variability in older patients with type 2 diabetes: A cross-sectional study of the KAMOGAWA-DM cohort study. Geriatr. Gerontol. Int. 2018, 18, 1345–1349. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, J.S.; Jung, S.W.; Hwang, H.S.; Moon, J.Y.; Jeong, K.H.; Lee, S.H.; Lee, S.Y.; Ko, G.J.; Lee, D.Y.; et al. Gait speed and handgrip strength as predictors of all-cause mortality and cardiovascular events in hemodialysis patients. BMC Nephrol. 2020, 21, 166. [Google Scholar] [CrossRef]
- Harada, K.; Suzuki, S.; Ishii, H.; Aoki, T.; Hirayama, K.; Shibata, Y.; Negishi, Y.; Sumi, T.; Kawashima, K.; Kunimura, A.; et al. Impact of Skeletal Muscle Mass on Long-Term Adverse Cardiovascular Outcomes in Patients with Chronic Kidney Disease. Am. J. Cardiol. 2017, 119, 1275–1280. [Google Scholar] [CrossRef]
- Kang, D.O.; Park, S.Y.; Choi, B.G.; Na, J.O.; Choi, C.U.; Kim, E.J.; Rha, S.-W.; Park, C.G.; Hong, S.-J.; Seo, H.S. Prognostic impact of low skeletal muscle mass on major adverse cardiovascular events in coronary artery disease: A propensity score-matched analysis of a single center all-comer cohort. J. Clin. Med. 2019, 8, 712. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Omura, T.; Toyoshima, K.; Araki, A. Nutrition Management in Older Adults with Diabetes: A Review on the Importance of Shifting Prevention Strategies from Metabolic Syndrome to Frailty. Nutrients 2020, 12, 3367. [Google Scholar] [CrossRef]
- Okamura, T.; Miki, A.; Hashimoto, Y.; Kaji, A.; Sakai, R.; Osaka, T.; Hamaguchi, M.; Yamazaki, M.; Fukui, M. Shortage of energy intake rather than protein intake is associated with sarcopenia in elderly patients with type 2 diabetes: A cross-sectional study of the KAMOGAWA-DM cohort. J. Diabetes 2019, 11, 477–483. [Google Scholar] [CrossRef]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2018, 210, 2–21. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Zarulli, V.; Kashnitsky, I.; Vaupel, J.W. Death rates at specific life stages mold the sex gap in life expectancy. Proc. Natl. Acad. Sci. USA 2021, 118, e2010588118. [Google Scholar] [CrossRef]
- Huang, E.S.; Laiteerapong, N.; Liu, J.Y.; John, P.M.; Moffet, H.H.; Karter, A.J. Rates of complications and mortality in older patients with diabetes mellitus: The diabetes and aging study. JAMA Intern. Med. 2014, 174, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Wicke, F.S.; Glushan, A.; Schubert, I.; Koster, I.; Lubeck, R.; Hammer, M.; Beyer, M.; Karimova, K. Performance of the adapted Diabetes Complications Severity Index translated to ICD-10. Am. J. Manag. Care 2019, 25, e45–e49. [Google Scholar]
- Al Assaf, S.; Zelko, R.; Hanko, B. The Effect of Interventions Led by Community Pharmacists in Primary Care for Adults with Type 2 Diabetes Mellitus on Therapeutic Adherence and HbA1c Levels: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 6188. [Google Scholar] [CrossRef] [PubMed]
- Despras, J.; Guedj, A.M.; Soula-Dion, S.; Choukroun, C.; Leguelinel-Blache, G. Assessment of insulin adherence in diabetic outpatients: An observational study. Ann. Pharm. Fr. 2022. [Google Scholar] [CrossRef] [PubMed]
Nonsarcopenia | Sarcopenia | SMD | |||
---|---|---|---|---|---|
N = 132,805 | N = 68,893 | ||||
N | % | N | % | ||
Age (mean ± SD) | 59.92 ± 15.37 | 60.44 ± 14.61 | 0.0350 | ||
60.00 (51.00, 71.00) | 61.00 (51.00, 71.00) | ||||
Age Groups | 132,805 | 68,893 | 0.0120 | ||
Age ≤ 40 y | 33,099 | 24.92% | 16,979 | 24.65% | |
40 y < Age ≤ 50 y | 33,788 | 25.44% | 17,356 | 25.19% | |
50 y < Age ≤ 60 y | 30,430 | 22.91% | 15,805 | 22.94% | |
Age > 60 y | 35,488 | 26.72% | 18,753 | 27.22% | |
Sex | 132,805 | 68,893 | 0.0010 | ||
Female | 70,870 | 53.36% | 36,813 | 53.44% | |
Male | 61,935 | 46.64% | 32,080 | 46.56% | |
aDCSI Score | 132,805 | 68,893 | 1.0240 | ||
0 | 71,455 | 53.80% | 32,071 | 46.55% | |
1 | 24,920 | 18.76% | 14,632 | 21.24% | |
2 | 20,103 | 15.14% | 11,344 | 16.47% | |
3–4 | 13,049 | 9.83% | 8466 | 12.29% | |
≥5 | 3278 | 2.47% | 2380 | 3.45% | |
aDCSI with complication categories | |||||
Retinopathy | 7812 | 5.88% | 3979 | 5.78% | 0.005 |
Nephropathy | 18,016 | 13.57% | 10,240 | 14.86% | 0.037 |
Neuropathy | 11,619 | 8.75% | 9211 | 13.37% | 0.148 |
Cerebrovascular | 13,500 | 10.17% | 8936 | 12.97% | 0.088 |
Cardiovascular | 33,688 | 25.37% | 20,630 | 29.94% | 0.102 |
Peripheral Vascular Disease | 4290 | 3.23% | 2699 | 3.92% | 0.037 |
Metabolic Disease | 1273 | 0.96% | 906 | 1.32% | 0.034 |
CCI Score | 132,805 | 68,893 | 0.0150 | ||
0 | 61,097 | 46.01% | 31,405 | 45.59% | |
≥1 | 71,708 | 53.99% | 37,488 | 54.41% | |
Comorbidities | |||||
Congestive Heart Failure | 8898 | 6.70% | 4643 | 6.74% | 0.002 |
Dementia | 3558 | 2.68% | 2174 | 3.16% | 0.028 |
Chronic Pulmonary Disease | 25,990 | 19.57% | 13,966 | 20.27% | 0.018 |
Rheumatic Disease | 3380 | 2.55% | 2129 | 3.09% | 0.033 |
Liver Disease | 26,766 | 20.15% | 14,079 | 20.44% | 0.007 |
Hemiplegia and Paraplegia | 2332 | 1.76% | 1703 | 2.47% | 0.005 |
Renal Disease | 6954 | 5.24% | 3720 | 5.40% | 0.007 |
AIDS | 55 | 0.04% | 22 | 0.03% | 0.005 |
Cancer | 15,944 | 12.01% | 10,174 | 14.77% | 0.021 |
Hypertension | 74,277 | 55.93% | 39,906 | 57.92% | 0.0400 |
Hyperlipidemia | 56,211 | 42.33% | 30,085 | 43.67% | 0.0270 |
Income levels (NTD) | 132,805 | 68,893 | 0.0520 | ||
Low income | 1572 | 1.18% | 1096 | 1.59% | |
≤20,000 | 84,866 | 63.90% | 43,144 | 62.62% | |
20,001–30,000 | 27,059 | 20.37% | 14,908 | 21.64% | |
30,001–45,000 | 12,714 | 9.57% | 6665 | 9.67% | |
>45,000 | 6594 | 4.97% | 3080 | 4.47% | |
Urbanization | 132,805 | 68,893 | 0.1180 | ||
Rural | 38,304 | 28.84% | 23,658 | 34.34% | |
Urban | 94,501 | 71.16% | 45,235 | 65.66% | |
pValue | |||||
Follow up, Years (mean ± SD) | 7.96 ± 4.62 | 7.61 ± 4.24 | |||
Follow up, Years Median (IQR; Q1, Q3) | 7.72 (2.68, 9.13) | 7.46 (2.08, 9.19) | |||
All-cause Death | 132,805 | 68,893 | <0.0001 | ||
No | 107,317 | 80.81% | 51,560 | 74.84% | |
Yes | 25,488 | 19.19% | 17,333 | 25.16% |
Crude HR (95% CI) | p Value | aHR * (95% CI) | p Value | |||
---|---|---|---|---|---|---|
Sarcopenia (ref. No) | ||||||
Yes | 1.367 | (1.34, 1.39) | <0.0001 | 1.356 | (1.33, 1.38) | <0.0001 |
Age (ref. Age ≤ 40 y) | ||||||
40 y < Age ≤ 50 y | 1.576 | (1.51, 1.64) | <0.0001 | 1.539 | (1.48, 1.60) | <0.0001 |
50 y < Age ≤ 60 y | 3.182 | (3.07, 3.3) | <0.0001 | 2.615 | (2.52, 2.72) | <0.0001 |
Age > 60 y | 9.72 | (9.4, 10.05) | <0.0001 | 6.213 | (5.99, 6.45) | <0.0001 |
Sex (ref. female) | ||||||
Male | 1.664 | (1.63, 1.7) | <0.0001 | 1.569 | (1.54, 1.60) | <0.0001 |
aDCSI Score (ref.: aDCSI Score = 0) | ||||||
1 | 1.126 | (1.09, 1.16) | <0.0001 | 1.011 | (1.00, 1.14) | 0.0442 |
2 | 2.635 | (2.57, 2.7) | <0.0001 | 1.385 | (1.35, 1.42) | <0.0001 |
3–4 | 3.72 | (3.62, 3.82) | <0.0001 | 1.587 | (1.54, 1.63) | <0.0001 |
≥5 | 6.245 | (6, 6.5) | <0.0001 | 2.233 | (2.14, 2.33) | <0.0001 |
CCI ≥ 1 (ref.: CCI = 0) | 1.146 | (0.59, 1.27) | 0.4592 | 1.094 | (0.75, 1.24) | 0.3652 |
Income (NTD) (ref. Low income) | ||||||
≤20,000 | 0.733 | (0.63, 1.12) | 0.5907 | 0.749 | (0.60, 1.08) | 0.5892 |
20,001–30,000 | 0.654 | (0.33, 1.08) | 0.4981 | 0.656 | (0.43, 1.09) | 0.4870 |
30,001–45,000 | 0.617 | (0.35, 1.18) | 0.4672 | 0.621 | (0.39, 1.16) | 0.4562 |
>45,000 | 0.541 | (0.33, 1.16) | 0.3985 | 0.556 | (0.32, 1.19) | 0.3871 |
Urbanization (ref. rural) | ||||||
urban | 0.733 | (0.62, 1.05) | 0.3095 | 0.904 | (0.79, 1.09) | 0.3087 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-A.; Hou, J.-D.; Wu, S.-Y. Effect of Sarcopenia on Mortality in Type 2 Diabetes: A Long-Term Follow-Up Propensity Score-Matched Diabetes Cohort Study. J. Clin. Med. 2022, 11, 4424. https://doi.org/10.3390/jcm11154424
Lin J-A, Hou J-D, Wu S-Y. Effect of Sarcopenia on Mortality in Type 2 Diabetes: A Long-Term Follow-Up Propensity Score-Matched Diabetes Cohort Study. Journal of Clinical Medicine. 2022; 11(15):4424. https://doi.org/10.3390/jcm11154424
Chicago/Turabian StyleLin, Jui-An, Jin-De Hou, and Szu-Yuan Wu. 2022. "Effect of Sarcopenia on Mortality in Type 2 Diabetes: A Long-Term Follow-Up Propensity Score-Matched Diabetes Cohort Study" Journal of Clinical Medicine 11, no. 15: 4424. https://doi.org/10.3390/jcm11154424
APA StyleLin, J. -A., Hou, J. -D., & Wu, S. -Y. (2022). Effect of Sarcopenia on Mortality in Type 2 Diabetes: A Long-Term Follow-Up Propensity Score-Matched Diabetes Cohort Study. Journal of Clinical Medicine, 11(15), 4424. https://doi.org/10.3390/jcm11154424