Salvage Radiotherapy Plus Androgen Deprivation Therapy for High-Risk Prostate Cancer with Biochemical Failure after High-Intensity Focused Ultrasound as Primary Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Salvage Radiotherapy
2.3. Androgen Deprivation Therapy
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Survival Outcome
3.3. Adverse Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, P.H.; Chang, S.W.; Tsai, L.H.; Kan, H.C.; Liu, J.M.; Chuang, C.K.; Pang, S.-T.; Yu, K.-J. Increasing incidence of prostate cancer in Taiwan: A study of related factors using a nationwide health and welfare database. Medicine 2020, 99, e22336. [Google Scholar] [CrossRef]
- Madersbacher, S.; Marberger, M. High-Energy Shockwaves and Extracorporeal High-Intensity Focused Ultrasound. J. Endourol. 2003, 17, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Crouzet, S.; Chapelon, J.Y.; Rouvière, O.; Mege-Lechevallier, F.; Colombel, M.; Tonoli-Catez, H.; Martin, X.; Gelet, A. Whole-gland Ablation of Localized Prostate Cancer with High-intensity Focused Ultrasound: Oncologic Outcomes and Morbidity in 1002 Patients. Eur. Urol. 2014, 65, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Chiang, P.H.; Liu, Y.Y.; Chuang, Y.C.; Cheng, Y.T. Primary whole-gland ablation for localized prostate cancer with high-intensity focused ultrasound: The important predictors of biochemical recurrence. Int. J. Urol. 2018, 25, 615–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Chiang, P.H. Comparisons of Oncological and Functional Outcomes Between Primary Whole-Gland Cryoablation and High-Intensity Focused Ultrasound for Localized Prostate Cancer. Ann. Surg. Oncol. 2016, 23, 328–334. [Google Scholar] [CrossRef]
- Chiang, P.H.; Liu, Y.Y. Comparisons of oncological and functional outcomes among radical retropubic prostatectomy, high dose rate brachytherapy, cryoablation and high-intensity focused ultrasound for localized prostate cancer. SpringerPlus 2016, 5, 1905. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-T.; Chiang, P.H. Cohort study of high-intensity focused ultrasound in the treatment of localised prostate cancer treatment: Medium-term results from a single centre. PLoS ONE 2020, 15, e0236026. [Google Scholar] [CrossRef] [PubMed]
- Pasticier, G.; Chapet, O.; Badet, L.; Ardiet, J.; Poissonnier, L.; Murat, F.; Martin, X.; Gelet, A. Salvage Radiotherapy After High-Intensity Focused Ultrasound for Localized Prostate Cancer: Early Clinical Results. Urology 2008, 72, 1305–1309. [Google Scholar] [CrossRef]
- Riviere, J.; Bernhard, J.-C.; Robert, G.; Wallerand, H.; Deti, E.; Maurice-Tison, S.; Ardiet, J.-M.; Maire, J.-P.; Richaud, P.; Ferriere, J.-M.; et al. Salvage Radiotherapy After High-Intensity Focussed Ultrasound for Recurrent Localised Prostate Cancer. Eur. Urol. 2010, 58, 567–573. [Google Scholar] [CrossRef]
- Munoz, F.; Guarneri, A.; Botticella, A.; Gabriele, P.; Moretto, F.; Panaia, R.; Ruggieri, A.; D’Urso, L.; Muto, G.; Filippi, A.R.; et al. Salvage External Beam Radiotherapy for Recurrent Prostate Adenocarcinoma after High-Intensity Focused Ultrasound as Primary Treatment. Urol. Int. 2013, 90, 288–293. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chao, P.-J.; Guo, S.-S.; Wang, C.-J.; Luo, H.-L.; Su, Y.-L.; Lee, T.-F.; Fang, F.-M. Developing a multivariable normal tissue complication probability model to predict late rectal bleeding following intensity-modulated radiation therapy. J. Cancer 2019, 10, 2588–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.; Cosmatos, H.; Dave, G.; Williams, S.; Tome, M. Predicting Pelvic Lymph Node Involvement in Current-Era Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Perkins, N.; Schisterman, E. The Inconsistency of “Optimal” Cutpoints Obtained using Two Criteria based on the Receiver Operating Characteristic Curve. Am. J. Epidemiol. 2006, 163, 670–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akobeng, A.K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007, 96, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Blana, A.; Murat, F.J.; Walter, B.; Thuroff, S.; Wieland, W.F.; Chaussy, C.; Gelet, A. First Analysis of the Long-Term Results with Transrectal HIFU in Patients with Localised Prostate Cancer. Eur. Urol. 2008, 53, 1194–1203. [Google Scholar] [CrossRef]
- Clery, R.; Grande, P.; Seisen, T.; Gobert, A.; Duquesne, I.; Villers, A.; Olivier, J.; Bernhard, J.-C.; Robert, G.; Beauval, J.B.; et al. Outcomes after salvage radical prostatectomy and first-line radiation therapy or HIFU for recurrent localized prostate cancer: Results from a multicenter study. World J. Urol. 2019, 37, 1491–1498. [Google Scholar] [CrossRef]
- Ripert, T.; Bayoud, Y.; Messaoudi, R.; Ménard, J.; Azémar, M.D.; Duval, F.; Nguyen, T.D.; Staerman, F. Salvage radiotherapy after high-intensity focused ultrasound treatment for localized prostate cancer: Feasibility, tolerance and efficacy. Can. Urol. Assoc. J. 2012, 6, E179–E183. [Google Scholar] [CrossRef] [Green Version]
- Blana, A.; Brown, S.C.; Chaussy, C.; Conti, G.N.; Eastham, J.A.; Ganzer, R.; Murat, F.J.; Pasticier, G.; Rebillard, X.; Rewcastle, J.C.; et al. High-intensity focused ultrasound for prostate cancer: Comparative definitions of biochemical failure. Br. J. Urol. 2009, 104, 1058–1062. [Google Scholar] [CrossRef]
- Shipley, W.U.; Seiferheld, W.; Lukka, H.R.; Major, P.P.; Heney, N.M.; Grignon, D.J.; Sartor, O.; Patel, M.P.; Bahary, J.-P.; Zietman, A.L.; et al. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer. N. Engl. J. Med. 2017, 376, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Carrie, C.; Hasbini, A.; de Laroche, G.; Richaud, P.; Guerif, S.; Latorzeff, I.; Supiot, S.; Bosset, M.; Lagrange, J.-L.; Beckendorf, V.; et al. Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): A randomised, multicentre, open-label phase 3 trial. Lancet Oncol. 2016, 17, 747–756. [Google Scholar] [CrossRef]
- Critz, F.A.; Levinson, A.K.; Williams, W.H.; Holladay, C.T.; Griffin, V.D.; Holladay, D.A. Prostate specific antigen nadir achieved by men apparently cured of prostate cancer by radiotherapy. J. Urol. 1999, 161, 1199–1203. [Google Scholar] [CrossRef]
- Critz, F.A.; Levinson, A.K.; Williams, W.H.; Holladay, D.A.; Holladay, C.T.; Klein, E.A.; Kupelian, P.J. The PSA nadir that indicates potential cure after radiotherapy for prostate cancer. Urology 1997, 49, 322–326. [Google Scholar] [CrossRef]
- Hanlon, A.L.; Diratzouian, H.; Hanks, G.E. Posttreatment prostate-specific antigen nadir highly predictive of distant failure and death from prostate cancer. Int. J. Radiat. Oncol. 2002, 53, 297–303. [Google Scholar] [CrossRef]
- Widmark, A.; Klepp, O.; Solberg, A.; Damber, J.E.; Angelsen, A.; Fransson, P.; Lund, J.-A.; Tasdemir, I.; Hoyer, M.; Wiklund, F.; et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase III trial. Lancet 2009, 373, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Keating, N.L.; O’Malley, A.J.; Smith, M.R. Diabetes and Cardiovascular Disease During Androgen Deprivation Therapy for Prostate Cancer. J. Clin. Oncol. 2006, 24, 4448–4456. [Google Scholar] [CrossRef]
- Smith, M.R.; McGovern, F.J.; Zietman, A.L.; Fallon, M.A.; Hayden, D.L.; Schoenfeld, D.A.; Kantoff, P.W.; Finkelstein, J.S. Pamidronate to Prevent Bone Loss during Androgen-Deprivation Therapy for Prostate Cancer. N. Engl. J. Med. 2001, 345, 948–955. [Google Scholar] [CrossRef]
- Bienz, M.; Saad, F. Androgen-deprivation therapy and bone loss in prostate cancer patients: A clinical review. BoneKEy Rep. 2015, 4, 716. [Google Scholar] [CrossRef]
Parameter | Number |
---|---|
Age, median (range), year | 68.5 (55–86) |
PSA, median (range), ng/mL | |
Prior HIFU | 23.73 (1.44–120) |
Prior SRT | 2.76 (0.4–57.83) |
Number of HIFU, % | |
1 | 32 (84) |
2 | 5 (13) |
3 | 1 (3) |
Initial T status, % | |
cT1 | 8 (21) |
cT2 | 22 (58) |
cT3 | 8 (21) |
Initial N status, % | |
N0 | 38 (100) |
Gleason score, % | |
≤6 | 3 (8) |
7 | 13 (34) |
≥8 | 22 (58) |
Months between HIFU and SRT, median (range) | 11.2 (1–42.6) |
Duration of ADT, months | |
ADT ≤ 6 | 14 (37) |
6 < ADT ≤ 12 | 12 (31.5) |
ADT > 12 | 12 (31.5) |
Biochemical-Progression Free Survival | Overall Survival | |||||||
---|---|---|---|---|---|---|---|---|
UVA | MVA | UVA | MVA | |||||
p | HR | 95% CI | p | p | HR | 95% CI | p | |
Age: ≦68 vs. >68 years | 0.14 | 1.21 | 0.23–6.50 | 0.82 | 0.29 | |||
Initial T status: T1-2 vs. T3 | 0.95 | 0.90 | ||||||
Gleason score: ≦7 vs. >7 | 0.13 | 1.80 | 0.32–10.02 | 0.50 | 0.39 | |||
PSA prior HIFU: ≦23.73 vs. >23.73 | 0.54 | 0.97 | ||||||
Recurrent T status: T1-2 vs. T3-4 | 0.41 | 0.79 | ||||||
PSA prior SRT: ≦2.76 vs. >2.76 | 0.14 | 1.35 | 0.26–7.10 | 0.72 | 0.14 | 2.87 | 0.16–52.21 | 0.47 |
Duration of ADT: ≤6 m v. 6–12 vs. >12 m | 0.35 | 0.66 | ||||||
nPSA post SRT+ ADT: <0.02 vs. ≥0.02 | <0.001 | 9.35 | 1.54–56.86 | 0.01 | 0.04 | 3.18 | 0.24–42.14 | 0.38 |
Time to achieve nPSA: ≤8.6 m vs. >8.6 m | 0.97 | 0.36 |
Adverse Events | Grade 1 n (%) | Grade 2 n (%) | Grade 3 n (%) |
---|---|---|---|
SRT related, acute | |||
Urinary | 20 (53) | 3 (8) | - |
Gastrointestinal | 23 (61) | 1 (3) | - |
SRT related, late | |||
Urinary | 1 (3) | 5 (13) | 3 (8) |
Gastrointestinal | - | - | - |
ADT related | |||
Hot flush | 1 (3) | - | - |
Hyperhidrosis | 1 (3) | - | - |
Skin hyperpigmentation | - | 1 (3) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-C.; Kang, C.-H.; Lee, W.-C.; Cheng, Y.-T.; Chuang, Y.-C.; Wang, H.-J.; Fang, F.-M.; Chiang, P.-H. Salvage Radiotherapy Plus Androgen Deprivation Therapy for High-Risk Prostate Cancer with Biochemical Failure after High-Intensity Focused Ultrasound as Primary Treatment. J. Clin. Med. 2022, 11, 4450. https://doi.org/10.3390/jcm11154450
Huang Y-C, Kang C-H, Lee W-C, Cheng Y-T, Chuang Y-C, Wang H-J, Fang F-M, Chiang P-H. Salvage Radiotherapy Plus Androgen Deprivation Therapy for High-Risk Prostate Cancer with Biochemical Failure after High-Intensity Focused Ultrasound as Primary Treatment. Journal of Clinical Medicine. 2022; 11(15):4450. https://doi.org/10.3390/jcm11154450
Chicago/Turabian StyleHuang, Ying-Che, Chih-Hsiung Kang, Wei-Chia Lee, Yuan-Tso Cheng, Yao-Chi Chuang, Hung-Jen Wang, Fu-Min Fang, and Po-Hui Chiang. 2022. "Salvage Radiotherapy Plus Androgen Deprivation Therapy for High-Risk Prostate Cancer with Biochemical Failure after High-Intensity Focused Ultrasound as Primary Treatment" Journal of Clinical Medicine 11, no. 15: 4450. https://doi.org/10.3390/jcm11154450
APA StyleHuang, Y. -C., Kang, C. -H., Lee, W. -C., Cheng, Y. -T., Chuang, Y. -C., Wang, H. -J., Fang, F. -M., & Chiang, P. -H. (2022). Salvage Radiotherapy Plus Androgen Deprivation Therapy for High-Risk Prostate Cancer with Biochemical Failure after High-Intensity Focused Ultrasound as Primary Treatment. Journal of Clinical Medicine, 11(15), 4450. https://doi.org/10.3390/jcm11154450