The Paradox of Pulmonary Vascular Resistance: Restoration of Pulmonary Capillary Recruitment as a Sine Qua Non for True Therapeutic Success in Pulmonary Arterial Hypertension
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hickam, J.B.; Cargill, W.H. Effect of exercise on cardiac output and pulmonary arterial pressure in normal persons and in patients with cardiovascular disease and pulmonary emphysema. J. Clin. Investig. 1948, 27, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Granath, A.; Jonsson, B.; Trandell, T. Circulation in healthy old men, studied by right heart catheterization at rest and during exercise in supine and sitting position. Acta Med. Scand. 1964, 176, 425–446. [Google Scholar] [CrossRef]
- Kovacs, G.; Olschewski, A.; Berghold, A.; Olschewski, H. Pulmonary vascular resistances during exercise in normal subjects: A systematic review. Eur. Respir. J. 2012, 39, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Naeije, R.; Vanderpool, R.; Dhakal, B.P.; Saggar, R.; Saggar, R.; Vachiery, J.L.; Lewis, G.D. Exercise-induced pulmonary hypertension: Physiological basis and methodological concerns. Am. J. Respir. Crit. Care Med. 2013, 187, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Wearn, J.T.; Ernstene, A.C.; Bromer, A.W.; Barr, J.S.; German, W.J.; Zschiesche, L.J. The normal behavior of the pulmonary blood vessels with observations on the intermittence of the flow of blood in the arterioles and capillaries. Am. J. Physiol. 1934, 109, 236–256. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.W., Jr. Pulmonary microcirculatory observations in vivo under physiological conditions. J. Appl. Physiol. 1969, 26, 375–377. [Google Scholar] [CrossRef]
- Presson, R.G., Jr.; Hanger, C.C.; Godbey, P.S.; Graham, J.A.; Lloyd, T.C., Jr.; Wagner, W.W., Jr. Effect of increasing flow on distribution of pulmonary capillary transit times. J. Appl. Physiol. 1994, 76, 1701–1711. [Google Scholar] [CrossRef]
- Kuebler, W.M. Real-time imaging assessment of pulmonary vascular responses. Proc. Am. Thorac. Soc. 2011, 8, 458–465. [Google Scholar] [CrossRef]
- Catravas, J.D.; Orfanos, S.E. Pathophysiologic functions of endothelial angiotensin-converting enzyme. In Vascular Endothelium: Physiology, Pathology and Therapeutic Opportunities; Born, G.V.R., Schwartz, C.J., Eds.; Schattauer: Stuttgart, Germany, 1997; pp. 193–204. [Google Scholar]
- Toivonen, H.J.; Catravas, J.D. Effects of blood flow on lung ACE kinetics: Evidence for microvascular recruitment. J. Appl. Physiol. 1991, 71, 2244–2254. [Google Scholar] [CrossRef]
- Orfanos, S.E.; Ehrhart, I.C.; Barman, S.; Hofman, W.F.; Catravas, J.D. Endothelial ectoenzyme assays estimate perfused capillary surface area in the dog lung. Microvasc. Res. 1997, 54, 145–155. [Google Scholar] [CrossRef]
- Orfanos, S.E.; Langleben, D.; Khoury, J.; Schlesinger, R.D.; Dragatakis, L.; Roussos, C.; Ryan, J.W.; Catravas, J.D. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation 1999, 99, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Orfanos, S.E.; Armaganidis, A.; Glynos, C.; Psevdi, E.; Kaltsas, P.; Sarafidou, P.; Catravas, J.D.; Dafni, U.G.; Langleben, D.; Roussos, C. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation 2000, 102, 2011–2018. [Google Scholar] [CrossRef] [Green Version]
- Langleben, D.; Orfanos, S.E.; Giovinazzo, M.; Hirsch, A.; Baron, M.; Senecal, J.L.; Armaganidis, A.; Catravas, J.D. Pulmonary capillary endothelial metabolic dysfunction: Severity in pulmonary arterial hypertension related to connective tissue disease versus idiopathic pulmonary arterial hypertension. Arthritis Rheum. 2008, 58, 1156–1164. [Google Scholar] [CrossRef]
- Orfanos, S.E.; Psevdi, E.; Stratigis, N.; Langleben, D.; Catravas, J.D.; Kyriakidis, M.; Moutsopoulos, H.M.; Roussos, C.; Vlachoyiannopoulos, P.G. Pulmonary capillary endothelial dysfunction in early systemic sclerosis. Arthritis Rheum. 2001, 44, 902–911. [Google Scholar] [CrossRef]
- Langleben, D.; Orfanos, S.E.; Giovinazzo, M.; Schlesinger, R.D.; Naeije, R.; Fox, B.D.; Abualsaud, A.O.; Blenkhorn, F.; Rudski, L.G.; Catravas, J.D. Pulmonary capillary surface area in supine exercising humans: Demonstration of vascular recruitment. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 317, L361–L368. [Google Scholar] [CrossRef]
- Langleben, D.; Fox, B.D.; Orfanos, S.E.; Giovinazzo, M.; Catravas, J.D. Pulmonary capillary recruitment and distention in mammalian lungs: Species similarities. Eur. Respir. Rev. 2022, 31, 210248. [Google Scholar] [CrossRef]
- Hassoun, P.M. Pulmonary Arterial Hypertension. N. Engl. J. Med. 2021, 385, 2361–2376. [Google Scholar] [CrossRef]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmuller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. [Google Scholar] [CrossRef] [Green Version]
- Galie, N.; Channick, R.N.; Frantz, R.P.; Grunig, E.; Jing, Z.C.; Moiseeva, O.; Preston, I.R.; Pulido, T.; Safdar, Z.; Tamura, Y.; et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur. Respir. J. 2019, 53, 1801889. [Google Scholar] [CrossRef]
- Harel, F.; Langleben, D.; Provencher, S.; Fournier, A.; Finnerty, V.; Nguyen, Q.T.; Letourneau, M.; Levac, X.; Abikhzer, G.; Guimond, J.; et al. Molecular imaging of the human pulmonary vascular endothelium in pulmonary hypertension: A phase II safety and proof of principle trial. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1136–1144. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; Sitbon, O.; Simonneau, G. Treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2004, 351, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Rich, S.; Pogoriler, J.; Husain, A.N.; Toth, P.T.; Gomberg-Maitland, M.; Archer, S.L. Long-term effects of epoprostenol on the pulmonary vasculature in idiopathic pulmonary arterial hypertension. Chest 2010, 138, 1234–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, Y.; Matsubara, H.; Shimokawahara, H.; Ogawa, A. Outcome of mean pulmonary arterial pressure-based intensive treatment for patients with pulmonary arterial hypertension. J. Cardiol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- D’Alto, M.; Badagliacca, R.; Lo Giudice, F.; Argiento, P.; Casu, G.; Corda, M.; Correale, M.; Ghio, S.; Greco, A.; Lattanzio, M.; et al. Hemodynamics and risk assessment 2 years after the initiation of upfront ambrisentantadalafil in pulmonary arterial hypertension. J. Heart Lung Transplant. 2020, 39, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Badagliacca, R.; D’Alto, M.; Ghio, S.; Argiento, P.; Bellomo, V.; Brunetti, N.D.; Casu, G.; Confalonieri, M.; Corda, M.; Correale, M.; et al. Risk Reduction and Hemodynamics with Initial Combination Therapy in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2021, 203, 484–492. [Google Scholar] [CrossRef]
- Sniderman, A.D.; Fitchett, D.H. Vasodilators and pulmonary arterial hypertension: The paradox of therapeutic success and clinical failure. Int. J. Cardiol 1988, 20, 173–181. [Google Scholar] [CrossRef]
- Rich, S.; Martinez, J.; Lam, W.; Levy, P.S.; Rosen, K.M. Reassessment of the effects of vasodilator drugs in primary pulmonary hypertension: Guidelines for determining a pulmonary vasodilator response. Am. Heart J. 1983, 105, 119–127. [Google Scholar] [CrossRef]
- Renard, S.; Paulin, R.; Breuils-Bonnet, S.; Simard, S.; Pibarot, P.; Bonnet, S.; Provencher, S. Pim-1: A new biomarker in pulmonary arterial hypertension. Pulm. Circ. 2013, 3, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Hemnes, A.R.; Trammell, A.W.; Archer, S.L.; Rich, S.; Yu, C.; Nian, H.; Penner, N.; Funke, M.; Wheeler, L.; Robbins, I.M.; et al. Peripheral blood signature of vasodilator-responsive pulmonary arterial hypertension. Circulation 2015, 131, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Hemnes, A.R.; Zhao, M.; West, J.; Newman, J.H.; Rich, S.; Archer, S.L.; Robbins, I.M.; Blackwell, T.S.; Cogan, J.; Loyd, J.E.; et al. Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2016, 194, 464–475. [Google Scholar] [CrossRef] [Green Version]
- Langleben, D.; Orfanos, S.E.; Giovinazzo, M.; Schlesinger, R.D.; Hirsch, A.M.; Blenkhorn, F.; Lesenko, L.; Armaganidis, A.; Catravas, J.D. Acute vasodilator responsiveness and microvascular recruitment in idiopathic pulmonary arterial hypertension. Ann. Intern. Med. 2015, 162, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.A.; Cockrill, B.A.; Waxman, A.B.; Systrom, D.M. The invasive cardiopulmonary exercise test. Circulation 2013, 127, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Oliveira, R.K.F.; Naeije, R.; Rahaghi, F.N.; Oldham, W.M.; Systrom, D.M.; Waxman, A.B. Pulmonary Vascular Distensibility and Early Pulmonary Vascular Remodeling in Pulmonary Hypertension. Chest 2019, 156, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Systrom, D.; Warren, A.; Naeije, R. The Role of Exercise Testing in Pulmonary Vascular Disease: Diagnosis and Management. Clin. Chest Med. 2021, 42, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.; Herve, P.; Barbera, J.A.; Chaouat, A.; Chemla, D.; Condliffe, R.; Garcia, G.; Grunig, E.; Howard, L.; Humbert, M.; et al. An official European Respiratory Society statement: Pulmonary haemodynamics during exercise. Eur. Respir. J. 2017, 50, 1700578. [Google Scholar] [CrossRef]
- Zeder, K.; Banfi, C.; Steinrisser-Allex, G.; Maron, B.A.; Humbert, M.; Lewis, G.D.; Berghold, A.; Olschewski, H.; Kovacs, G. Diagnostic, prognostic and differential-diagnostic relevance of pulmonary hemodynamics during exercise—A systematic review. Eur. Respir. J. 2022, in press. [Google Scholar] [CrossRef]
- Valle, F.H.; Esfandiari, S.; Jang, H.J.; Fuchs, F.C.; Wright, S.P.; Granton, J.; Mak, S. Contrasting haemodynamic effects of exercise and saline infusion in older adults with pulmonary arterial hypertension. ERJ Open Res. 2021, 7, 00183. [Google Scholar] [CrossRef]
- Sommer, N.; Ghofrani, H.A.; Pak, O.; Bonnet, S.; Provencher, S.; Sitbon, O.; Rosenkranz, S.; Hoeper, M.M.; Kiely, D.G. Current and future treatments of pulmonary arterial hypertension. Br. J. Pharmacol. 2021, 178, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; McLaughlin, V.; Gibbs, J.S.R.; Gomberg-Maitland, M.; Hoeper, M.M.; Preston, I.R.; Souza, R.; Waxman, A.; Escribano Subias, P.; Feldman, J.; et al. Sotatercept for the Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2021, 384, 1204–1215. [Google Scholar] [CrossRef]
- Zolty, R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J. Exp. Pharmacol. 2021, 13, 817–857. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Barst, R.J.; Bourge, R.C.; Feldman, J.; Frost, A.E.; Galie, N.; Gomez-Sanchez, M.A.; Grimminger, F.; Grunig, E.; Hassoun, P.M.; et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: Results of the randomized IMPRES study. Circulation 2013, 127, 1128–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, B.A.; Brittain, E.L.; Hess, E.; Waldo, S.W.; Baron, A.E.; Huang, S.; Goldstein, R.H.; Assad, T.; Wertheim, B.M.; Alba, G.A.; et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 873–884. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langleben, D.; Orfanos, S.E.; Fox, B.D.; Messas, N.; Giovinazzo, M.; Catravas, J.D. The Paradox of Pulmonary Vascular Resistance: Restoration of Pulmonary Capillary Recruitment as a Sine Qua Non for True Therapeutic Success in Pulmonary Arterial Hypertension. J. Clin. Med. 2022, 11, 4568. https://doi.org/10.3390/jcm11154568
Langleben D, Orfanos SE, Fox BD, Messas N, Giovinazzo M, Catravas JD. The Paradox of Pulmonary Vascular Resistance: Restoration of Pulmonary Capillary Recruitment as a Sine Qua Non for True Therapeutic Success in Pulmonary Arterial Hypertension. Journal of Clinical Medicine. 2022; 11(15):4568. https://doi.org/10.3390/jcm11154568
Chicago/Turabian StyleLangleben, David, Stylianos E. Orfanos, Benjamin D. Fox, Nathan Messas, Michele Giovinazzo, and John D. Catravas. 2022. "The Paradox of Pulmonary Vascular Resistance: Restoration of Pulmonary Capillary Recruitment as a Sine Qua Non for True Therapeutic Success in Pulmonary Arterial Hypertension" Journal of Clinical Medicine 11, no. 15: 4568. https://doi.org/10.3390/jcm11154568
APA StyleLangleben, D., Orfanos, S. E., Fox, B. D., Messas, N., Giovinazzo, M., & Catravas, J. D. (2022). The Paradox of Pulmonary Vascular Resistance: Restoration of Pulmonary Capillary Recruitment as a Sine Qua Non for True Therapeutic Success in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 11(15), 4568. https://doi.org/10.3390/jcm11154568