Soluble RAGE as a Prognostic Marker of Worsening in Patients Admitted to the ICU for COVID-19 Pneumonia: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Endpoints
2.3. Blood Samples
2.4. Assays
2.5. Data and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abou-Arab, O.; Bennis, Y.; Gauthier, P.; Boudot, C.; Bourdenet, G.; Gubler, B.; Beyls, C.; Dupont, H.; Kamel, S.; Mahjoub, Y. Association between inflammation, angiopoietins, and disease severity in critically ill COVID-19 patients: A prospective study. Br. J. Anaesth. 2021, 126, e127–e130. [Google Scholar] [CrossRef] [PubMed]
- Nesseler, N.; Fadel, G.; Mansour, A.; Para, M.; Falcoz, P.-E.; Mongardon, N.; Porto, A.; Bertier, A.; Levy, B.; Cadoz, C.; et al. Extracorporeal membrane oxygenation for respiratory failure related to COVID-19: A nationwide cohort study. Anesthesiology 2022, 136, 732–748. [Google Scholar] [CrossRef] [PubMed]
- Billoir, P.; Leprêtre, P.; Thill, C.; Bellien, J.; Duchez, V.L.C.; Selim, J.; Tamion, F.; Clavier, T.; Besnier, E. Routine and advanced laboratory tests for hemostasis disorders in COVID-19 patients: A prospective cohort study. J. Clin. Med. 2022, 11, 1383. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Picod, A.; Morisson, L.; de Roquetaillade, C.; Sadoune, M.; Mebazaa, A.; Gayat, E.; Davison, B.A.; Cotter, G.; Chousterman, B.G. Systemic inflammation evaluated by interleukin-6 or c-reactive protein in critically ill patients: Results from the frog-icu study. Front. Immunol. 2022, 13, 868348. [Google Scholar] [CrossRef]
- Jones, S.A.; Horiuchi, S.; Topley, N.; Yamamoto, N.; Fuller, G.M. The Soluble interleukin 6 receptor: Mechanisms of production and implications in disease. FASEB J. 2001, 15, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Chiappalupi, S.; Salvadori, L.; Donato, R.; Riuzzi, F.; Sorci, G. Hyperactivated RAGE in comorbidities as a risk factor for severe COVID-19—The role of RAGE-Ras crosstalk. Biomolecules 2021, 11, 876. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Guo, X.; Huang, X.; Huang, Q. RAGE plays a role in LPS-induced NF-ΚB activation and endothelial hyperpermeability. Sensors 2017, 17, 722. [Google Scholar] [CrossRef] [Green Version]
- Kokkola, R.; Andersson, A.; Mullins, G.; Ostberg, T.; Treutiger, C.-J.; Arnold, B.; Nawroth, P.; Andersson, U.; Harris, R.A.; Harris, H.E. RAGE is the major receptor for the proinflammatory activity of Hmgb1 in rodent macrophages. Scand. J. Immunol. 2005, 61, 1–9. [Google Scholar] [CrossRef]
- Kierdorf, K.; Fritz, G. RAGE regulation and signaling in inflammation and beyond. J. Leukoc. Biol. 2013, 94, 55–68. [Google Scholar] [CrossRef]
- Khan, M.M.; Yang, W.-L.; Wang, P. Endoplasmic reticulum stress in sepsis. Shock 2015, 44, 294–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavier, T.; Demailly, Z.; Semaille, X.; Thill, C.; Selim, J.; Veber, B.; Doguet, F.; Richard, V.; Besnier, E.; Tamion, F. A weak response to endoplasmic reticulum stress is associated with postoperative organ failure in patients undergoing cardiac surgery with cardiopulmonary bypass. Front. Med. 2020, 7, 613518. [Google Scholar] [CrossRef] [PubMed]
- Clavier, T.; Grangé, S.; Pressat-Laffouilhere, T.; Besnier, E.; Renet, S.; Fraineau, S.; Thiebaut, P.-A.; Richard, V.; Veber, B.; Tamion, F. Gene expression of protein tyrosine phosphatase 1B and endoplasmic reticulum stress during septic shock. Front. Med. 2019, 6, 240. [Google Scholar] [CrossRef] [PubMed]
- Bartolini, D.; Stabile, A.M.; Vacca, C.; Pistilli, A.; Rende, M.; Gioiello, A.; Cruciani, G.; Galli, F. Endoplasmic reticulum stress and NF-kb activation in SARS-CoV-2 infected cells and their response to antiviral therapy. IUBMB Life 2022, 74, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Puzyrenko, A.; Jacobs, E.R.; Sun, Y.; Felix, J.C.; Sheinin, Y.; Ge, L.; Lai, S.; Dai, Q.; Gantner, B.N.; Nanchal, R.; et al. Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies. Cell Stress Chaperones 2021, 26, 859–868. [Google Scholar] [CrossRef]
- Shahriari-Felordi, M.; Alikhani, H.K.; Hashemian, S.-M.R.; Hassan, M.; Vosough, M. Mini review ATF4 and GRP78 as novel molecular targets in er-stress modulation for critical COVID-19 patients. Mol. Biol. Rep. 2022, 49, 1545–1549. [Google Scholar] [CrossRef]
- Fung, T.S.; Liu, D.X. Coronavirus infection, ER stress, apoptosis and innate immunity. Front. Microbiol. 2014, 5, 296. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res. 2010, 87, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Ourradi, K.; Blythe, T.; Jarrett, C.; Barratt, S.L.; Welsh, G.I.; Millar, A.B. VEGF isoforms have differential effects on permeability of human pulmonary microvascular endothelial cells. Respir. Res. 2017, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Bansal, Y.; Kumar, R.; Bansal, G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg. Med. Chem. 2020, 28, 115327. [Google Scholar] [CrossRef]
- Shapiro, N.I.; Yano, K.; Okada, H.; Fischer, C.; Howell, M.; Spokes, K.C.; Ngo, L.; Angus, D.C.; Aird, W.C. A Prospective, Observational study of soluble FLT-1 and vascular endothelial growth factor in sepsis. Shock 2008, 29, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guérin, P.J.; McLean, A.R.D.; Rashan, S.; Lawal, A.; Watson, J.A.; Strub-Wourgaft, N.; White, N.J. Definitions matter: Heterogeneity of COVID-19 disease severity criteria and incomplete reporting compromise meta-analysis. PLoS Glob. Public Health 2021, 2, e0000561. [Google Scholar] [CrossRef]
- National Institutes of Health. Clinical Spectrum of SARS-CoV-2 Infection-COVID-19 Treatment Guidelines; National Institutes of Health: Bethesda, MD, USA, 2021; pp. 32–34.
- Shirasawa, M.; Fujiwara, N.; Hirabayashi, S.; Ohno, H.; Iida, J.; Makita, K.; Hata, Y. Receptor for advanced glycation end-products is a marker of type I lung alveolar cells. Genes Cells 2004, 9, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 2005, 83, 876–886. [Google Scholar] [CrossRef]
- Uchida, T.; Shirasawa, M.; Ware, L.B.; Kojima, K.; Hata, Y.; Makita, K.; Mednick, G.; Matthay, Z.A.; Matthay, M.A. Receptor for Advanced Glycation End-Products Is a Marker of Type I Cell Injury in Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2006, 173, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Riuzzi, F.; Sorci, G.; Sagheddu, R.; Chiappalupi, S.; Salvadori, L.; Donato, R. RAGE in the Pathophysiology of skeletal muscle. J. Cachexia Sarcopenia Muscle 2018, 9, 1213–1234. [Google Scholar] [CrossRef] [Green Version]
- Calfee, C.S.; Ware, L.B.; Eisner, M.D.; Parsons, P.E.; Thompson, B.T.; Wickersham, N.; Matthay, M.A. Network plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 2008, 63, 1083–1089. [Google Scholar] [CrossRef] [Green Version]
- Jabaudon, M.; Blondonnet, R.; Pereira, B.; Cartin-Ceba, R.; Lichtenstern, C.; Mauri, T.; Determann, R.M.; Drabek, T.; Hubmayr, R.D.; Gajic, O.; et al. Plasma sRAGE is independently associated with increased mortality in ARDS: A meta-analysis of individual patient data. Intensiv. Care Med. 2018, 44, 1388–1399. [Google Scholar] [CrossRef] [Green Version]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020, 2, 1069–1076. [Google Scholar] [CrossRef]
- Wick, K.D.; Siegel, L.; Neaton, J.D.; Oldmixon, C.; Lundgren, J.; Dewar, R.L.; Lane, H.C.; Thompson, B.T.; Matthay, M.A. RAGE has potential pathogenetic and prognostic value in nonintubated hospitalized patients with COVID-19. JCI Insight 2022, 7, e157499. [Google Scholar] [CrossRef]
- Lim, A.; Radujkovic, A.; Weigand, M.A.; Merle, U. Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COVID-19 disease severity and indicator of the need for mechanical ventilation, ARDS and mortality. Ann. Intensiv. Care 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Sabirli, R.; Koseler, A.; Goren, T.; Turkcuer, I.; Kurt, O. High GRP78 levels in Covid-19 infection: A case-control study. Life Sci. 2020, 265, 118781. [Google Scholar] [CrossRef]
- Vaage, J.; Valen, G. Pathophysiology and Mediators of Ischemia-Reperfusion Injury with Special Reference to Cardiac Surgery: A Review. Scand. J. Thorac. Cardiovasc. Surg. 1993, 27, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Choi, G.; Schoots, I.; Schultz, M.; Van Der Poll, T. Beyond sepsis: Activated protein C and ischemia–reperfusion injury. Crit. Care Med. 2004, 32, S309–S312. [Google Scholar] [CrossRef]
- LaForge, M.; Elbim, C.; Frère, C.; Hémadi, M.; Massaad, C.; Nuss, P.; Benoliel, J.-J.; Becker, C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol. 2020, 20, 515–516. [Google Scholar] [CrossRef]
- Vardakas, P.; Skaperda, Z.; Tekos, F.; Kouretas, D. ROS and COVID. Antioxidants 2022, 11, 339. [Google Scholar] [CrossRef]
- Hou, P.C.; Filbin, M.R.; Wang, H.; Ngo, L.; Huang, D.T.; Aird, W.C.; Yealy, D.M.; Angus, D.C.; Kellum, J.A.; Shapiro, N.I. Endothelial permeability and hemostasis in septic shock: Results from the ProCESS trial. Chest 2017, 152, 22–31. [Google Scholar] [CrossRef]
- Rovas, A.; Osiaevi, I.; Buscher, K.; Sackarnd, J.; Tepasse, P.-R.; Fobker, M.; Kühn, J.; Braune, S.; Göbel, U.; Thölking, G.; et al. Microvascular dysfunction in COVID-19: The MYSTIC study. Angiogenesis 2020, 24, 145–157. [Google Scholar] [CrossRef]
- Pine, A.B.; Meizlish, M.L.; Goshua, G.; Chang, C.H.; Zhang, H.; Bishai, J.; Bahel, P.; Patel, A.; Gbyli, R.; Kwan, J.M.; et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm. Circ. 2020, 10, 2045894020966547. [Google Scholar] [CrossRef]
- Vassiliou, A.; Keskinidou, C.; Jahaj, E.; Gallos, P.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S. ICU Admission Levels of Endothelial Biomarkers as Predictors of Mortality in Critically Ill COVID-19 Patients. Cells 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Sheth, A.; Modi, M.; Dawson, D.; Dominic, P. Prognostic value of cardiac biomarkers in COVID-19 infection. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.G.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N.; et al. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.; Casemiro, F.; Araujo, B.; Lima, M.; Oliveira, R.; Fernandes, F.; Gomes, A.; Gregori, D. Factors Associated with Mortality among Elderly People in the COVID-19 Pandemic (SARS-CoV-2): A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8008. [Google Scholar] [CrossRef]
- Billoir, P.; Alexandre, K.; Duflot, T.; Roger, M.; Miranda, S.; Goria, O.; Joly, L.M.; Demeyere, M.; Feugray, G.; Brunel, V.; et al. Investigation of Coagulation Biomarkers to Assess Clinical Deterioration in SARS-CoV-2 Infection. Front. Med. 2021, 8, 670694. [Google Scholar] [CrossRef]
- Prakash, J.; Bhattacharya, P.K.; Yadav, A.K.; Kumar, A.; Tudu, L.C.; Prasad, K. ROX index as a good predictor of high flow nasal cannula failure in COVID-19 patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis. J. Crit. Care 2021, 66, 102–108. [Google Scholar] [CrossRef]
Parameters | All (n = 98) | Not Critical (n = 59) | Critical (n = 39) | p-Value |
---|---|---|---|---|
Age (years) | 67 [58–73] | 61 [53–69] | 72 [64–75] | <0.0001 |
Male (n, %) | 68 (69.4) | 40 (67.8) | 28 (71.8) | 0.6742 |
Body mass index (kg/m2) | 29.2 [25.3–33.9] | 29.9 [26.1–35.2] | 29 [25.1–32.4] | 0.38 |
Obesity (BMI ≥ 30 kg/m2) (n, %) (n = 58/39) | 46 (47.4) | 29 (50) | 17 (40.2) | 0.54 |
Underlying comorbidity (n, %) | ||||
Chronic pulmonary disease | 9 (9.2) | 5 (8.5) | 4 (10.3) | 1 |
Asthma | 15 (15.3) | 12 (20.3) | 3 (7.7) | 0.09 |
Diabetes | 42 (42.9) | 24 (40.7) | 18 (46.2) | 0.6 |
Hypertension | 60 (61.2) | 35 (59.3) | 25 (64.1) | 0.63 |
Peripheral arterial disease | 3 (3.1) | 1 (1.7) | 2 (5.1) | 0.56 |
Coronaropathy | 9 (9.2) | 4 (6.8) | 5 (12.8) | 0.48 |
Smoking | 4 (4.1) | 2 (3.4) | 2 (5.1) | / |
Active neoplasia | 9 (9.2) | 7 (11.9) | 2 (5.1) | 0.31 |
COVID-19 related treatment at admission (n, %) | ||||
Corticosteroid | 90 (91.8) | 56 (94.9) | 34 (87.2) | 0.26 |
Remdesivir | 17 (17.4) | 13 (22) | 4 (10.3) | 0.13 |
Lopinavir/ritonavir | 7 (7.1) | 4 (6.8) | 3 (7.7) | 1 |
Tocilizumab | 1 (1.0) | 1 (1.7) | 0 (0) | / |
Anticoagulation therapy (n, %) | 90 (91.8) | 55 (93.2) | 35 (89.7) | 0.71 |
Prophylactic intensity | 8 (8.2) | 4 (6.7) | 4 (10.5) | |
Intermediate intensity | 61 (62.2) | 42 (70) | 19 (50.0) | |
Therapeutic intensity | 22 (22.4) | 10 (16.7) | 12 (31.6) | |
ICU transfer since the onset of symptoms (days) | 9 [6–10] | 9 [7–10] | 7 [4–10] | 0.06 |
SAPS II score | 32.5 [25–40] | 27 [22–35] | 40 [34–52] | <0.0001 |
SOFA score | 3 [1–4] | 2 [1–3] | 4 [2–6] | <0.0001 |
Non-invasive respiratory support (HFNC or NIV) (n, %) | 92 (93.9) | 59 (98.3) | 33 (86.8) | 0.8 |
PaO2/FiO2 ratio (n =) | 135 [95–165] | 144 [117–168] | 115.5 [78–159] | 0.026 |
ROX index (n = 71) | 6.5 [5.4–8.8] | 7.5 [6.0–10.3] | 5.4 [4.4–6.2] | <0.0001 |
Biological parameters | ||||
Creatinine (µmol/L) | 75 [55–101] | 65 [52–81] | 94 [76–156] | 0.003 |
Urea (mmol/L) | 7 [4.9–9.6] | 5.7 [4.5–8] | 8.9 [5.5–17.2] | 0.0007 |
Hemoglobin (g/dL) | 12.6 [11.4–13.7] | 12.6 [11.6–13.7] | 12.6 [11.2–13.6] | 0.59 |
Platelets (G/L) | 228.5 [160–287] | 236 [179–303] | 197 [138–253] | 0.02 |
Leukocytes (G/L) | 7.6 [6.0–11.3] | 7.5 [5.8–10.2] | 8.4 [5.9–12.1] | 0.5 |
C-reactive protein (mg/L) (n = 59/37) | 112 [72.5–187.5] | 122 [76–186] | 102 [63–189] | 0.82 |
Lactatemia (mmol/L) (n = 57/39) | 1.3 [1.0–1.7] | 1.3 [0.9–1.6] | 1.4 [1–1.7] | 0.11 |
Glutamic–pyruvic transaminase (U/L) | 45 [34–68] | 44 [34–60] | 50 [34–72] | 0.2 |
Glutamic–oxaloacetic transaminase (U/L) | 38 [24–65] | 43 [29–68] | 31 [23–58] | 0.1 |
Variable | Univariable Analysis | Multivariable Analysis | Multivariable Analysis with a Stepwise Selection Process | |||
---|---|---|---|---|---|---|
OR [95% CI] | OR [95% CI] | OR [95% CI] | p | OR [95% CI] | p | |
Age (per 5 years) | 1.63 [1.26–2.10] | 0.0002 | 1.6 [1.04–2.5] | 0.03 | 1.7 [1.2–2.4] | 0.04 |
Male gender | 1.21 [0.50–2.93] | 0.67 | ||||
BMI (per kg.m−2) | 0.97 [0.91–1.04] | 0.40 | ||||
SAPS-II score | 1.10 [1.05–1.15] | <0.0001 | 1.06 [0.99–1.13] | 0.10 | ||
No corticosteroid | 2.75 [0.62–12.2] | 0.19 | ||||
No anticoagulation | 1.57 [0.37–6.69] | 0.54 | ||||
Creatinine (per µmol/L) | 1.02 [1.00–1.03] | 0.007 | 0.99 [0.98–1.01] | 0.4 | ||
Troponin (per pg/mL) | 1.05 [1.01–1.08] | 0.006 | 1.02 [0.98–1.07] | 0.25 | ||
NT-pro-BNP (per 10 pg/mL) | 1.002 [0.99–1.005] | 0.12 | 1.00 [0.99–1.004] | 0.85 | ||
sRAGE (per 10 pg/mL) | 1.03 [1.02–1.05] | <0.0001 | 1.04 [1.01–1.06] | 0.005 | 1.03 [1.01–1.05] | 0.001 |
IL-6 (per 5 pg/mL) | 1.02 [0.99–1.05] | 0.1 | 1.02 [0.99–1.05] | 0.13 | ||
VEGF (per 5 pg/mL) | 0.99 [0.99–1.004] | 0.81 | ||||
GRP78 (per 10 ng/mL) | 0.99 [0.99–1.01] | 0.83 | 0.99 [0.99–1.01] | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besnier, E.; Brunel, V.; Thill, C.; Leprêtre, P.; Bellien, J.; Demailly, Z.; Renet, S.; Tamion, F.; Clavier, T. Soluble RAGE as a Prognostic Marker of Worsening in Patients Admitted to the ICU for COVID-19 Pneumonia: A Prospective Cohort Study. J. Clin. Med. 2022, 11, 4571. https://doi.org/10.3390/jcm11154571
Besnier E, Brunel V, Thill C, Leprêtre P, Bellien J, Demailly Z, Renet S, Tamion F, Clavier T. Soluble RAGE as a Prognostic Marker of Worsening in Patients Admitted to the ICU for COVID-19 Pneumonia: A Prospective Cohort Study. Journal of Clinical Medicine. 2022; 11(15):4571. https://doi.org/10.3390/jcm11154571
Chicago/Turabian StyleBesnier, Emmanuel, Valéry Brunel, Caroline Thill, Perrine Leprêtre, Jérémy Bellien, Zoe Demailly, Sylvanie Renet, Fabienne Tamion, and Thomas Clavier. 2022. "Soluble RAGE as a Prognostic Marker of Worsening in Patients Admitted to the ICU for COVID-19 Pneumonia: A Prospective Cohort Study" Journal of Clinical Medicine 11, no. 15: 4571. https://doi.org/10.3390/jcm11154571
APA StyleBesnier, E., Brunel, V., Thill, C., Leprêtre, P., Bellien, J., Demailly, Z., Renet, S., Tamion, F., & Clavier, T. (2022). Soluble RAGE as a Prognostic Marker of Worsening in Patients Admitted to the ICU for COVID-19 Pneumonia: A Prospective Cohort Study. Journal of Clinical Medicine, 11(15), 4571. https://doi.org/10.3390/jcm11154571