Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Collection
2.2. Identifying Study Groups and Processing ECG Data
2.3. The Proposed Deep Neural Network
2.4. Outcomes of Interest
2.5. Statistical Analysis
3. Results
3.1. Dataset Characteristics
3.2. Model Screening Performance
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orejarena, L.A.; Vidaillet, H.; DeStefano, F., Jr.; Nordstrom, D.L.; Vierkant, R.A.; Smith, P.N.; Hayes, J.J. Paroxysmal supraventricular tachycardia in the general population. J. Am. Coll. Cardiol. 1998, 31, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Rehorn, M.; Sacks, N.C.; Emden, M.R.; Healey, B.; Preib, M.T.; Cyr, P.L.; Pokorney, S.D. Prevalence and incidence of patients with paroxysmal supraventricular tachycardia in the United States. J. Cardiovasc. Electrophysiol. 2021, 32, 2199–2206. [Google Scholar] [CrossRef]
- Chiang, J.K.; Kao, H.H.; Kao, Y.H. Association of paroxysmal supraventricular tachycardia with ischemic stroke: A national case-control study. J. Stroke Cerebrovasc. Dis. 2017, 26, 1493–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, N.C.; Everson, K.; Emden, M.R.; Cyr, P.L.; Wood, D.R.; Raza, S.; Wood, K.A.; Pokorney, S.D. Disparities in the management of newly diagnosed paroxysmal supraventricular tachycardia for women versus men in the United States. J. Am. Heart Assoc. 2020, 9, e015910. [Google Scholar] [CrossRef]
- Page, R.L.; Joglar, J.A.; Caldwell, M.A.; Calkins, H.; Conti, J.B.; Deal, B.J.; Estes, N.A., III; Field, M.E.; Goldberger, Z.D.; Hammill, S.C.; et al. Evidence Review Committee Chairdouble d. 2015 ACC/AHA/HRS Guideline for the management of adult patients with supraventricular tachycardia: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2016, 133, e506–e574. [Google Scholar]
- Kamel, H.; Elkind, M.S.; Bhave, P.D.; Navi, B.B.; Okin, P.M.; Iadecola, C.; Devereux, R.B.; Fink, M.E. Paroxysmal supraventricular tachycardia and the risk of ischemic stroke. Stroke 2013, 44, 1550–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.P.; Kondur, A.; Gopinathannair, R.; Kamerzell, T.; Mansour, M.; Mahapatra, S.; Bartus, K.; Lakkireddy, D. Is paroxysmal supraventricular tachycardia truly benign? Insightful association between PSVT and stroke from a National Inpatient Database Study. J. Interv. Card. Electrophysiol. 2020, 59, 35–41. [Google Scholar] [CrossRef]
- Geczy, T.; RamdatMisier, N.L.; Szili-Torok, T. Contact-force-sensing-based radiofrequency catheter ablation in paroxysmal supraventricular tachycardias (COBRA-PATH): A randomized controlled trial. Trials 2020, 21, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadish, A.; Passman, R. Mechanisms and management of paroxysmal supraventricular tachycardia. Cardiol. Rev. 1999, 7, 254–264. [Google Scholar] [CrossRef]
- Teplitzky, B.A.; McRoberts, M.; Ghanbari, H. Deep learning for comprehensive ECG annotation. Heart Rhythm 2020, 17 Pt B, 881–888. [Google Scholar] [CrossRef]
- Al’Aref, S.J.; Anchouche, K.; Singh, G.; Slomka, P.J.; Kolli, K.K.; Kumar, A.; Pandey, M.; Maliakal, G.; van Rosendael, A.R.; Beecy, A.N.; et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur. Heart J. 2019, 40, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Baloglu, U.B.; Talo, M.; Yildirim, O.; Tan, R.S.; Acharya, U.R. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit. Lett. 2019, 122, 23–30. [Google Scholar] [CrossRef]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 2021, 18, 465–478. [Google Scholar] [CrossRef]
- Kwon, J.M.; Cho, Y.; Jeon, K.H.; Cho, S.; Kim, K.H.; Baek, S.D.; Jeung, S.; Park, J.; Oh, B.H. A deep learning algorithm to detect anaemia with ECGs: A retrospective, multicentre study. Lancet Digit. Health 2020, 2, e358–e367. [Google Scholar] [CrossRef]
- Sridhar, N.; Shoeb, A.; Stephens, P.; Kharbouch, A.; Shimol, D.B.; Burkart, J.; Ghoreyshi, A.; Myers, L. Deep learning for automated sleep staging using instantaneous heart rate. NPJ Digit. Med. 2020, 3, 106. [Google Scholar] [CrossRef]
- Feeny, A.K.; Chung, M.K.; Madabhushi, A.; Attia, Z.I.; Cikes, M.; Firouznia, M.; Friedman, P.A.; Kalscheur, M.M.; Kapa, S.; Narayan, S.M.; et al. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circ. Arrhythm. Electrophysiol. 2020, 13, e007952. [Google Scholar] [CrossRef]
- Sun, J.Y.; Qiu, Y.; Guo, H.C.; Hua, Y.; Shao, B.; Qiao, Y.C.; Guo, J.; Ding, H.L.; Zhang, Z.Y.; Miao, L.F.; et al. A method to screen left ventricular dysfunction through ECG based on convolutional neural network. J. Cardiovasc. Electrophysiol. 2021, 32, 1095–1102. [Google Scholar] [CrossRef]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc. Int. Conf. Mach. Learn. 2015, 37, 448–456. [Google Scholar]
- Nagi, J.; Ducatelle, F.; Di Caro, G.; Meier, C.U.; Giusti, A.; Nagi, F.; Schmidhuber, J.L.G. Max-pooling convolutional neural networks for vision-based hand gesture recognition. In Proceedings of the 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 16–18 November 2011; pp. 342–347. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E.H. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somani, S.; Russak, A.J.; Richter, F.; Zhao, S.; Vaid, A.; Chaudhry, F.; De Freitas, J.K.; Naik, N.; Miotto, R.; Nadkarni, G.N.; et al. Deep learning and the electrocardiogram: Review of the current state-of-the-art. Europace 2021, 23, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.-Y.; Kwon, J.-M.; Jeon, K.-H.; Cho, Y.-H.; Shin, J.-H.; Lee, Y.-J.; Jung, M.-S.; Ban, J.-H.; Kim, K.-H.; Lee, S.Y.; et al. Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm. Eur. Heart J. Digit. Health 2021, 2, 290–298. [Google Scholar] [CrossRef]
Parameters | Control (n = 1794) | PSVT (n = 407) | Total (n = 2201) | p-Value |
---|---|---|---|---|
Age (years) | 47.2 ± 16.5 | 52.7 ± 14.9 | 48.2 ± 16.4 | <0.001 |
Gender (male, %) | 835 (46.5) | 183 (45.0) | 1018 (46.3) | 0.564 |
Heart rate | 80.6 ± 14.7 | 78.0 ± 18.8 | 80.1 ± 14.6 | 0.001 |
P–R interval | 149.5 ± 19.1 | 151.0 ± 22.3 | 149.8 ± 19.7 | 0.189 |
QRS interval | 84.7 ± 11.7 | 85.1 ± 11.7 | 84.8 ± 11.7 | 0.466 |
QT interval | 363.6 ± 32.0 | 361.0 ± 33.1 | 363.1 ± 32.2 | 0.134 |
QTc | 416.7 ± 25.9 | 411.3 ± 26.7 | 415.8 ± 26.1 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Dang, S.; Chen, S.; Sun, J.-Y.; Wang, R.-X.; Pan, F. Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms. J. Clin. Med. 2022, 11, 4578. https://doi.org/10.3390/jcm11154578
Wang L, Dang S, Chen S, Sun J-Y, Wang R-X, Pan F. Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms. Journal of Clinical Medicine. 2022; 11(15):4578. https://doi.org/10.3390/jcm11154578
Chicago/Turabian StyleWang, Lei, Shipeng Dang, Shuangxiong Chen, Jin-Yu Sun, Ru-Xing Wang, and Feng Pan. 2022. "Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms" Journal of Clinical Medicine 11, no. 15: 4578. https://doi.org/10.3390/jcm11154578
APA StyleWang, L., Dang, S., Chen, S., Sun, J. -Y., Wang, R. -X., & Pan, F. (2022). Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms. Journal of Clinical Medicine, 11(15), 4578. https://doi.org/10.3390/jcm11154578