Preoperative Factors Associated with Target Lesion Revascularization following Endovascular Therapy of the Superficial Femoral Artery
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Cohort
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Statistical Analysis
3.1. Primary Analysis
3.2. Sensitivity Analysis
3.3. Missing Values
3.4. Software
4. Results
4.1. Patient Cohort and Frequency of Interventions
4.2. Primary Analysis of Classical and Non-Classical Risk Factors
4.3. Risk for CD-TLR
4.4. Secondary and Sensitivity Analysis of Risk for Multiple Interventions
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Bjorck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef]
- Tadros, R.O.; Vouyouka, A.G.; Ting, W.; Teodorescu, V.; Kim, S.Y.; Marin, M.L.; Pl, F. A Review of Superficial Femoral Artery Angioplasty and Stenting. J. Vasc Med. Surg. 2015, 3, 2–5. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. Editor’s Choice—2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 305–368. [Google Scholar] [CrossRef]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.-B.; Suresh, K.R.; Murad, M.H.; et al. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur. J. Vasc. Endovasc. Surg. 2019, 58, S1–S109. [Google Scholar] [CrossRef]
- Writing Committee, M.; Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. Vasc. Med. 2017, 22, NP1–NP43. [Google Scholar] [CrossRef]
- Laird, J.R.; Katzen, B.T.; Scheinert, D.; Lammer, J.; Carpenter, J.; Buchbinder, M.; Dave, R.; Ansel, G.; Lansky, A.; Cristea, E.; et al. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery: Twelve-month results from the RESILIENT randomized trial. Circulation Cardiovasc. Interv. 2010, 3, 267–276. [Google Scholar] [CrossRef]
- Schillinger, M.; Sabeti, S.; Loewe, C.; Dick, P.; Amighi, J.; Mlekusch, W.; Schlager, O.; Cejna, M.; Lammer, J.; Minar, E. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 2006, 354, 1879–1888. [Google Scholar] [CrossRef]
- Tepe, G.; Laird, J.; Schneider, P.; Brodmann, M.; Krishnan, P.; Micari, A.; Metzger, C.; Scheinert, D.; Zeller, T.; Cohen, D.J.; et al. Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial. Circulation 2015, 131, 495–502. [Google Scholar] [CrossRef]
- Modi, K.; Soos, M.P.; Mahajan, K. Stent Thrombosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Rocha-Singh, K.J.; Zeller, T.; Jaff, M.R. Peripheral arterial calcification: Prevalence, mechanism, detection, and clinical implications. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2014, 83, E212–E220. [Google Scholar] [CrossRef]
- Zain, M.A.; Jamil, R.T.; Siddiqui, W.J. Neointimal Hyperplasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Anand, S.S.; Caron, F.; Eikelboom, J.W.; Bosch, J.; Dyal, L.; Aboyans, V.; Abola, M.T.; Branch, K.R.H.; Keltai, K.; Bhatt, D.L.; et al. Major Adverse Limb Events and Mortality in Patients With Peripheral Artery Disease: The COMPASS Trial. J. Am. Coll. Cardiol. 2018, 71, 2306–2315. [Google Scholar] [CrossRef]
- Hiatt, W.R.; Fowkes, F.G.; Heizer, G.; Berger, J.S.; Baumgartner, I.; Held, P.; Katona, B.G.; Mahaffey, K.W.; Norgren, L.; Jones, W.S.; et al. Ticagrelor versus Clopidogrel in Symptomatic Peripheral Artery Disease. N. Engl. J. Med. 2017, 376, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; Macfadyen, J.G.; et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet 2009, 373, 1175–1182. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Nault, P.; Giugliano, R.P.; Keech, A.C.; Pineda, A.L.; Kanevsky, E.; Kuder, J.; Murphy, S.A.; Jukema, J.W.; Lewis, B.S.; et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation 2018, 137, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Saely, C.H.; Schindewolf, M.; Zanolin, D.; Heinzle, C.F.; Vonbank, A.; Silbernagel, G.; Leiherer, A.; Drexel, H.; Baumgartner, I. Single and combined effects of peripheral artery disease and of type 2 diabetes mellitus on the risk of cardiovascular events: A prospective cohort study. Atherosclerosis 2018, 279, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Krankenberg, H.; Tubler, T.; Sixt, S.; Fischer, M.; Schmiedel, R.; Schulte, K.L.; Balzer, J.O.; Kieback, A.; Fiehn, E.; Wittenberg, G.; et al. German multicenter real-world registry of stenting for superficial femoral artery disease: Clinical results and predictive factors for revascularization. J. Endovasc. Ther. Off. J. Int. Soc. Endovasc. Spec. 2014, 21, 463–471. [Google Scholar] [CrossRef]
- Suzuki, K.; Iida, O.; Soga, Y.; Hirano, K.; Inoue, N.; Uematsu, M.; Yokoi, H.; Muramatsu, T.; Nanto, S.; Nobuyoshi, M.; et al. Long-term results of the S.M.A.R.T. Control(TM) stent for superficial femoral artery lesions, J-SMART registry. Circ. J. Off. J. Jpn. Circ. Soc. 2011, 75, 939–944. [Google Scholar] [CrossRef]
- Iida, O.; Uematsu, M.; Soga, Y.; Hirano, K.; Suzuki, K.; Yokoi, H.; Muramatsu, T.; Inoue, N.; Nanto, S.; Nagata, S. Timing of the restenosis following nitinol stenting in the superficial femoral artery and the factors associated with early and late restenoses. Catheter. Cardiovasc. Interv. Off. J. Soc. Angiogr. Interv. 2011, 78, 611–617. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2019, 41, 111–188. [Google Scholar] [CrossRef]
- Ogawa, Y.; Yokoi, H.; Ohki, T.; Kichikawa, K.; Nakamura, M.; Komori, K.; Nanto, S.; O’Leary, E.E.; Lottes, A.E.; Saunders, A.T.; et al. Impact of Chronic Renal Failure on Safety and Effectiveness of Paclitaxel-Eluting Stents for Femoropopliteal Artery Disease: Subgroup Analysis from Zilver PTX Post-Market Surveillance Study in Japan. CardioVascular Interv. Radiol. 2017, 40, 1669–1677. [Google Scholar] [CrossRef]
- Zeller, T.; Dake, M.D.; Tepe, G.; Brechtel, K.; Noory, E.; Beschorner, U.; Kultgen, P.L.; Rastan, A. Treatment of Femoropopliteal In-Stent Restenosis With Paclitaxel-Eluting Stents. JACC Cardiovasc. Interv. 2013, 6, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.I.; Mukhopadhyay, S.; Guest, J.M.; Conrad, M.F.; Watkins, M.T.; Kwolek, C.J.; LaMuraglia, G.M.; Cambria, R.P. Impact of severe chronic kidney disease on outcomes of infrainguinal peripheral arterial intervention. J. Vasc. Surg. 2014, 59, 368–375. [Google Scholar] [CrossRef] [PubMed]
Interventions | n = 781 | % |
---|---|---|
1 | 662 | 84.7 |
2 | 93 | 11.9 |
3 | 20 | 2.6 |
>3 | 6 | 0.8 |
Baseline | n | No CD-TLR | n | CD-TLR | Mann–Whitney Statistic, Mean Difference or Risk Difference (95% CI) | p-Value |
---|---|---|---|---|---|---|
Gender (female) | 662 | 243 (36.7) | 119 | 55 (46.2) | −9.5 (−19.2 to 0.2) | 0.05 |
Age (at first intervention) | 662 | 73.5 ± 11.2 | 119 | 70.9 ± 12.4 | 2.55 (0.330 to 4.77) | 0.024 |
BMI [kg/m2] | 637 | 25.7 ± 4.71 | 119 | 25.8 ± 4.46 | −0.104 (−1.02 to 0.811) | 0.82 |
Target limb | 658 | 119 | 0.43 | |||
left | 314 (47.7) | 62 (52.1) | −4.4 (−14.1 to 5.4) | |||
right | 344 (52.3) | 57 (47.9) | 4.4 (−5.4 to 14.1) | |||
Stent (index procedure) | 662 | 403 (60.9) | 119 | 98 (82.4) | 2.99 (1.850 to 4.844) | <0.0001 |
Diabetes | 655 | 224 (34.2) | 119 | 48 (40.3) | −6.1 (−15.7 to 3.4) | 0.21 |
Hypertension | 658 | 567 (86.2) | 119 | 107 (89.9) | −3.7 (−9.8 to 2.3) | 0.31 |
Smoking status | 641 | 119 | 0.80 | |||
never | 236 (36.8) | 44 (37.0) | −0.2 (−9.6 to 9.3) | |||
ex | 167 (26.1) | 34 (28.6) | −2.5 (−11.3 to 6.3) | |||
active | 238 (37.1) | 41 (34.5) | 2.7 (−6.6 to 12.0) | |||
CAD | 655 | 249 (38.0) | 119 | 51 (42.9) | −4.8 (−14.5 to 4.8) | 0.36 |
CVD | 657 | 71 (10.8) | 119 | 14 (11.8) | −1.0 (−7.2 to 5.3) | 0.75 |
Dyslipidemia/statin/ezetimibe | 652 | 502 (77.0) | 119 | 103 (86.6) | −9.6 (−16.5 to −2.6) | 0.021 |
Within 30 days | ||||||
Creatinine P [μmol/L] | 658 | 83.5 [68.0, 110] | 118 | 84.5 [69.0, 117] | 0.472 (0.417 to 0.529) | 0.34 |
eGFR (calculated) [mL/min] | 658 | 68.5 ± 24.8 | 118 | 66.0 ± 27.1 | 2.51 (−2.43 to 7.45) | 0.32 |
CRP [mg/L] | 257 | 24.0 [7.00, 59.0] | 44 | 10.5 [4.00, 54.5] | 0.567 (0.475 to 0.654) | 0.15 |
Triglyceride [mmol/L] | 540 | 1.48 [1.08, 2.14] | 101 | 1.63 [1.13, 2.49] | 0.459 (0.399 to 0.520) | 0.19 |
Cholesterol [mmol/L] | 541 | 4.42 ± 1.43 | 101 | 4.40 ± 1.23 | 0.014 (−0.284 to 0.312) | 0.93 |
LDL-C [mmol/L] | 541 | 2.28 ± 1.17 | 100 | 2.23 ± 1.03 | 0.046 (−0.200 to 0.292) | 0.71 |
HDL-C [mmol/L] | 542 | 1.28 ± 0.426 | 100 | 1.28 ± 0.469 | 0.000 (−0.092 to 0.093) | 1.00 |
HbA1c [%] | 525 | 6.00 [5.70, 6.70] | 100 | 6.00 [5.60, 6.78] | 0.499 (0.438 to 0.560) | 0.98 |
Within 180 days | ||||||
Creatinine P [μmol/L] | 657 | 83.0 [68.0, 110] | 119 | 85.0 [69.0, 115] | 0.472 (0.417 to 0.529) | 0.34 |
eGFR | 657 | 68.5 ± 24.8 | 119 | 66.0 ± 27.0 | 2.53 (−2.39 to 7.45) | 0.31 |
CRP [mg/L] | 322 | 18.0 [5.00, 54.0] | 68 | 16.0 [5.00, 46.5] | 0.532 (0.457 to 0.606) | 0.40 |
Triglyceride [mmol/L] | 557 | 1.48 [1.08, 2.14] | 110 | 1.61 [1.14, 2.46] | 0.463 (0.405 to 0.522) | 0.22 |
Cholesterol [mmol/L] | 559 | 4.42 ± 1.43 | 110 | 4.36 ± 1.24 | 0.057 (-0.230 to 0.345) | 0.70 |
LDL-C [mmol/L] | 558 | 2.30 ± 1.18 | 110 | 2.24 ± 1.00 | 0.069 (-0.168 to 0.305) | 0.57 |
HDL-C [mmol/L] | 558 | 1.28 ± 0.426 | 110 | 1.27 ± 0.459 | 0.010 (-0.078 to 0.099) | 0.82 |
HbA1c [%] | 545 | 6.10 [5.70, 6.70] | 106 | 6.15 [5.70, 7.10] | 0.487 (0.427 to 0.546) | 0.66 |
Risk Factor | p-Value | |
---|---|---|
Female gender | 1.75 (1.15 to 2.66) | 0.009 |
Age (per decade) | 0.67 (0.54 to 0.83) | <0.001 |
Dyslipidemia | 1.83 (1.03 to 3.25) | 0.039 |
eGFR (=60 and <90 vs. =90) | 2.12 (1.14 to 3.93) | 0.017 |
eGFR (=30 and <60 vs. =90) | 2.41 (1.21 to 4.83) | 0.013 |
eGFR (<30 vs. =90) | 3.80 (1.64 to 8.81) | 0.002 |
Risk Factor | Multiple Imputation (180 Days) | Available Case | Complete Case | |||
---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | |
Female gender | 1.75 (1.15 to 2.66) | 0.009 | 1.69 (1.11 to 2.57) | 0.014 | 0.18 (0.01 to 4.27) | 0.30 |
Age (per decade) | 0.67 (0.54 to 0.84) | <0.001 | 0.67 (0.54 to 0.83) | <0.001 | 0.59 (0.43 to 0.83) | 0.002 |
Dyslipidemia | 1.82 (1.03 to 3.23) | 0.041 | 1.89 (1.08 to 3.52) | 0.034 | 2.11 (1.05 to 4.76) | 0.05 |
eGFR (=60 and <90 vs. =90) | 2.14 (1.16 to 3.97) | 0.016 | 2.18 (1.19 to 4.11) | 0.014 | 2.14 (1.08 to 4.33) | 0.031 |
eGFR (=30 and <60 vs. =90) | 2.36 (1.18 to 4.71) | 0.015 | 2.40 (1.21 to 4.87) | 0.013 | 2.50 (1.15 to 5.52) | 0.022 |
eGFR (<30 vs. =90) | 3.72 (1.61 to 8.63) | 0.002 | 3.86 (1.64 to 8.93) | 0.002 | 5.55 (1.85 to 16.19) | 0.002 |
Female gender × age (per decade) | 1.38 (0.90 to 2.15) | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaspar, M.; Bott, A.; Rastan, A.; Dopheide, J.F.; Drexel, H.; Schindewolf, M. Preoperative Factors Associated with Target Lesion Revascularization following Endovascular Therapy of the Superficial Femoral Artery. J. Clin. Med. 2022, 11, 4606. https://doi.org/10.3390/jcm11154606
Kaspar M, Bott A, Rastan A, Dopheide JF, Drexel H, Schindewolf M. Preoperative Factors Associated with Target Lesion Revascularization following Endovascular Therapy of the Superficial Femoral Artery. Journal of Clinical Medicine. 2022; 11(15):4606. https://doi.org/10.3390/jcm11154606
Chicago/Turabian StyleKaspar, Mathias, Alexander Bott, Aljoscha Rastan, Joern Fredrik Dopheide, Heinz Drexel, and Marc Schindewolf. 2022. "Preoperative Factors Associated with Target Lesion Revascularization following Endovascular Therapy of the Superficial Femoral Artery" Journal of Clinical Medicine 11, no. 15: 4606. https://doi.org/10.3390/jcm11154606
APA StyleKaspar, M., Bott, A., Rastan, A., Dopheide, J. F., Drexel, H., & Schindewolf, M. (2022). Preoperative Factors Associated with Target Lesion Revascularization following Endovascular Therapy of the Superficial Femoral Artery. Journal of Clinical Medicine, 11(15), 4606. https://doi.org/10.3390/jcm11154606