Skeletal, Dentoalveolar and Dental Changes after “Mini-Screw Assisted Rapid Palatal Expansion” Evaluated with Cone Beam Computed Tomography
Abstract
:1. Introduction
2. Material and Methods
2.1. Methodology
- –
- In the coronal plane: For the first premolar and the first molar: cuts were made at the most anterior section where the crown and palatal root can be seen at their greatest length. For the second premolar: in the most anterior section showing maximum length of its root (Figure 2).
- –
2.2. Statistical Analysis
3. Results
3.1. Radiographic Measurements
3.2. Cast Measurements
4. Discussion
4.1. Skeletal Changes
4.2. Dentoalveolar Changes
4.3. Dental Changes
5. Conclusions
- MARPE with tooth bone-borne expanders is an effective method for treating maxillary deficiency in adolescent patients with incomplete ossification of the midpalatal suture, observing a significant maxillary expansion.
- Although, some periodontal or dentoalveolar changes such as buccal bone thickness reduction were observed radiographically after treatment, none of these effects were clinically detectable.
- Maxillary deficiency correction with MARPE resulted in a larger skeletal expansion, with reduced dentoalveolar and dental effects and the buccal alveolar crest remained practically unchanged.
- Tendency of parallel midpalatal suture opening pattern was observed after treatment in the coronal and axial view.
- Aside from the use of tooth bone support for maxillary expansion, no significant dental inclination effect was observed after treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hawes, R.; Kutin, G. Posterior Cross-Bites in the Deciduous and Mixed Dentitions. Am. J. Orthod. 1969, 56, 491–504. [Google Scholar]
- Egermark-Eriksson, I.; Carlsson, G.E.; Magnusson, T.; Thilander, B. A Longitudinal Study on Malocclusion in Relation to Signs and Symptoms of Cranio-Mandibular Disorders in Children and Adolescents. Eur. J. Orthod. 1990, 12, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Brunelle, J.A.; Bhat, M.; Lipton, J.A. Prevalence and Distribution of Selected Occlusal Characteristics in the US Population, 1988–1991. J. Dent. Res. 1996, 75, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Filho, O.G.; Santamaria, M.; Capelozza Filho, L. Epidemiology of Posterior Crossbite in the Primary Dentition. J. Clin. Pediatr. Dent. 2007, 32, 73–78. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.A. Maxillary Transverse Deficiency. Am. J. Orthod. Dentofac. Orthop. 2000, 117, 567–570. [Google Scholar] [CrossRef]
- Consolaro, A.; Consolaro, R.B. Jaws Can Be Referred to as Narrow or Hypoplastic, but the Term “Atresia” is Inaccurate! Dental Press J. Orthod. 2018, 23, 19–23. [Google Scholar] [CrossRef]
- Andrucioli, M.C.D.; Matsumoto, M.A.N. Transverse Maxillary Deficiency: Treatment Alternatives in Face of Early Skeletal Maturation. Dental Press J. Orthod. 2020, 25, 70–79. [Google Scholar] [CrossRef]
- Brunetto, D.P.; Sant’Anna, E.F.; Machado, A.W.; Moon, W. Non-Surgical Treatment of Transverse Deficiency in Adults Using Microimplant-Assisted Rapid Palatal Expansion (MARPE). Dental Press J. Orthod. 2017, 22, 110–125. [Google Scholar] [CrossRef]
- Modëer, T.; Odenrtck, L.; Lindner, A. Sucking Habits and Their Relation to Posterior Cross-bite in 4-year-old Children. Eur. J. Oral Sci. 1982, 90, 323–328. [Google Scholar] [CrossRef]
- Yllmaz, A.; Arman-Özçlrplcl, A.; Erken, S.; Polat-Özsoy, Ö. Comparison of Short-Term Effects of Mini-Implant-Supported Maxillary Expansion Appliance with Two Conventional Expansion Protocols. Eur. J. Orthod. 2015, 37, 556–564. [Google Scholar] [CrossRef]
- Haas, A.J. The Treatment of Maxillary Deficiency by Opening the Midpalatal Suture. Angle Orthod. 1965, 35, 200–217. [Google Scholar] [PubMed]
- Lagravère, M.O.; Carey, J.; Heo, G.; Toogood, R.W.; Major, P.W. Transverse, Vertical, and Anteroposterior Changes from Bone-Anchored Maxillary Expansion vs. Traditional Rapid Maxillary Expansion: A Randomized Clinical Trial. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 304.e1–304.e12. [Google Scholar] [CrossRef]
- Franchi, L.; Pavoni, C.; Faltin, K.; McNamara, J.A.; Cozza, P. Long-Term Skeletal and Dental Effects and Treatment Timing for Functional Appliances in Class II Malocclusion. Angle Orthod. 2013, 83, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, G.; Fu, Z.; Ma, L.; Li, W. Cone-Beam Computed Tomography Assessment of Lower Facial Asymmetry in Unilateral Cleft Lip and Palate and Non-Cleft Patients with Class III Skeletal Relationship. PLoS ONE 2015, 10, e0130235. [Google Scholar] [CrossRef]
- Melsen, B.; Melsen, F. The Postnatal Development of the Palatomaxillary Region Studied on Human Autopsy Material. Am. J. Orthod. 1982, 82, 329–342. [Google Scholar] [CrossRef]
- Thilander, B. Palatal Suture Closure in Man from 15 to 35 Years of Age. Am. J. Orthod. 1977, 72, 42–52. [Google Scholar]
- Erverdi, N.; Okar, I.; Kücükkeles, N.; Arbak, S. A Comparison of Two Different Rapid Palatalexpansion Techniques from the Point of Root Resorption. Am. J. Orthod. Dentofac. Orthop. 1994, 106, 47–51. [Google Scholar] [CrossRef]
- Schuster, G.; Borel-Scherf, I.; Schop, P.M. Frequency of and Complications in the Use of RPE Appliances—Results of a Survey in the Federal State of Hesse, Germany. J. Orofac. Orthop. 2005, 66, 148–161. [Google Scholar] [CrossRef]
- Harzer, W.; Schneider, M.; Gedrange, T.; Tausche, E. Direct Bone Placement of the Hyrax Fixation Screw for Surgically Assisted Rapid Palatal Expansion (SARPE). J. Oral Maxillofac. Surg. 2006, 64, 1313–1317. [Google Scholar] [CrossRef]
- Garib, D.G.; Henriques, J.F.C.; Janson, G.; de Freitas, M.R.; Fernandes, A.Y. Periodontal Effects of Rapid Maxillary Expansion with Tooth-Tissue-Borne and Tooth-Borne Expanders: A Computed Tomography Evaluation. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 749–758. [Google Scholar] [CrossRef]
- Tausche, E.; Hansen, L.; Hietschold, V.; Lagravère, M.O.; Harzer, W. Three-Dimensional Evaluation of Surgically Assisted Implant Bone-Borne Rapid Maxillary Expansion: A Pilot Study. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Baysal, A.; Karadede, I.; Hekimoglu, S.; Ucar, F.; Ozer, T.; Veli, I.; Uysal, T. Evaluation of Root Resorption Following Rapid Maxillary Expansion Using Cone-Beam Computed Tomography. Angle Orthod. 2012, 82, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Fishman, L.S. Radiographic Evaluation of Skeletal Maturation. A Clinically Oriented Method Based on Hand-Wirst Films. Angle Orthod. 1982, 52, 88–112. [Google Scholar]
- Lee, K.J.; Park, Y.C.; Park, J.Y.; Hwang, W.S. Miniscrew-Assisted Nonsurgical Palatal Expansion before Orthognathic Surgery for a Patient with Severe Mandibular Prognathism. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.M.; Park, Y.C.; Lee, K.J.; Kim, K.H.; Choi, Y.J. Stability of Dental, Alveolar, and Skeletal Changes after Miniscrew-Assisted Rapid Palatal Expansion. Korean J. Orthod. 2017, 47, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Garib, D.G.; Henriques, J.F.C.; Janson, G.; Freitas, M.R.; Coelho, R.A. Rapid Maxillary Expansion—Tooth Tissue-Borne versus Tooth-Borne Expanders: A Computed Tomography Evaluation of Dentoskeletal Effects. Angle Orthod. 2005, 75, 548–557. [Google Scholar] [CrossRef]
- Gurel, H.G.; Memili, B.; Erkan, M.; Sukurica, Y. Long-Term Effects of Rapid Maxillary Expansion Followed by Fixed Appliances. Angle Orthod. 2010, 80, 5–9. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, W.; Shen, M.; Sun, C.; Li, J.; Chen, N. Cone Beam Computed Tomographic Analyses of Alveolar Bone Anatomy at the Maxillary Anterior Region in Chinese Adults. J. Biomed. Res. 2014, 28, 498–505. [Google Scholar] [CrossRef]
- Gunyuz Toklu, M.; Germec-Cakan, D.; Tozlu, M. Periodontal, Dentoalveolar, and Skeletal Effects of Tooth-Borne and Tooth-Bone-Borne Expansion Appliances. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 97–109. [Google Scholar] [CrossRef]
- Carlson, C.; Sung, J.; McComb, R.W.; MacHado, A.W.; Moon, W. Microimplant-Assisted Rapid Palatal Expansion Appliance to Orthopedically Correct Transverse Maxillary Deficiency in an Adult. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 716–728. [Google Scholar] [CrossRef]
- Choi, S.H.; Shi, K.K.; Cha, J.Y.; Park, Y.C.; Lee, K.J. Nonsurgical Miniscrew-Assisted Rapid Maxillary Expansion Results in Acceptable Stability in Young Adults. Angle Orthod. 2016, 86, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.I.; Kim, S.C.; Chae, J.M.; Kang, K.H.; Cho, J.W.; Chang, N.Y.; Lee, K.Y.; Cho, J.H. Relationship between Maturation Indices and Morphology of the Midpalatal Suture Obtained Using Cone-Beam Computed Tomography Images. Korean J. Orthod. 2016, 46, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, B.; Ludwig, B.; Vasudavan, S.; Nienkemper, M.; Drescher, D. Application and Effectiveness of a Mini-Implant- and Tooth-Borne Rapid Palatal Expansion Device: The Hybrid Hyrax. World J. Orthod. 2010, 11, 323–330. [Google Scholar]
- Ngan, P.; Nguyen, U.K.; Nguyen, T.; Tremont, T.; Martin, C. Skeletal, Dentoalveolar, and Periodontal Changes of Skeletally Matured Patients with Maxillary Deficiency Treated with Microimplant-Assisted Rapid Palatal Expansion Appliances: A Pilot Study. APOS Trends Orthod. 2018, 8, 71–85. [Google Scholar] [CrossRef]
- Silva-Ruz, I.; Tort-Barahona, F.; Acuña-Aracena, P.; Villalon-Pooley, P. Disyunción Maxilar Rápida Asistida Con Microtornillos En Pacientes En Crecimiento Con Deficiencia Maxilar Transversal. Int. J. Interdiscip. Dent. 2021, 14, 61–66. [Google Scholar] [CrossRef]
- Wilmes, B.; Ludwig, B.; Vasudavan, S.; Nienkemper, M.; Drescher, D. The T-Zone: Median vs. Paramedian Insertion of Palatal Mini-Implants. J. Clin. Orthod. 2016, 50, 543–551. [Google Scholar]
- Ludwig, B.; Baumgaertel, S.; Zorkun, B.; Bonitz, L.; Glasl, B.; Wilmes, B.; Lisson, J. Application of a New Viscoelastic Finite Element Method Model and Analysis of Miniscrew-Supported Hybrid Hyrax Treatment. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 426–435. [Google Scholar] [CrossRef]
- Rungcharassaeng, K.; Caruso, J.M.; Kan, J.Y.K.; Kim, J.; Taylor, G. Factors Affecting Buccal Bone Changes of Maxillary Posterior Teeth after Rapid Maxillary Expansion. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 428.e1–428.e8. [Google Scholar] [CrossRef]
- Vanarsdall, I.B.R.L.; Kocian, P. Rapid Maxillary Expansion with Skeletal Anchorage vs. Bonded Tooth/Tissue Born Expanders: A Case Report Comparison Utilizing CBCT; Rocky Mountain Orthodontics: Denver, CO, USA, 2012. [Google Scholar]
- Simontacchi-Gbologah, M.S.; Tamburrino, R.K.; Boucher, N.S.; Vanarsdall, R.L.; Secchi, A.G. Comparison of Three Methods to Analyze the Skeletal Transverse Dimension in Orthodontic Diagnosis. Unpublished Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2010. [Google Scholar]
- Tamburrino, R.K.; Boucher, N.S.; Vanarsdall, R.L.; Secchi, A.G. The Transverse Dimension: Diagnosis and Relevance to Functional Occlusion. RWISO J. 2010, 2, 13–22. [Google Scholar]
- Angelieri, F.; Cevidanes, L.H.S.; Franchi, L.; Gonçalves, J.R.; Benavides, E.; McNamara, J.A. Midpalatal Suture Maturation: Classification Method for Individual Assessment before Rapid Maxillary Expansion. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 759–769. [Google Scholar] [CrossRef]
- Suzuki, H.; Moon, W.; Previdente, L.H.; Suzuki, S.S.; Garcez, A.S.; Consolaro, A. Miniscrew-Assisted Rapid Palatal Expander (MARPE): The Quest for Pure Orthopedic Movement. Dental Press J. Orthod. 2016, 21, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, D.; Dominguez-Mompell, R.; Mallya, S.M.; Moschik, C.; Pan, H.C.; Miller, J.; Moon, W. Changes in the Midpalatal and Pterygopalatine Sutures Induced by Micro-Implant-Supported Skeletal Expander, Analyzed with a Novel 3D Method Based on CBCT Imaging. Prog. Orthod. 2017, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Nojima, L.I.; da Nojima, M.C.G.; da Cunha, A.C.; Guss, N.O.; Sant’anna, E.F. Mini-Implant Selection Protocol Applied to MARPE. Dental Press J. Orthod. 2018, 23, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, S.; Stanford, C.; Cooper, L. Testing for COVID-19 in Dental Offices Mechanism of Action, Application, and Interpretation of Laboratory and Point-of-Care Screening Tests. J. Am. Dent. Assoc. 2021, 4, 514–525.e8. [Google Scholar] [CrossRef]
- Shirazi, S.; Stanford, C.; Cooper, L. Characteristics and Detection Rate of SARS-COV-2 in Alternative Sites and Specimens Pertaining to Dental Practice: An Evidence Summary. J. Am. Dent. Assoc. 2021, 10, 1158. [Google Scholar] [CrossRef]
- Baccetti, T.; Franchi, L.; McNamara, J.A. An Improved Version of the Cervical Vertebral Maturation (CVM) Method for the Assessment of Mandibular Growth. Angle Orthod. 2002, 72, 316–323. [Google Scholar] [CrossRef]
- Baccetti, T.; Franchi, L.; McNamara, J.A. The Cervical Vertebral Maturation (CVM) Method for the Assessment of Optimal Treatment Timing in Dentofacial Orthopedics. Semin. Orthod. 2005, 11, 119–129. [Google Scholar] [CrossRef]
- Podesser, B.; Williams, S.; Crismani, A.G.; Bantleon, H.P. Evaluation of the Effects of Rapid Maxillary Expansion in Growing Children Using Computer Tomography Scanning: A Pilot Study. Eur. J. Orthod. 2007, 29, 37–44. [Google Scholar] [CrossRef]
- Christie, K.F.; Boucher, N.; Chung, C.H. Effects of Bonded Rapid Palatal Expansion on the Transverse Dimensions of the Maxilla: A Cone-Beam Computed Tomography Study. Am. J. Orthod. Dentofac. Orthop. 2010, 137, S79–S85. [Google Scholar] [CrossRef]
- Angelieri, F.; Franchi, L.; Cevidanes, L.H.S.; McNamara, J.A. Diagnostic Performance of Skeletal Maturity for the Assessment of Midpalatal Suture Maturation. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 1010–1016. [Google Scholar] [CrossRef]
- Perinetti, G.; Braga, C.; Contardo, L.; Primozic, J. Cervical Vertebral Maturation: Are Postpubertal Stages Attained in All Subjects? Am. J. Orthod. Dentofac. Orthop. 2020, 157, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Garrett, B.J.; Caruso, J.M.; Rungcharassaeng, K.; Farrage, J.R.; Kim, J.S.; Taylor, G.D. Editor’s Summary, Q & A, Reviewer’s Critique. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 8–9. [Google Scholar] [CrossRef]
- Lamparski, D.G.; Rinchuse, D.J.; Close, J.M.; Sciote, J.J. Comparison of Skeletal and Dental Changes between 2-Point and 4-Point Rapid Palatal Expanders. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Davidovitch, M.; Efstathiou, S.; Sarne, O.; Vardimon, A.D. Skeletal and Dental Response to Rapid Maxillary Expansion with 2- versus 4-Band Appliances. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Ahn, H.W.; Kim, S.J.; Moon, S.C.; Kim, S.H.; Nelson, G. Tooth-Borne vs. Bone-Borne Rapid Maxillary Expanders in Late Adolescence. Angle Orthod. 2015, 85, 253–262. [Google Scholar] [CrossRef]
- Haas, A. Rapid Expansion of The Maxillary Dental Arch nd Nasal Cavity By Opening The Midpalatal Suture. Angle Orthod. 1961, 31, 73–90. [Google Scholar]
- Lione, R.; Ballanti, F.; Franchi, L.; Baccetti, T.; Cozza, P. Treatment and Posttreatment Skeletal Effects of Rapid Maxillary Expansion Studied with Low-Dose Computed Tomography in Growing Subjects. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 389–392. [Google Scholar] [CrossRef]
- Ludwig, B.; Glasl, B.; Kinzinger, G.S.M.; Lietz, T.; Lisson, J.A. Anatomical Guidelines for Miniscrew Insertion: Vestibular Interradicular Sites. J. Clin. Orthod. 2011, 45, 165–173. [Google Scholar]
- Park, J.J.; Park, Y.C.; Lee, K.J.; Cha, J.Y.; Tahk, J.H.; Choi, Y.J. Skeletal and Dentoalveolar Changes after Miniscrew-Assisted Rapid Palatal Expansion in Young Adults: A Cone-Beam Computed Tomography Study. Korean J. Orthod. 2017, 47, 77–86. [Google Scholar] [CrossRef]
- Akyalcin, S.; Schaefer, J.S.; English, J.D.; Stephens, C.R.; Winkelmann, S. A Cone-Beam Computed Tomography Evaluation of Buccal Bone Thickness Following Maxillary Expansion. Imaging Sci. Dent. 2013, 43, 85–90. [Google Scholar] [CrossRef]
- Starnbach, H.; Bayne, D.; Cleall, J.; Subtelny, J.D. Facioskeletal and Dental Changes Resulting from Rapid Maxillary Expansion. Angle Orthod. 1966, 36, 152–164. [Google Scholar] [PubMed]
- Corbridge, J.K.; Campbell, P.M.; Taylor, R.; Ceen, R.F.; Buschang, P.H. Transverse Dentoalveolar Changes after Slow Maxillary Expansion. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Garib, D.G.; Navarro, R.; Francischone, C.E.; Oltramari, P.V. Rapid Maxillary Expansion Using Palatal Implants. J. Clin. Orthod. 2008, 42, 665–671. [Google Scholar]
- Jia, H.; Zhuang, L.; Zhang, N.; Bian, Y.; Li, S. Comparison of Skeletal Maxillary Transverse Deficiency Treated by Microimplant-Assisted Rapid Palatal Expansion and Tooth-Borne Expansion during the Post-Pubertal Growth Spurt Stage: A Prospective Cone Beam Computed Tomography Study. Angle Orthod. 2021, 91, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Adkins, M.D.; Nanda, R.S.; Currier, G.F. Arch Perimeter Changes on Rapid Palatal Expansion. Am. J. Orthod. Dentofac. Orthop. 1990, 97, 194–199. [Google Scholar] [CrossRef]
- Lione, R.; Franchi, L.; Fanucci, E.; Laganá, G.; Cozza, P. Three-Dimensional Densitometric Analysis of Maxillary Sutural Changes Induced by Rapid Maxillary Expansion. Dentomaxillofacial Radiol. 2013, 42, 71798010. [Google Scholar] [CrossRef]
- Lagravère, M.O.; Heo, G.; Major, P.W.; Flores-Mir, C. Meta-analysis of immediate changes with rapid maxillary expansion treatment. J. Am. Dent. Assoc. 2006, 137, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Nada, R.M.; Van Loon, B.; Schols, J.G.J.H.; Maal, T.J.J.; de Koning, M.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M. Volumetric Changes of the Nose and Nasal Airway 2 Years after Tooth-Borne and Bone-Borne Surgically Assisted Rapid Maxillary Expansion. Eur. J. Oral Sci. 2013, 121, 450–456. [Google Scholar] [CrossRef]
- Nada, R.M.; van Loon, B.; Maal, T.J.J.; Bergé, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.; Schols, J.G.J.H. Three-Dimensional Evaluation of Soft Tissue Changes in the Orofacial Region after Tooth-Borne and Bone-Borne Surgically Assisted Rapid Maxillary Expansion. Clin. Oral Investig. 2013, 17, 2017–2024. [Google Scholar] [CrossRef]
- Gauthier, C.; Voyer, R.; Paquette, M.; Rompré, P.; Papadakis, A. Periodontal Effects of Surgically Assisted Rapid Palatal Expansion Evaluated Clinically and with Cone-Beam Computerized Tomography: 6-Month Preliminary Results. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 16–19. [Google Scholar] [CrossRef]
- Camps-Perepérez, I.; Guijarro-Martínez, R.; Peiró-Guijarro, M.A.; Hernández-Alfaro, F. The Value of Cone Beam Computed Tomography Imaging in Surgically Assisted Rapid Palatal Expansion: A Systematic Review of the Literature. Int. J. Oral Maxillofac. Surg. 2017, 46, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Smith, T.; Kortam, S.; Kim, D.G.; Tee, B.C.; Fields, H. Effect of Bone Thickness on Alveolar Bone-Height Measurements from Cone-Beam Computed Tomography Images. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e117–e127. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.C.; Palomo, L.; Griffith, R.; Hans, M.G. Accuracy and Reliability of Cone-Beam Computed Tomography for Measuring Alveolar Bone Height and Detecting Bony Dehiscences and Fenestrations. Am. J. Orthod. Dentofac. Orthop. 2010, 137, S109–S119. [Google Scholar] [CrossRef] [PubMed]
- Lascala, C.A.; Panella, J.; Marques, M.M. Analysis of the Accuracy of Linear Measurements Obtained by Cone Beam Computed Tomography (CBCT-NewTom). Dentomaxillofacial Radiol. 2004, 33, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Berco, M.; Rigali, P.H.; Miner, R.M.; DeLuca, S.; Anderson, N.K.; Will, L.A. Accuracy and Reliability of Linear Cephalometric Measurements from Cone-Beam Computed Tomography Scans of a Dry Human Skull. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 17.e1–17.e9. [Google Scholar] [CrossRef]
- Hilgers, M.L.; Scarfe, W.C.; Scheetz, J.P.; Farman, A.G. Accuracy of Linear Temporomandibular Joint Measurements with Cone Beam Computed Tomography and Digital Cephalometric Radiography. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 803–811. [Google Scholar] [CrossRef]
- Scarfe, W.C.; Farman, A.G. What Is Cone-Beam CT and How Does It Work? Dent. Clin. N. Am. 2008, 52, 707–730. [Google Scholar] [CrossRef]
- Patcas, R.; Müller, L.; Ullrich, O.; Peltomäki, T. Accuracy of Cone-Beam Computed Tomography at Different Resolutions Assessed on the Bony Covering of the Mandibular Anterior Teeth. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 41–50. [Google Scholar] [CrossRef]
- Torres, M.G.G.; Campos, P.S.F.; Segundo, N.P.N.; Navarro, M.; Crusoé-Rebello, I. Accuracy of Linear Measurements in Cone Beam Computed Tomography with Different Voxel Sizes. Implant Dent. 2012, 21, 150–155. [Google Scholar] [CrossRef]
N | Min | Max | Mean Difference (SD) | IC 95% Mean | Median | Median (P25;P75) | IC95% Median | |
---|---|---|---|---|---|---|---|---|
Age | 15 | 13.0 | 24.0 | 17.0 (4.0) | 15.0;19.0 | 16.0 | (14.0;20.0) | 16.0; 21.0 |
Maxillary compression | 15 | 2.5 | 8.7 | 5.4 (2.1) | 4.2; 6.5 | 5.1 | (3.7;7.5) | 3.8; 7.5 |
Appliance activation time | 15 | 10.0 | 35.0 | 22.0 (8.0) | 17.0; 26.0 | 20.0 | (15.0;30.0) | 15.0; 30.0 |
Nasal width (NW) | Distance between right and left most lateral point of the nasal cavity in the coronal section at the level of first molar where total length of palatal root and crown are visualized. | |
Maxillary width (MW) | Distance between the lowest point of lateral right and left contour concavities of the maxillary bone, on a coronal section, at the level of first molar where total length of palatal root and crown are visualized. | |
Palatal suture opening (SO) | Distance between the external right and left maxilla edges in the axial view generating a slice in the horizontal plane, allowing a good visualization of the midpalatal suture at first and second premolar, and first molar. The edges were identified with a small point on an axial cross-sectional slice at the level of the first molar trifurcation. | |
Buccal maxillary width (BMW) | Distance between right and left most prominent point of the buccal bone crest in first and second premolar, and first molar, in the first anterior coronal cut described for each tooth. | |
Palatal maxillary width (PMW) | Distance between right and left most prominent point of palatal bone crest in first and second premolar, and first molar, in the first anterior coronal slice as describe for each tooth. At the level of the buccal maxillary width. | |
Buccal bone thickness (BBT) | Distance from the external border of the buccal cortical plate to the center of buccal aspect of first and second premolar root, and from the external border of buccal cortical plate to the center of the messiobuccal and distobuccal root of first molar, in an axial section parallel to the palatal plane, at the level of the first molar right (R) and left (L) trifurcation for each side. | |
Palatal bone thickness (PBT) | Distance from the external border of palatal cortical plate to the center of palatal aspect of first and second premolar root, and first molar palatal root, in an axial section parallel to palatal plane, at the level of the first molar right (R) and left (L) trifurcation for each side. | |
Buccal alveolar bone crest level (BACL) | Distance from the tip of buccal cusp to the buccal bone crest of first and second premolar, and from the mesiobuccal cusp of first molar crown, to the buccal bone crest in the first anterior coronal cut describe for each tooth, on the right (R) and left (L) side. | |
Dental inclination (INCL) | Angle formed by the intersection of two tangents that passed through the buccal and palatal cusps of the first and second premolars of both contralateral teeth, and through the messiobuccal and palatal cusp of the first molar, in the coronal section. |
Nasal Floor (NF) | Distance from right and left external edges of the palatine suture at the level of the nasal floor in the coronal view. On a coronal cross-sectional slice through the center of the first molar. The suture external edges were verified in the axial cross-sectional slice. | |
Palatal Floor (PF) | Distance from right and left external edges of the palatine suture at the level of the palatal floor. On a coronal cross-sectional slice through the center of the first molar. The suture external edges were verified in the axial cross-sectional slice. |
Sutural expansion (SEM) | The sutural expansion in the middle of the palate. Distance between the left and right external border of the palatal aspect of the maxilla, in the middle of the palate between the palatine bone and the nasal floor, on a coronal cross-sectional slice at first molar. Through the midportion of the first molar. | |
Intermolar width (IMW) | Distance between right and left tip of palatal cusp of first molars in a coronal cross-sectional slice through the midportion of first molar. | |
Palatal maxillary width (PMW) | Distance between the right and left external border of the palatal maxillary bone, on a coronal cross-sectional slice at first molar. Through the midportion of the first molar. |
N Number (%) | 95% CI | ||
---|---|---|---|
Sex | Male | 3 (20) | 6.0; 44.4 |
Female | 12 (80) | 55.6; 94.0 | |
Cross Bite | Absence | 3 (20) | 6.0; 44.4 |
Bilateral | 12 (80) | 56.6; 94.0 | |
Skeletal maturation | Stage I | 0 (0) | 0.0; 21.8 |
Stage II | 0 (0) | 0.0; 21.8 | |
Stage III | 2 (13.3) | 2.9; 36.3 | |
Stage IV | 7 (46.7) | 23.9; 70.6 | |
Stage V | 6 (40.0) | 18.8; 64.7 | |
Stage VI | 0 (0) | 0.0; 21.8 | |
Palatal Sutural Stage | Stage A | 0 (0) | 0.0; 21.8 |
Stage B | 1 (6.7) | 0.7; 27.2 | |
Stage C | 13 (86.7) | 63.7; 97.1 | |
Stage D | 1 (6.7) | 0.7; 27.2 | |
Stage E | 0 (0) | 0.0;21.8 |
T1–T2 | N | Min | Max | Mean Difference (SD) mm | IC95% Mean | Median (mm) | Median (P25; P75) | IC95% Median | p-Value |
---|---|---|---|---|---|---|---|---|---|
NW | 15 | 0.4 | 4.6 | 2.1 (1.1) | 1.5; 2.7 | 2.3 | 1.1; 2.7 | 1.3; 2.7 | 0.00005 |
MW | 15 | 0.4 | 6.2 | 2.5 (1.6) | 1.6; 3.4 | 2.1 | 1.3; 3.8 | 1.9; 3.8 | 0.00005 |
SO1PM | 15 | 1.7 | 6.0 | 3.3 (1.3) | 2.5; 4.0 | 2.7 | 2.4; 4.4 | 2.4; 4.4 | 0.00005 |
SO2PM | 15 | 1.2 | 6.0 | 2.9 (1.4) | 2.1; 3.6 | 2.4 | 1.6; 3.8 | 1.7; 3.8 | 0.00005 |
SO1M | 15 | 1.0 | 6.0 | 2.6 (1.3) | 1.9; 3.3 | 2.2 | 1.8; 3.4 | 1.8; 3.4 | 0.00005 |
NF | 15 | 1.1 | 4.7 | 2.4 (1.0) | 1.9; 3.0 | 2.4 | 1.7; 3.1 | 1.7; 3.1 | 0.000 |
PF | 15 | 1.0 | 4.5 | 2.4 (1.0) | 1.8; 3.0 | 2.6 | 1.6; 3.2 | 1.8; 3.6 | 0.000 |
SEM | 15 | 0.7 | 4.7 | 2.7 (1.0) | 2.1; 3.1 | 2.6 | 1.9; 3.3 | 2.2; 3.3 | 0.000 |
T1–T2 | N | Min | Max | Mean difference (SD) mm | IC95% Mean | Median (mm) | Median (P25; P75) | IC95% Median | p-Value |
---|---|---|---|---|---|---|---|---|---|
BMW1PM | 15 | 0.6 | 7.8 | 3.7 (2.0) | 2.6; 4.8 | 3.5 | 2.1; 5.0 | 2.2; 5.0 | 0.00005 |
BMW2PM | 15 | 0.8 | 14.8 | 4.1 (3.6) | 2.1; 6.1 | 2.6 | 2.2; 4.3 | 2.4; 4.3 | 0.001 |
BMW1M | 15 | 1.1 | 9.7 | 3.7 (2.1) | 2.6; 4.9 | 3.3 | 2.6; 4.0 | 3.1; 4.0 | 0.001 |
PMW1PM | 15 | 1.0 | 8.4 | 3.7 (1.8) | 2.7; 4.7 | 3.4 | 2.6; 4.8 | 2.9; 4.8 | 0.00005 |
PMW2PM | 15 | 1.6 | 7.8 | 3.2 (1.6) | 2.3; 4.1 | 3.0 | 2.2; 3.6 | 2.8; 4.4 | 0.001 |
PMW1M | 15 | −5.6 | 7.2 | 2.2 (2.6) | 0.7; 3.6 | 2.3 | 1.7; 3.0 | 1.8; 3.0 | 0.009 |
BBTR1PM | 15 | −1.0 | 0.0 | −0.3 (0.3) | −0.4; −0.1 | −0.2 | −0.4; 0.0 | −0.2; −0.0 | 0.003 |
BBTR2PM | 15 | −0.4 | 0.3 | −0.1 (0.2) | −0.2; −0.0 | −0.2 | −0.2; −0.0 | −0.2; −0.0 | 0.013 |
MBBTR1M | 15 | −0.9 | 0.0 | −0.3 (0.3) | −0.5; −0.2 | −0.2 | −0.6; −0.1 | −0.3; −0.1 | 0.001 |
DBBTR1M | 15 | −0.9 | 0.0 | −0.3 (0.3) | −0.5; −0.2 | −0.3 | −0.5; −0.2 | −0.4; −0.2 | 0.00005 |
BBTL1PM | 15 | −1.3 | −0.2 | −0.3 (0.4) | −0.6; −0.1 | −0.2 | −0.5; −0.1 | −0.5; −0.1 | 0.004 |
BBTL2PM | 15 | −0.6 | 0.0 | −0.3 (0.2) | −0.3; −0.1 | −0.3 | −0.4; −0.1 | −0.3; −0.1 | 0.00005 |
MBBTL1M | 15 | −1.1 | 0.0 | −0.4 (0.4) | −0.6; −0.2 | −0.3 | −0.7; 0.0 | −0.6; 0.0 | 0.003 |
DBBTL1M | 15 | −1.5 | 0.0 | −0.4 (0.4) | −0.6; −0.2 | −0.3 | −0.7; −0.1 | −0.5; −0.1 | 0.001 |
PBTR1PM | 15 | −1.8 | 1.1 | 0.1 (0.7) | −0.3; 0.5 | 0.2 | −0.3; −0.4 | −0.0; 0.4 | 0.552 |
PBTR2PM | 15 | −0.7 | 0.8 | 0.2 (0.4) | −0.4; 0.5 | 0.3 | 0.0; 0.4 | 0.0; 0.4 | 0.09 |
PBTR1M | 15 | −0.2 | 0.9 | 0.1 (0.3) | −0.0; 0.3 | 0.0 | 0.0; 0.3 | 0.0; 0.3 | 0.073 |
PBTL1PM | 15 | −0.4 | 0.6 | 0.2 (0.2) | 0.0; 0.3 | 0.2 | 0.1; 0.3 | 0.1; 0.3 | 0.013 |
PBTL2PM | 15 | −0.3 | 0.5 | 0.1 (0.2) | 0.0; 0.3 | 0.2 | 0.1; 0.3 | 0.1; 0.3 | 0.012 |
PBTL1M | 15 | −0.1 | 0.5 | 0.2 (0.2) | 0.1; 0.3 | 0.1 | 0.0; 0.4 | 0.1; 0.4 | 0.003 |
BACLR1PM | 15 | −2.3 | 0.7 | −0.1 (0.7) | −0.5; 0.3 | 0.0 | −0.2; 0.2 | 0.0; 0.3 | 0.448 |
BACLR2PM | 15 | −1.1 | 0.5 | −0.1 (0.5) | −0.4; 0.2 | 0.0 | −0.4; 0.2 | −0.1; 0.2 | 0.420 |
BACLR1M | 15 | −2.2 | 1.0 | −0.0 (0.8) | −0.5; 0.5 | 0.2 | −0.6; 0.6 | −0.2; 0.6 | 0.493 |
BACLL1PM | 15 | −1.2 | 0.3 | −0.2 (0.4) | −0.4; 0.0 | 0.0 | −0.2; 0.1 | −0.0; 0.1 | 0.012 |
BACLL2PM | 15 | −1.6 | 0.7 | −0.2 (0.5) | −0.5; 0.1 | −0.1 | −0.6; 0.1 | −0.5; 0.1 | 0.145 |
BACLL1M | 15 | −0.4 | 1.5 | 0.2(0.6) | −0.1; 0.5 | 0.1 | −0.1; 0.4 | −0.1; 0.4 | 0.144 |
T1–T2 | N | Min | Max | Mean Difference (SD) mm | IC 95% Mean | Median mm | Median (P25;P75) | IC95% Median | p-Value |
---|---|---|---|---|---|---|---|---|---|
INCL1PM | 15 | −33.6 | 22.4 | −1.6 (15.9) | −10.4; 7.3 | −0.2 | −13.2; 8.6 | −2.0; 8.6 | 0.71 |
INCL2PM | 15 | −22.5 | 32.3 | −2.0 (15.6) | −10.6; 6.7 | −5.7 | −14.0; 6.0 | −12.9; 6.0 | 0.62 |
INCL1M | 15 | −15.3 | 21.7 | −3.3 (9.4) | −8.5; 1.9 | −3.7 | −10.0; −1.3 | −8.0; −1.3 | 0.200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solano Mendoza, P.; Aceytuno Poch, P.; Solano Reina, E.; Solano Mendoza, B. Skeletal, Dentoalveolar and Dental Changes after “Mini-Screw Assisted Rapid Palatal Expansion” Evaluated with Cone Beam Computed Tomography. J. Clin. Med. 2022, 11, 4652. https://doi.org/10.3390/jcm11164652
Solano Mendoza P, Aceytuno Poch P, Solano Reina E, Solano Mendoza B. Skeletal, Dentoalveolar and Dental Changes after “Mini-Screw Assisted Rapid Palatal Expansion” Evaluated with Cone Beam Computed Tomography. Journal of Clinical Medicine. 2022; 11(16):4652. https://doi.org/10.3390/jcm11164652
Chicago/Turabian StyleSolano Mendoza, Patricia, Paula Aceytuno Poch, Enrique Solano Reina, and Beatriz Solano Mendoza. 2022. "Skeletal, Dentoalveolar and Dental Changes after “Mini-Screw Assisted Rapid Palatal Expansion” Evaluated with Cone Beam Computed Tomography" Journal of Clinical Medicine 11, no. 16: 4652. https://doi.org/10.3390/jcm11164652
APA StyleSolano Mendoza, P., Aceytuno Poch, P., Solano Reina, E., & Solano Mendoza, B. (2022). Skeletal, Dentoalveolar and Dental Changes after “Mini-Screw Assisted Rapid Palatal Expansion” Evaluated with Cone Beam Computed Tomography. Journal of Clinical Medicine, 11(16), 4652. https://doi.org/10.3390/jcm11164652