Advances and Innovations in Ablative Head and Neck Oncologic Surgery Using Mixed Reality Technologies in Personalized Medicine
Abstract
:1. Introduction
2. Materials and Methods
- 3D visualization in preoperative imaging and planning;
- tumor board—decision making and quality control platform;
- patient-specific information;
- education/surgical training.
2.1. Mixed Reality Technologies
2.1.1. Hardware
2.1.2. Fundamentals of Visualization
2.2. 3D Visualization in Preoperative Imaging and Planning
2.3. Tumor Board—Decision-Making and Quality Control Platform
2.4. Patient-Specific Information
2.5. Medical Education and Surgical Training
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lell, M.; Mantsopoulos, K.; Uder, M.; Wuest, W.; Lell, M. Bildgebung der Kopf-Hals-Region. Der Radiol. 2016, 56, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Alberico, R.A.; Husain, S.H.S.; Sirotkin, I. Imaging in head and neck oncology. Surg. Oncol. Clin. N. Am. 2004, 13, 13–35. [Google Scholar] [CrossRef]
- Abraham, J. Imaging for Head and Neck Cancer. Surg. Oncol. Clin. N. Am. 2015, 24, 455–471. [Google Scholar] [CrossRef]
- Antoniou, A.J.; Marcus, C.; Subramaniam, R.M. Value of Imaging in Head and Neck Tumors. Surg. Oncol. Clin. N. Am. 2014, 23, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Sadick, M.; Schoenberg, S.O.; Hoermann, K.; Sadick, H. Aktuelle Standards und Fortschritte in der onkologischen Bildgebung von Kopf-Hals-Tumoren. Laryngo-Rhino-Otol. 2012, 91, S27–S47. [Google Scholar] [CrossRef] [PubMed]
- Bittermann, G.; Scheifele, C.; Prokic, V.; Bhatt, V.; Henke, M.; Grosu, A.-L.; Schmelzeisen, R.; Metzger, M.C. Description of a method: Computer generated virtual model for accurate localisation of tumour margins, standardised resection, and planning of radiation treatment in head & neck cancer surgery. J. Cranio-Maxillofac. Surg. 2013, 41, 279–281. [Google Scholar] [CrossRef]
- Edwards, S.P. Computer-Assisted Craniomaxillofacial Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2010, 22, 117–134. [Google Scholar] [CrossRef]
- Rana, M.; Essig, H.; Eckardt, A.M.; Tavassol, F.; Ruecker, M.; Schramm, A.; Gellrich, N.-C. Advances and Innovations in Computer-Assisted Head and Neck Oncologic Surgery. J. Craniofacial Surg. 2012, 23, 272–278. [Google Scholar] [CrossRef]
- Tsetsos, N.; Poutoglidis, A.; Arsos, G.; Tsentemeidou, A.; Kilmpasanis, A.; Katsampoukas, D.; Fyrmpas, G. 18F-FDG-PET/CT interpretation pitfalls in patients with head and neck cancer. Am. J. Otolaryngol. 2022, 43, 103209. [Google Scholar] [CrossRef]
- Bittermann, G.; Ermer, M.; Voss, P.; Duttenhoefer, F.; Zimmerer, R.; Schmelzeisen, R.; Metzger, M. Comparison of virtual and titanium clip marking of tumour resection margins for improved radiation planning in head and neck cancer surgery. Int. J. Oral Maxillofac. Surg. 2015, 44, 1468–1473. [Google Scholar] [CrossRef]
- Tepper, O.M.; Rudy, H.L.; Lefkowitz, A.; Weimer, K.A.; Marks, S.M.; Stern, C.S.; Garfein, E.S. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room. Plast. Reconstr. Surg. 2017, 140, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Condino, S.; Turini, G.; Parchi, P.D.; Viglialoro, R.M.; Piolanti, N.; Gesi, M.; Ferrari, M.; Ferrari, V. How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens. J. Health Eng. 2018, 2018, 5435097. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.T.; Clarke, T.J.; Mayer, W.; Cunningham, A.; Matthews, B.; Zucco, J.E. Mixed Reality Interaction and Presentation Techniques for Medical Visualisations. Adv. Exp. Med. Biol. 2020, 1260, 123–139. [Google Scholar] [CrossRef]
- Hanna, M.G.; Ahmed, I.; Nine, J.; Prajapati, S.; Pantanowitz, L. Augmented Reality Technology Using Microsoft HoloLens in Anatomic Pathology. Arch. Pathol. Lab. Med. 2018, 142, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-Z.; Feng, X.-B.; Shao, Z.-W.; Xie, M.; Xu, S.; Wu, X.-H.; Ye, Z.-W. Application and Prospect of Mixed Reality Technology in Medical Field. Curr. Med. Sci. 2019, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurg. 2017, 106, 1015–1029. [Google Scholar] [CrossRef]
- Davids, J.; Manivannan, S.; Darzi, A.; Giannarou, S.; Ashrafian, H.; Marcus, H.J. Simulation for skills training in neurosurgery: A systematic review, meta-analysis, and analysis of progressive scholarly acceptance. Neurosurg. Rev. 2021, 44, 1853–1867. [Google Scholar] [CrossRef]
- Cannizzaro, D.; Zaed, I.; Safa, A.; Jelmoni, A.J.M.; Composto, A.; Bisoglio, A.; Schmeizer, K.; Becker, A.C.; Pizzi, A.; Cardia, A.; et al. Augmented Reality in Neurosurgery, State of Art and Future Projections. A Systematic Review. Front. Surg. 2022, 9, 864792. [Google Scholar] [CrossRef]
- Elsayed, M.; Kadom, N.; Ghobadi, C.; Strauss, B.; Al Dandan, O.; Aggarwal, A.; Anzai, Y.; Griffith, B.; Lazarow, F.; Straus, C.M.; et al. Virtual and augmented reality: Potential applications in radiology. Acta Radiol. 2020, 61, 1258–1265. [Google Scholar] [CrossRef]
- Sutherland, J.; Belec, J.; Sheikh, A.; Chepelev, L.; Althobaity, W.; Chow, B.J.W.; Mitsouras, D.; Christensen, A.; Rybicki, F.J.; La Russa, D.J. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. J. Digit. Imaging 2019, 32, 38–53. [Google Scholar] [CrossRef]
- Sparwasser, P.M.; Schoeb, D.; Miernik, A.; Borgmann, H. Augmented Reality und Virtual Reality im Operationssaal—Status Quo und Quo vadis. Aktuel- Urol. 2018, 49, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Fida, B.; Cutolo, F.; di Franco, G.; Ferrari, M.; Ferrari, V. Augmented reality in open surgery. Updat. Surg. 2018, 70, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Song, T.; Unberath, M.; Kazanzides, P. AR-Loupe: Magnified Augmented Reality by Combining an Optical See-Through Head-Mounted Display and a Loupe. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2550–2562. [Google Scholar] [CrossRef] [PubMed]
- Reis, G.; Yilmaz, M.; Rambach, J.; Pagani, A.; Suarez-Ibarrola, R.; Miernik, A.; Lesur, P.; Minaskan, N. Mixed reality applications in urology: Requirements and future potential. Ann. Med. Surg. 2021, 66, 102394. [Google Scholar] [CrossRef]
- Tang, R.; Ma, L.-F.; Rong, Z.-X.; Li, M.-D.; Zeng, J.-P.; Wang, X.-D.; Liao, H.-E.; Dong, J.-H. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods. Hepatobiliary Pancreat. Dis. Int. 2018, 17, 101–112. [Google Scholar] [CrossRef]
- Cutolo, F.; Cattari, N.; Fontana, U.; Ferrari, V. Optical See-Through Head-Mounted Displays with Short Focal Distance: Conditions for Mitigating Parallax-Related Registration Error. Front. Robot. AI 2020, 7, 572001. [Google Scholar] [CrossRef]
- Sakai, D.; Joyce, K.; Sugimoto, M.; Horikita, N.; Hiyama, A.; Sato, M.; Devitt, A.; Watanabe, M. Augmented, virtual and mixed reality in spinal surgery: A real-world experience. J. Orthop. Surg. 2020, 28, 2309499020952698. [Google Scholar] [CrossRef]
- Fang, W.; Zheng, L.; Deng, H.; Zhang, H. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion. Sensors 2017, 17, 1037. [Google Scholar] [CrossRef]
- Choi, I.; Kim, J.; Kim, D. A Target-Less Vision-Based Displacement Sensor Based on Image Convex Hull Optimization for Measuring the Dynamic Response of Building Structures. Sensors 2016, 16, 2085. [Google Scholar] [CrossRef]
- Park, G.; Argyros, A.; Lee, J.; Woo, W. 3D Hand Tracking in the Presence of Excessive Motion Blur. IEEE Trans. Vis. Comput. Graph. 2020, 26, 1891–1901. [Google Scholar] [CrossRef]
- Kim, M.; Jeon, C.; Kim, J. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality. Sensors 2017, 17, 1141. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.B.; Ponto, K.; Tredinnick, R.D.; Radwin, R.G. Virtual exertions: Evoking the sense of exerting forces in virtual reality using gestures and muscle activity. Hum. Factors 2015, 57, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Kraeima, J.; Dorgelo, B.; Gulbitti, H.A.; Steenbakkers, R.J.H.M.; Schepman, K.P.; Roodenburg, J.L.N.; Spijkervet, F.K.L.; Schepers, R.H.; Witjes, M.J.H. Multi-modality 3D mandibular resection planning in head and neck cancer using CT and MRI data fusion: A clinical series. Oral Oncol. 2018, 81, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, H.; Wang, C.; Zhang, W.; Chen, G.; Hu, X. Intra-operative 3D hologram support with mixed reality technique based on CT-MRI fusion images: Operation guidance for brain brachytherapy. J. Contemp. Brachytherapy 2021, 13, 205–210. [Google Scholar] [CrossRef]
- Mitani, S.; Sato, E.; Kawaguchi, N.; Sawada, S.; Sakamoto, K.; Kitani, T.; Sanada, T.; Yamada, H.; Hato, N. Case-specific three-dimensional hologram with a mixed reality technique for tumor resection in otolaryngology. Laryngoscope Investig. Otolaryngol. 2021, 6, 432–437. [Google Scholar] [CrossRef]
- Saito, Y.; Sugimoto, M.; Imura, S.; Morine, Y.; Ikemoto, T.; Iwahashi, S.; Yamada, S.; Shimada, M. Intraoperative 3D Hologram Support with Mixed Reality Techniques in Liver Surgery. Ann. Surg. 2020, 271, e4–e7. [Google Scholar] [CrossRef]
- Lu, L.; Wang, H.; Liu, P.; Liu, R.; Zhang, J.; Xie, Y.; Liu, S.; Huo, T.; Xie, M.; Wu, X.; et al. Applications of Mixed Reality Technology in Orthopedics Surgery: A Pilot Study. Front. Bioeng. Biotechnol. 2022, 10, 740507. [Google Scholar] [CrossRef]
- Iglesias, J.E.; Sabuncu, M.R. Multi-atlas segmentation of biomedical images: A survey. Med. Image Anal. 2015, 24, 205–219. [Google Scholar] [CrossRef]
- Pednekar, G.V.; Udupa, J.K.; McLaughlin, D.J.; Wu, X.; Tong, Y.; Simone, C.B.; Camaratta, J.; Torigian, D.A. Image Quality and Segmentation. Proc. SPIE Int. Soc. Opt. Eng. 2018, 10576, 622–628. [Google Scholar] [CrossRef]
- Gehrsitz, P.; Rompel, O.; Schöber, M.; Cesnjevar, R.; Purbojo, A.; Uder, M.; Dittrich, S.; Alkassar, M. Cinematic Rendering in Mixed-Reality Holograms: A New 3D Preoperative Planning Tool in Pediatric Heart Surgery. Front. Cardiovasc. Med. 2021, 8, 633611. [Google Scholar] [CrossRef]
- Wang, H.; Yushkevich, P.A. Multi-atlas Segmentation without Registration: A Supervoxel-Based Approach. Med. Image Comput. Comput. Assist. Interv. 2013, 16, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Jalil, R.; Akhter, W.; Lamb, B.; Taylor, C.; Harris, J.; Green, J.; Sevdalis, N. Validation of Team Performance Assessment of Multidisciplinary Tumor Boards. J. Urol. 2014, 192, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Lassalle, R.; Marold, J.; Schöbel, M.; Manzey, D.; Bohn, S.; Dietz, A.; Boehm, A. Entscheidungsprozesse im Tumorboard bei eingeschränkter Evidenzlage. Laryngo-Rhino-Otol. 2013, 93, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Tschiesner, U.; Stier-Jarmer, M.; Strieth, S.; Singer, S.; Dietz, A.; Fietkau, R.; Wollenberg, B.; Mast, G.; Cieza, A.; Harréus, U.A. Entwicklung eines ICF-basierten Leitfadens für die Beurteilung funktioneller Aspekte bei Kopf-Hals-Tumoren. Endoscopy 2013, 92, 314–325. [Google Scholar] [CrossRef]
- Freytag, M.; Herrlinger, U.; Hauser, S.; Bauernfeind, F.G.; Gonzalez-Carmona, M.A.; Landsberg, J.; Buermann, J.; Vatter, H.; Holderried, T.; Send, T.; et al. Higher number of multidisciplinary tumor board meetings per case leads to improved clinical outcome. BMC Cancer 2020, 20, 355. [Google Scholar] [CrossRef]
- Kuhn, K.J.; Cloutier, J.; Boutin, R.D.; Steffner, R.; Riley, G. Soft tissue pathology for the radiologist: A tumor board primer with 2020 WHO classification update. Skelet. Radiol. 2020, 50, 29–42. [Google Scholar] [CrossRef]
- Pfefferle, M.; Shahub, S.; Shahedi, M.; Gahan, J.; Johnson, B.; Le, P.; Vargas, J.; Judson, B.O.; Alshara, Y.; Li, Q.; et al. Renal biopsy under augmented reality guidance. Proc. SPIE Int. Soc. Opt. Eng. 2020, 11315, 113152W. [Google Scholar] [CrossRef]
- Giampieri, M. Communication and informed consent in elderly people. Minerva Anestesiol 2012, 78, 236–242. [Google Scholar]
- Grassi, L.; Caruso, R.; Costantini, A. Communication with Patients Suffering from Serious Physical Illness. Adv. Psychosom. Med. 2015, 34, 10–23. [Google Scholar] [CrossRef]
- Arabul, M.; Kandemir, A.; Celik, M.; Alper, E.; Akpinar, Z.; Aslan, F.; Vatansever, S.; Unsal, B. Impact of an information video before colonoscopy on patient satisfaction and anxiety. Turk. J. Gastroenterol. 2012, 23, 523–529. [Google Scholar] [CrossRef]
- Perrenoud, B.; Velonaki, V.-S.; Bodenmann, P.; Ramelet, A.-S. The effectiveness of health literacy interventions on the informed consent process of health care users: A systematic review protocol. JBI Database Syst. Rev. Implement. Rep. 2015, 13, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kawashima, Y.; Yamazaki, A.; Tsutsumi, T. Application of a virtual and mixed reality-navigation system using commercially available devices to the lateral temporal bone resection. Ann. Med. Surg. 2021, 72, 103063. [Google Scholar] [CrossRef] [PubMed]
- Wish-Baratz, S.; Crofton, A.R.; Gutierrez, J.; Henninger, E.; Griswold, M.A. Assessment of Mixed-Reality Technology Use in Remote Online Anatomy Education. JAMA Netw. Open 2020, 3, e2016271. [Google Scholar] [CrossRef] [PubMed]
- Kolecki, R.; Pręgowska, A.; Dąbrowa, J.; Skuciński, J.; Pulanecki, T.; Walecki, P.; van Dam, P.M.; Dudek, D.; Richter, P.; Proniewska, K. Assessment of the utility of Mixed Reality in medical education. Transl. Res. Anat. 2022, 28, 100214. [Google Scholar] [CrossRef]
- Goh, G.S.; Lohre, R.; Parvizi, J.; Goel, D.P. Virtual and augmented reality for surgical training and simulation in knee arthroplasty. Arch. Orthop. Trauma. Surg. 2021, 141, 2303–2312. [Google Scholar] [CrossRef]
- Teatini, A.; Kumar, R.P.; Elle, O.J.; Wiig, O. Mixed reality as a novel tool for diagnostic and surgical navigation in orthopaedics. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 407–414. [Google Scholar] [CrossRef]
- Bork, F. Interactive augmented reality systems: Hilfsmittel zur personalisierten Patientenaufklärung und Rehabilitation. Unfallchirurg 2018, 121, 286–292. [Google Scholar] [CrossRef]
- Barteit, S.; Lanfermann, L.; Bärnighausen, T.; Neuhann, F.; Beiersmann, C. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games 2021, 9, e29080. [Google Scholar] [CrossRef]
- Hughes, C.; Stapleton, C.; Hughes, D.E.; Smith, E. Mixed reality in education, entertainment, and training. IEEE Comput. Graph. Appl. 2005, 25, 24–30. [Google Scholar] [CrossRef]
- Cartucho, J.; Shapira, D.; Ashrafian, H.; Giannarou, S. Multimodal mixed reality visualisation for intraoperative surgical guidance. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 819–826. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Hou, J.-C.; Yang, L.; Liu, Z.-R.; Tong, W.; Bai, Y.; Zhang, Y.-M. Application value of mixed reality in hepatectomy for hepatocellular carcinoma. World J. Gastrointest. Surg. 2022, 14, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, A.; Pulijala, Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health 2019, 19, 238. [Google Scholar] [CrossRef]
- Kerner, K.F.; Imielinska, C.; Rolland, J.; Tang, H. Augmented Reality for teaching endotracheal intubation: MR imaging to create anatomically correct models. AMIA Annu. Symp. Proc. 2003, 2003, 888. [Google Scholar]
- Tang, Z.-N.; Hu, L.-H.; Soh, H.Y.; Yu, Y.; Zhang, W.-B.; Peng, X. Accuracy of Mixed Reality Combined with Surgical Navigation Assisted Oral and Maxillofacial Tumor Resection. Front. Oncol. 2021, 11, 715484. [Google Scholar] [CrossRef]
- Essig, H.; Rana, M.; Meyer, A.; Eckardt, A.M.; Kokemueller, H.; von See, C.; Lindhorst, D.; Tavassol, F.; Ruecker, M.; Gellrich, N.-C. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy. Radiat. Oncol. 2011, 6, 159. [Google Scholar] [CrossRef]
- Tarutani, K.; Takaki, H.; Igeta, M.; Fujiwara, M.; Okamura, A.; Horio, F.; Toudou, Y.; Nakajima, S.; Kagawa, K.; Tanooka, M.; et al. Development and Accuracy Evaluation of Augmented Reality-based Patient Positioning System in Radiotherapy: A Phantom Study. Vivo 2021, 35, 2081–2087. [Google Scholar] [CrossRef]
- Hammer, R.D.; Fowler, D.; Sheets, L.R.; Siadimas, A.; Guo, C.; Prime, M.S. Digital Tumor Board Solutions Have Significant Impact on Case Preparation. JCO Clin. Cancer Inform. 2020, 4, 757–768. [Google Scholar] [CrossRef]
- Hammer, R.D.; Prime, M.S. A clinician’s perspective on co-developing and co-implementing a digital tumor board solution. Health Inform. J. 2020, 26, 2213–2221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karnatz, N.; Möllmann, H.L.; Wilkat, M.; Parviz, A.; Rana, M. Advances and Innovations in Ablative Head and Neck Oncologic Surgery Using Mixed Reality Technologies in Personalized Medicine. J. Clin. Med. 2022, 11, 4767. https://doi.org/10.3390/jcm11164767
Karnatz N, Möllmann HL, Wilkat M, Parviz A, Rana M. Advances and Innovations in Ablative Head and Neck Oncologic Surgery Using Mixed Reality Technologies in Personalized Medicine. Journal of Clinical Medicine. 2022; 11(16):4767. https://doi.org/10.3390/jcm11164767
Chicago/Turabian StyleKarnatz, Nadia, Henriette L. Möllmann, Max Wilkat, Aida Parviz, and Majeed Rana. 2022. "Advances and Innovations in Ablative Head and Neck Oncologic Surgery Using Mixed Reality Technologies in Personalized Medicine" Journal of Clinical Medicine 11, no. 16: 4767. https://doi.org/10.3390/jcm11164767
APA StyleKarnatz, N., Möllmann, H. L., Wilkat, M., Parviz, A., & Rana, M. (2022). Advances and Innovations in Ablative Head and Neck Oncologic Surgery Using Mixed Reality Technologies in Personalized Medicine. Journal of Clinical Medicine, 11(16), 4767. https://doi.org/10.3390/jcm11164767