Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Settings
2.2. Data Collection
2.3. Ethics
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Biochemical Factors Associated and Factors Predicting COVID-19 Severity
3.3. Biochemical Factors Associated and Factors Predicting COVID-19 Mortality
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tableau de Bord COVID-19. Tableau de Bord COVID-19. Available online: https://dashboard.covid19.data.gouv.fr/vue-d-ensemble?location=FRA (accessed on 29 July 2022).
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Dattani, S.; Roser, M.; et al. Our World Data 5 Mars 2020. Available online: https://ourworldindata.org/covid-deaths (accessed on 29 July 2022).
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, X.; Jiao, Y.; Li, Z.; Liu, Q.; Ye, J.; Yang, M. Mechanisms involved in the development of thrombocytopenia in patients with COVID-19. Thromb Res. 2020, 193, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infect. Dis. 2020, 221, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Liu, Y.; Gong, Y.; Chen, G.; Zhang, X.; Wang, S.; Zhou, F.; Duan, R.; Chen, W.; Huang, T.; et al. The association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and lymphocyte to monocyte ratio with post-thrombolysis early neurological outcomes in patients with acute ischemic stroke. J. Neuroinflamm. 2021, 18, 51. [Google Scholar] [CrossRef]
- Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Šeruga, B.; Ocaña, A.; Tannock, I.F.; Amir, E. Prognostic Role of Platelet to Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Gasparyan, A.Y.; Ayvazyan, L.; Mukanova, U.; Yessirkepov, M.; Kitas, G.D. The Platelet-to-Lymphocyte Ratio as an In-flammatory Marker in Rheumatic Diseases. Ann. Lab. Med. 2019, 39, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Akboga, M.K.; Canpolat, U.; Yayla, C.; Ozcan, F.; Ozeke, O.; Topaloglu, S.; Aras, D. Association of Platelet to Lymphocyte Ratio With Inflammation and Severity of Coronary Atherosclerosis in Patients With Stable Coronary Artery Disease. Angiology. 2016, 67, 89–95. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, J.; Wu, J.; Zheng, X.; Zhao, Y.; He, Y. Association between the platelet-lymphocyte ratio and short-term mortality in patients with non-ST -segment elevation myocardial infarction. Clin. Cardiol. 2021, 44, 994–1001. [Google Scholar] [CrossRef]
- Sun, S.; Cai, X.; Wang, H.; He, G.; Lin, Y.; Lu, B.; Chen, C.; Pan, Y.; Hu, X. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin. Chim. Acta 2020, 507, 174–180. [Google Scholar] [CrossRef]
- Seyit, M.; Avci, E.; Nar, R.; Senol, H.; Yilmaz, A.; Ozen, M.; Oskay, A.; Aybek, H. Neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio and platelet to lymphocyte ratio to predict the severity of COVID-19. Am. J. Emerg. Med. 2021, 40, 110–114. [Google Scholar] [CrossRef]
- Wei, P.F. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin. Med. J. (Engl.) 2020, 133, 1087–1095. [Google Scholar]
- Wang, H.; Xing, Y.; Yao, X.; Li, Y.; Huang, J.; Tang, J.; Zhu, S.; Zhang, Y.; Xiao, J. Retrospective Study of Clinical Features of COVID-19 in Inpatients and Their Association with Disease Severity. Med. Sci. Monit. 2020, 26, e927674-1–e927674-9. Available online: https://www.medscimonit.com/abstract/index/idArt/927674 (accessed on 29 July 2022). [CrossRef]
- Wang, W.; Zhao, Z.; Liu, X.; Liu, G.; Xie, D.; Xu, Z.; Zhao, J.; Zhang, J. Clinical features and potential risk factors for discerning the critical cases and predicting the outcome of patients with COVID-19. J. Clin. Lab. Anal. 2020, 34, e23547. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcla.23547 (accessed on 29 July 2022). [CrossRef]
- Wang, X.; Li, X.; Shang, Y.; Wang, J.; Zhang, X.; Su, D.; Zhao, S.; Wang, Q.; Liu, L.; Li, Y.; et al. Ratios of neutrophil-to-lymphocyte and platelet-to-lymphocyte predict all-cause mortality in inpatients with coronavirus disease 2019 (COVID-19): A retrospective cohort study in a single medical centre. Epidemiol. Infect. 2020, 148, e211. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, M.; Yin, W.; Liao, X.; Wang, B.; Jin, X.; Ma, Y.; Yue, J.; Bai, L.; Liu, D.; et al. The Prognostic Nutritional Index is associated with mortality of COVID-19 patients in Wuhan, China. J. Clin. Lab. Anal. 2020, 34, e23566. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcla.23566 (accessed on 29 July 2022). [CrossRef] [PubMed]
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef]
- You, J.; Zhu, G.-Q.; Xie, L.; Liu, W.-Y.; Shi, L.; Wang, O.-C.; Huang, Z.-H.; Braddock, M.; Guo, G.-L.; Zheng, M.-H. Preoperative platelet to lymphocyte ratio is a valuable prognostic biomarker in patients with colorectal cancer. Oncotarget 2016, 7, 25516–25527. [Google Scholar] [CrossRef] [Green Version]
- Info Cancer, La Corticothérapie. Available online: http://www.arcagy.org/infocancer/traitement-du-cancer/traitements-systemiques/hormonotherapie/la-corticotherapie.html/ (accessed on 29 July 2022).
- Covid-19: Conditions D’utilisation de la Dexaméthasone ou D’autres Corticoïdes de Substitution chez les Patients Hospitalisés. 2020. 34p. Available online: https://www.hcsp.fr/Explore.cgi/Telecharger?NomFichier=hcspa20201019_utideladexetdautcordanlecov.pdf (accessed on 29 July 2022).
- Fathi, N.; Rezaei, N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol. Int. 2020, 44, 1792–1797. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef]
- Barale, C.; Melchionda, E.; Morotti, A.; Russo, I. Prothrombotic Phenotype in COVID-19: Focus on Platelets. Int. J. Mol. Sci. 2021, 22, 13638. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Tan, G.; Dong, X.; Wang, B.; Lin, J.; Yan, Y.Q.; Liu, G.H.; Akdis, M.; Akdis, C.A.; et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy 2021, 76, 533–550. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef]
- Li, Q.; Cao, Y.; Chen, L.; Wu, D.; Yu, J.; Wang, H.; He, W.; Dong, F.; Chen, W.; Chen, W.; et al. Hematological features of persons with COVID-19. Leukemia 2020, 34, 2163–2172. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Q.; Wang, Y.; Wu, Y.; Xu, J.; Yu, Y.; Shang, Y. Thrombocytopenia and its association with mortality in patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1469–1472. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef]
All Patients | Moderate COVID-19 | Severe COVID-19 | p | ||
---|---|---|---|---|---|
(n = 1035) | (n = 789) | (n = 246) | |||
Characteristics | |||||
Age (years) | 69.0 (58.0–79.0) | 70.0 (58.0–81.0) | 66.0 (57.3–72.0) | <0.001 * | |
Gender male | 609 (58.8) | 433 (54.9) | 176 (71.5) | <0.001 * | |
Current smoker | 46 (4.4) | 34 (4.3) | 12 (4.9) | 0.706 | |
Comorbidities | |||||
Hypertension | 587 (56.7) | 453 (57.4) | 134 (54.5) | 0.416 | |
Diabetes | 275 (26.6) | 202 (25.6) | 73 (29.7) | 0.207 | |
Obesity | BMI (kg/m2) (30, 40) | 253 (33.2) | 172 (31.2) | 81 (38.6) | 0.056 |
BMI (kg/m2) ≥ 40 | 28 (3.7) | 21 (3.8) | 7 (3.3) | 0.966 | |
COPD | 56 (5.4) | 44 (5.6) | 12 (4.9) | 0.672 | |
Chronic kidney disease | 237 (23.2) | 199 (25.5) | 38 (15.8) | 0.002 * | |
Coronary heart disease | 357 (34.5) | 291 (36.9) | 66 (26.8) | 0.004 * | |
Laboratory findings | |||||
Lymphocyte count, ×109 per L | 0.870 (0.630–1.200) | 0.900 (0.640–1.220) | 0.780. (0.590–1.122) | 0.003 * | |
Platelet count, ×109 per L | 194.5 (152.0–248.0) | 196.0 (154.0–247.0) | 192.0 (144.0–253.0) | 0.518 | |
PLR | 223.3 (156.5–329.0) | 219.9 (154.7–320.5) | 238.5 (162.4–357.7) | 0.061 | |
Outcomes | |||||
Mortality | 139 (13.6) | 82 (10.4) | 57 (24.1) | <0.001 * | |
Length of hospital stay (days) | 10.0 (7.0–17.3) | 8.0 (6.0–12.0) | 24.0 (17.0–38.0) | <0.001 * |
All Patients | Survivor | Non Survivor | p | ||
---|---|---|---|---|---|
(n = 1035) | (n = 884) | (n = 139) | |||
Characteristics | |||||
Age (years) | 69.0 (58.0–79.0) | 67.0 (56.0–77.0) | 78.0 (70.0–86.0) | <0.001 * | |
Gender male | 609 (58.8) | 517 (58.5) | 85 (61.2) | 0.553 | |
Current smoker | 46 (4.4) | 42 (4.8) | 4 (2.9) | 0.322 | |
Comorbidities | |||||
Hypertension | 587 (56.7) | 477 (54.0) | 103 (74.1) | <0.001 * | |
Diabetes | 275 (26.6) | 227 (25.7) | 42 (30.2) | 0.259 | |
Obesity | BMI (30, 40) | 253 (33.2) | 222 (33.1) | 30 (34.9) | 0.889 |
BMI ≥ 40 | 28 (3.7) | 27 (4.0) | 1 (1.2) | 0.191 | |
COPD | 56 (5.4) | 38 (4.3) | 18 (13.0) | <0.001 * | |
Chronic kidney disease | 237 (23.2) | 189 (21.6) | 47 (35.3) | <0.001 * | |
Coronary heart disease | 357 (34.5) | 283 (32.1) | 72 (51.8) | <0.001 * | |
Laboratory findings | |||||
Lymphocyte count, ×109 per L | 0.870 (0.630–1.200) | 0.890 (0.650–1.220) | 0.720 (0.500–1.000) | <0.001 * | |
Platelet count, ×109 per L | 194.5 (152.0–248.0) | 196.0 (153.3–248.0) | 181.0 (138.3–246.0) | 0.031 * | |
PLR | 223.3 (156.5–329.0) | 221.4 (154.7–319.4) | 242.3 (164.6–385.7) | 0.043 * | |
C-reactive protein, mg/L | 81.0 (39.0–142.0) | 78.5 (37.0–139.0) | 100.0 (56.0–158.0) | 0.008 * | |
Creatinine, μmol/L | 78.0 (64.0–98.0) | 76.0 [62.0–94.0) | 96.0 (77.5–144.5) | <0.001 * | |
Lactate, mmol/l | 1.2 (0.9–1.6) | 1.2 (0.9–1.5) | 1.4 (1.1–1.9) | <0.001 * |
All Patients | Moderate COVID-19 | Severe COVID-19 | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||||
Lymphocyte count, 109 per L | 0.870 (0.630–1.200) | 0.900 (0.640–1.220) | 0.780. (0.590–1.122) | 0.827 (0.616–1.110) | 0.206 | 0.937 (0.647–1.357) | 0.729 |
Platelet count, 109 per L | 194.5 (152.0–248.0) | 196.0 (154.0–247.0) | 192.0 (144.0–253.0) | 1.000 (0.998–1.002) | 0.979 | 1.000 (0.998–1.003) | 0.765 |
PLR | 223.3 (156.5–329.0) | 219.9 (154.7–320.5) | 238.5 (162.4–357.7) | 1.000 (1.000–1.001) | 0.107 | 1.001 (1.000–1.001) | 0.107 |
All Patients | Survivor | Non Survivor | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||||
Lymphocyte count, 109 per L | 0.870 (0.630–1.200) | 0.890 (0.650–1.220) | 0.720 (0.500–1.000) | 0.524 (0.336–0.815) | 0.004 * | 0.756 (0.393–1.456) | 0.403 |
Platelet count, ×109 per L | 194.5 (152.0–248.0) | 196.0 (153.3–248.0) | 181.0 (138.3–246.0) | 0.998 (0.995–1.000) | 0.078 | 0.996 (0.992–1.000) | 0.027 * |
PLR | 223.3 (156.5–329.0) | 221.4 (154.7–319.4) | 242.3 (164.6–385.7) | 1.001 (1.000–1.001) | 0.042 * | 1.000 (0.999–1.002) | 0.444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, P.; Le Borgne, P.; Lefevbre, F.; Cipolat, L.; Remillon, A.; Dib, C.; Hoffmann, M.; Gardeur, I.; Sabah, J.; Kepka, S.; et al. Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study. J. Clin. Med. 2022, 11, 4903. https://doi.org/10.3390/jcm11164903
Simon P, Le Borgne P, Lefevbre F, Cipolat L, Remillon A, Dib C, Hoffmann M, Gardeur I, Sabah J, Kepka S, et al. Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study. Journal of Clinical Medicine. 2022; 11(16):4903. https://doi.org/10.3390/jcm11164903
Chicago/Turabian StyleSimon, Paul, Pierrick Le Borgne, François Lefevbre, Lauriane Cipolat, Aline Remillon, Camille Dib, Mathieu Hoffmann, Idalie Gardeur, Jonathan Sabah, Sabrina Kepka, and et al. 2022. "Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study" Journal of Clinical Medicine 11, no. 16: 4903. https://doi.org/10.3390/jcm11164903
APA StyleSimon, P., Le Borgne, P., Lefevbre, F., Cipolat, L., Remillon, A., Dib, C., Hoffmann, M., Gardeur, I., Sabah, J., Kepka, S., Bilbault, P., Lavoignet, C. -E., & Abensur Vuillaume, L., on behalf of the CREMS Network (Clinical Research in Emergency Medicine and Sepsis). (2022). Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study. Journal of Clinical Medicine, 11(16), 4903. https://doi.org/10.3390/jcm11164903