Predictive Modeling of Injury Risk Based on Body Composition and Selected Physical Fitness Tests for Elite Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body-Composition Assessment
2.3. Physical Fitness Assessment
2.4. Injury Report
2.5. Predictive Modeling
- The ordinary least squares regression (OLS) used a popular least-squares method, in which weights are calculated by minimizing the sum of the squared errors.
- The Ridge model was calculated using the criterion of performance, which includes a penalty for increased weights. Parameter λ decides the size of the penalty: the greater the value of λ is, the bigger the penalty. The value of lambda can vary from 0 to infinity [38].
- Lasso regression is the model where the mechanism facilitates assigning a penalty to variables, and, in this way, they are eliminated from equations. In Lasso regression [39], the parameter s (penalty) is used to optimize the model.
- Elastic net (ENET) [40] combines the features of ridge and LASSO regressions. The performance criterion is the so-called naive elastic net. To minimize the criterion, the LARS-EN algorithm was suggested [40], which is based on the LARS algorithm for LASSO regression. In elastic net regression, we have two parameters, penalty s and λ.
- Stepwise Forward Regression has a forward selection procedure (FS), which begins with an equation that contains only a free expression. The first variable in the equation is the one that has the highest correlation with the output variable. If the coefficient of regression of the variable differs significantly from zero, the variable remains in the equation and another variable is added. The second variable introduced into the equation is the one that has the highest correlation with output, which has been adjusted for the effect of the first variable. If the regression coefficient is statistically significant (using F-test), adding the next variable is implemented in the same way [41,42].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smpokos, E.; Mourikis, C.; Theos, C.; Manolarakis, G.; Linardakis, M. Injuries and risk factors in professional football players during four consecutive seasons. Sport Sci. Health 2021, 1–8. [Google Scholar] [CrossRef]
- Konefał, M.; Chmura, P.; Kowalczuk, E.; Figueiredo, A.J.; Sarmento, H.; Rokita, A.; Chmura, J.; Andrzejewski, M. Modeling of relationships between physical and technical activities and match outcome in elite German soccer players. J. Sports Med. Phys. Fit. 2019, 59, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.M.; Purcell, R.; De Silva, S.; Mawren, D.; McGorry, P.D.; Parker, A.G. The mental health of elite athletes: A narrative systematic review. Sports Med. 2016, 46, 1333–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yáñez, S.; Yáñez, C.; Martínez, M.; Núñez, M.; De la Fuente, C. Lesiones deportivas del plantel profesional de fútbol Santiago Wanderers durante las temporadas 2017, 2018 y 2019. Arch. Soc. Chil. Med. Deporte 2021, 66, 92–103. [Google Scholar]
- Hägglund, M.; Waldén, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries affect team performance negatively in professional football: An 11-year follow-up of the UEFA Champions League injury study. Br. J. Sports Med. 2013, 47, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Hurley, O.A. Impact of player injuries on teams’ mental states, and subsequent performances, at the Rugby World Cup 2015. Front. Psychol. 2016, 7, 807. [Google Scholar]
- Kirkendall, D.T.; Dvorak, J. Effective injury prevention in soccer. Physician Sportsmed. 2010, 38, 147–157. [Google Scholar] [CrossRef]
- Cohen, M.; Abdalla, R.J.; Ejnisman, B.; Amaro, J.T. Lesões ortopédicas no futebol. Rev. Bras. Ortop. 1997, 32, 940–944. [Google Scholar]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 2011, 39, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, D.T.; Dwyer, D.B.; Tran, J.; Clifton, P.; Gastin, P.B. Australian Football League injury characteristics differ between matches and training: A longitudinal analysis of changes in the setting, site, and time span from 1997 to 2016. Orthop. J. Sports Med. 2019, 7, 2325967119837641. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Jeong, H.S.; Lee, S.Y. Injury profiles in Korean youth soccer. Int. J. Environ. Res. Public Health 2020, 17, 5125. [Google Scholar] [CrossRef]
- Noya Salces, J.; Gómez-Carmona, P.M.; Gracia-Marco, L.; Moliner-Urdiales, D.; Sillero-Quintana, M. Epidemiology of injuries in First Division Spanish football. J. Sports Sci. 2014, 32, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Raya-González, J.; de Ste Croix, M.; Read, P.; Castillo, D. A Longitudinal Investigation of muscle injuries in an elite spanish male academy soccer club: A hamstring injuries approach. Appl. Sci. 2020, 10, 1610. [Google Scholar] [CrossRef] [Green Version]
- Torrontegui-Duarte, M.; Gijon-Nogueron, G.; Perez-Frias, J.C.; Morales-Asencio, J.M.; Luque-Suarez, A. Incidence of injuries among professional football players in Spain during three consecutive seasons: A longitudinal, retrospective study. Phys. Ther. Sport 2020, 41, 87–93. [Google Scholar] [CrossRef]
- Jones, A.; Jones, G.; Greig, N.; Bower, P.; Brown, J.; Hind, K.; Francis, P. Epidemiology of injury in English Professional Football players: A cohort study. Phys. Ther. Sport 2019, 35, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Krutsch, W.; Memmel, C.; Alt, V.; Krutsch, V.; Tröß, T.; Meyer, T. Timing return-to-competition: A prospective registration of 45 different types of severe injuries in Germany’s highest football league. Arch. Orthop. Trauma Surg. 2022, 142, 455–463. [Google Scholar] [CrossRef]
- Bradley, P.S.; Noakes, T.D. Match running performance fluctuations in elite soccer: Indicative of fatigue, pacing or situational influences? J. Sports Sci. 2013, 31, 1627–1638. [Google Scholar] [CrossRef]
- Harper, D.J.; Carling, C.; Kiely, J. High-intensity acceleration and deceleration demands in elite team sports competitive match play: A systematic review and meta-analysis of observational studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef] [Green Version]
- Oliva-Lozano, J.M.; Gómez-Carmona, C.D.; Pino-Ortega, J.; Moreno-Pérez, V.; Rodríguez-Pérez, M.A. Match and training high intensity activity-demands profile during a competitive mesocycle in youth elite soccer players. J. Hum. Kinet. 2020, 75, 195–205. [Google Scholar] [CrossRef]
- Przednowek, K.; Wiktorowicz, K.; Krzeszowski, T.; Iskra, J. A web-oriented expert system for planning hurdles race training programmes. Neural Comput. Appl. 2019, 31, 7227–7243. [Google Scholar] [CrossRef] [Green Version]
- Stern, B.D.; Hegedus, E.J.; Lai, Y.-C. Injury prediction as a non-linear system. Phys. Ther. Sport 2020, 41, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jiang, L. Data monitoring and sports injury prediction model based on embedded system and machine learning algorithm. Microprocess. Microsyst. 2021, 81, 103654. [Google Scholar] [CrossRef]
- Rossi, A.; Pappalardo, L.; Cintia, P.; Iaia, F.M.; Fernández, J.; Medina, D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS ONE 2018, 13, e0201264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekstrand, J.; Spreco, A.; Bengtsson, H.; Bahr, R. Injury rates decreased in men’s professional football: An 18-year prospective cohort study of almost 12,000 injuries sustained during 1.8 million hours of play. Br. J. Sports Med. 2021, 55, 1084–1091. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Ayala, F.; Puerta, J.M.; Croix, M.D.S.; Vera-García, F.; Hernández-Sánchez, S.; Ruiz-Pérez, I.; Myer, G. A preventive model for muscle injuries: A novel approach based on learning algorithms. Med. Sci. Sports Exerc. 2018, 50, 915. [Google Scholar] [CrossRef]
- Nassis, G.; Stylianides, G.; Verhagen, E.; Brito, J.; Figueiredo, P.; Krustrup, P. A review of machine learning applications in soccer with an emphasis on injury risk. Biol. Sport 2022, 40, 233–239. [Google Scholar] [CrossRef]
- Brink, M.S.; Visscher, C.; Arends, S.; Zwerver, J.; Post, W.J.; Lemmink, K.A. Monitoring stress and recovery: New insights for the prevention of injuries and illnesses in elite youth soccer players. Br. J. Sports Med. 2010, 44, 809–815. [Google Scholar] [CrossRef]
- Ehrmann, F.E.; Duncan, C.S.; Sindhusake, D.; Franzsen, W.N.; Greene, D.A. GPS and injury prevention in professional soccer. J. Strength Cond. Res. 2016, 30, 360–367. [Google Scholar] [CrossRef]
- Venturelli, M.; Schena, F.; Zanolla, L.; Bishop, D. Injury risk factors in young soccer players detected by a multivariate survival model. J. Sci. Med. Sport 2011, 14, 293–298. [Google Scholar] [CrossRef]
- Van Eetvelde, H.; Mendonça, L.D.; Ley, C.; Seil, R.; Tischer, T. Machine learning methods in sport injury prediction and prevention: A systematic review. J. Exp. Orthop. 2021, 8, 27. [Google Scholar] [CrossRef]
- Ayala, F.; López-Valenciano, A.; Martín, J.A.G.; Croix, M.D.S.; Vera-Garcia, F.J.; García-Vaquero, M.D.P.; Ruiz-Pérez, I.; Myer, G.D. A preventive model for hamstring injuries in professional soccer: Learning algorithms. Int. J. Sports Med. 2019, 40, 344–353. [Google Scholar] [CrossRef]
- Gerodimos, V. Reliability of handgrip strength test in basketball players. J. Hum. Kinet. 2012, 31, 25. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Schmitz, B.; Pfeifer, C.; Kreitz, K.; Borowski, M.; Faldum, A.; Brand, S.-M. The Yo-Yo intermittent tests: A systematic review and structured compendium of test results. Front. Physiol. 2018, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Walker, S.; Stembridge, M.; Coneyworth, P.; Reed, G.; Birdsey, L.; Barter, P.; Moody, J. A testing battery for the assessment of fitness in soccer players. Strength Cond. J. 2011, 33, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M.; Bahr, R.; Ekstrand, J. Methods for epidemiological study of injuries to professional football players: Developing the UEFA model. Br. J. Sports Med. 2005, 39, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. Unsupervised learning. In The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009; pp. 485–585. [Google Scholar]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Carey, D.L.; Ong, K.-L.; Whiteley, R.; Crossley, K.M.; Crow, J.; Morris, M.E. Predictive modelling of training loads and injury in Australian football. arXiv 2017, arXiv:170604336. [Google Scholar] [CrossRef] [Green Version]
- Rodas, G.; Osaba, L.; Arteta, D.; Pruna, R.; Fernández, D.; Lucia, A. Genomic prediction of tendinopathy risk in elite team sports. Int. J. Sports Physiol. Perform. 2019, 15, 489–495. [Google Scholar] [CrossRef]
- Ruddy, J.D.; Cormack, S.J.; Whiteley, R.; Williams, M.D.; Timmins, R.G.; Opar, D.A. Modeling the risk of team sport injuries: A narrative review of different statistical approaches. Front. Physiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Halson, S. Monitorización de la carga de formación para conocer fatiga en los atletas. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Stubbe, J.H.; van Beijsterveldt, A.-M.M.C.; van der Knaap, S.; Stege, J.; Verhagen, E.A.; van Mechelen, W.; Backx, F.J.G. Injuries in professional male soccer players in the Netherlands: A prospective cohort study. J. Athl. Train. 2015, 50, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Waldén, M.; Hägglund, M.; Ekstrand, J. Injuries in Swedish elite football—A prospective study on injury definitions, risk for injury and injury pattern during 2001. Scand. J. Med. Sci. Sports 2005, 15, 118–125. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; González-Haro, C.; Gormasz, C.; Pigozzi, F.; Bachl, N. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J. Sports Sci. 2010, 28, 1489–1494. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Torreño, N.; Requena, B.; De Villarreal, E.S.; Casamichana, D.; Barbero-Alvarez, J.C.; Munguía-Izquierdo, D. Match-play activity profile in professional soccer players during official games and the relationship between external and internal load. J. Sports Med. Phys. Fit. 2014, 55, 1417–1422. [Google Scholar]
- Martín-García, A.; Díaz, A.G.; Bradley, P.S.; Morera, F.; Casamichana, D. Quantification of a professional football team’s external load using a microcycle structure. J. Strength Cond. Res. 2018, 32, 3511–3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbett, T.J. The training—Injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrysomallis, C. Hip adductors’ strength, flexibility, and injury risk. J. Strength Cond. Res. 2009, 23, 1514–1517. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Risk factors for injuries in football. Am. J. Sports Med. 2004, 32 (Suppl. S1), 5–16. [Google Scholar] [CrossRef]
- Ekstrand, J.; Gillquist, J. Soccer injuries and their mechanisms: A prospective study. Med. Sci. Sports Exerc. 1983, 15, 267–270. [Google Scholar] [CrossRef]
- Ibrahim, A.; Murrell, G.; Knapman, P. Adductor strain and hip range of movement in male professional soccer players. J. Orthop. Surg. 2007, 15, 46–49. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players: A prospective study. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef]
- Liguori, G.; American College of Sports Medicine (ACSM). ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2016. [Google Scholar]
- Turbeville, S.D.; Cowan, L.D.; Asal, N.R.; Owen, W.L.; Anderson, M.A. Risk factors for injury in middle school football players. Am. J. Sports Med. 2003, 31, 276–281. [Google Scholar] [CrossRef]
- Turbeville, S.D.; Cowan, L.D.; Owen, W.L.; Asal, N.R.; Anderson, M.A. Risk factors for injury in high school football players. Am. J. Sports Med. 2003, 31, 974–980. [Google Scholar] [CrossRef]
Variable | Description | M | sd |
---|---|---|---|
x1–x3 | Sectorial Position * | - | - |
x4 | Age (y) | 25.45 | 3.34 |
x5 | Experience (y) | 7.29 | 3.38 |
x6 | Body mass (kg) | 80.09 | 7.07 |
x7 | Height (cm) | 182.52 | 6.01 |
x8 | TBW (L) | 51.93 | 4.66 |
x9 | BFM (kg) | 8.2 | 2.41 |
x10 | FFM (kg) | 71.2 | 6.50 |
x11 | Previous injury (n) | 1.29 | 1.63 |
x12 | Sit and reach (cm) | 34.52 | 6.79 |
x13 | Push-ups (n) | 43.63 | 8.68 |
x14 | Handgrip right (kg) | 50.87 | 9.62 |
x15 | Handgrip left (kg) | 48.92 | 8.67 |
x16 | CMJ height (cm) | 40.14 | 4.58 |
x17 | SJ height (cm) | 39.64 | 4.26 |
x18 | LS 5 m (s) | 1.16 | 0.13 |
x19 | LS 10 m (s) | 1.88 | 0.16 |
x20 | LS 35 m (s) | 4.85 | 0.27 |
x21 | Estimated VO2 max (L/kg/min) | 50.82 | 3.98 |
x22 | Yoyo (m) | 1720 | 476 |
y | Injury frequency (n) | 0.79 | 0.72 |
No. of Players | 36 |
No. of Injured Players | 23 |
Total Injuries | 34 |
Average Days Missed Due to Injury | 14.3 |
Injury per Player | 0.9 |
Injury Mechanism | |
Traumatic | 18 (52.9%) |
Overload | 16 (47.1%) |
Injury Severity * | |
Minimal (1–3 days) | 4 (11.7%) |
Mild (4–7 days) | 7 (20.5%) |
Moderate | 17 (50%) |
Severe (+28 days) | 6 (17.6%) |
Injury Recurrence | |
Yes | 4 (11.8%) |
No | 30 (88.2%) |
Method | Predictors | RMSECV | Parameter |
---|---|---|---|
OLS | x1, x2, x3, …, x23 | 18.57 | - |
Ridge | x1, x2, x3, …, x23 | 0.698 | λ = 82.2 |
LASSO | x1, x2, x3, …, x23 | 0.737 | s = 0 |
Elastic net (EN) | x1, x3, x7, x12, x13, x15, x20 | 0.633 | λ = 0.1, s = 0.22 |
Forward (F) | x1, x12, x13, x15 | 0.618 | - |
Ridge (EN) | x1, x3, x7, x12, x13, x15, x20 | 0.592 | λ = 17.5 |
Ridge (F) | x1, x12, x13, x15 | 0.591 | λ = 7 |
LASSO (EN) | x1, x3, x7, x12, x13, x15, x20 | 0.635 | s = 0.55 |
LASSO (F) | x1, x12, x13, x15 | 0.613 | s = 0.87 |
Method | Equation |
---|---|
Ridge (EN) | y = 0.01 + 0.10⊕x1 − 0.27⊕x3 + 0.01⊕x7 − 0.01⊕x12 − 0.01⊕x13 − 0.03⊕x15 − 0.45⊕x20 |
Ridge (F) | y = −0.28 + 0.35⊕x1 − 0.02⊕x12⊕−0.01x13 + 0.04⊕x15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, F.; Przednowek, K.; França, C.; Lopes, H.; de Maio Nascimento, M.; Sarmento, H.; Marques, A.; Ihle, A.; Henriques, R.; Gouveia, É.R. Predictive Modeling of Injury Risk Based on Body Composition and Selected Physical Fitness Tests for Elite Football Players. J. Clin. Med. 2022, 11, 4923. https://doi.org/10.3390/jcm11164923
Martins F, Przednowek K, França C, Lopes H, de Maio Nascimento M, Sarmento H, Marques A, Ihle A, Henriques R, Gouveia ÉR. Predictive Modeling of Injury Risk Based on Body Composition and Selected Physical Fitness Tests for Elite Football Players. Journal of Clinical Medicine. 2022; 11(16):4923. https://doi.org/10.3390/jcm11164923
Chicago/Turabian StyleMartins, Francisco, Krzysztof Przednowek, Cíntia França, Helder Lopes, Marcelo de Maio Nascimento, Hugo Sarmento, Adilson Marques, Andreas Ihle, Ricardo Henriques, and Élvio Rúbio Gouveia. 2022. "Predictive Modeling of Injury Risk Based on Body Composition and Selected Physical Fitness Tests for Elite Football Players" Journal of Clinical Medicine 11, no. 16: 4923. https://doi.org/10.3390/jcm11164923
APA StyleMartins, F., Przednowek, K., França, C., Lopes, H., de Maio Nascimento, M., Sarmento, H., Marques, A., Ihle, A., Henriques, R., & Gouveia, É. R. (2022). Predictive Modeling of Injury Risk Based on Body Composition and Selected Physical Fitness Tests for Elite Football Players. Journal of Clinical Medicine, 11(16), 4923. https://doi.org/10.3390/jcm11164923