Targeting CD38 with Daratumumab Plus Chemotherapy for Patients with Advanced-Stage Plasmablastoid Large B-Cell Lymphoma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Patient Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.J.; Zhang, L.; Ayala, E.; Field, T.; Ochoa-Bayona, J.L.; Perez, L.; Bello, C.M.; Chervenick, P.A.; Bruno, S.; Cultrera, J.L.; et al. Human immunodeficiency virus (HIV)-negative plasmablastic lymphoma: A single institutional experience and literature review. Leuk. Res. 2011, 35, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; Facchetti, F.; Re, A.; Borlenghi, E.; Majorana, A.; Bardellini, E.; Casari, S.; Tucci, A.; Conti, G.; Rossi, G. Oral cavity lymphomas in immunocompetent and human immunodeficiency virus infected patients. Leuk. Lymphoma 2005, 46, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Colomo, L.; Loong, F.; Rives, S.; Pittaluga, S.; Martinez, A.; Lopez-Guillermo, A.; Ojanguren, J.; Romagosa, V.; Jaffe, E.S.; Campo, E. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am. J. Surg. Pathol. 2004, 28, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Furman, M.; Beltran, B.E.; Bibas, M.; Bower, M.; Chen, W.; Diez-Martin, J.L.; Liu, J.J.; Miranda, R.N.; Montoto, S.; et al. Human immunodeficiency virus-associated plasmablastic lymphoma: Poor prognosis in the era of highly active antiretroviral therapy. Cancer 2012, 118, 5270–5277. [Google Scholar] [CrossRef]
- Delecluse, H.J.; Anagnostopoulos, I.; Dallenbach, F.; Hummel, M.; Marafioti, T.; Schneider, U.; Huhn, D.; Schmidt-Westhausen, A.; Reichart, P.A.; Gross, U.; et al. Plasmablastic lymphomas of the oral cavity: A new entity associated with the human immunodeficiency virus infection. Blood 1997, 89, 1413–1420. [Google Scholar] [CrossRef]
- Castillo, J.J.; Bibas, M.; Miranda, R.N. The biology and treatment of plasmablastic lymphoma. Blood 2015, 125, 2323–2330. [Google Scholar] [CrossRef]
- Morscio, J.; Dierickx, D.; Nijs, J.; Verhoef, G.; Bittoun, E.; Vanoeteren, X.; Wlodarska, I.; Sagaert, X.; Tousseyn, T. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: Single-center series of 25 cases and meta-analysis of 277 reported cases. Am. J. Surg. Pathol. 2014, 38, 875–886. [Google Scholar] [CrossRef]
- Vega, F.; Chang, C.C.; Medeiros, L.J.; Udden, M.M.; Cho-Vega, J.H.; Lau, C.C.; Finch, C.J.; Vilchez, R.A.; McGregor, D.; Jorgensen, J.L. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod. Pathol. 2005, 18, 806–815. [Google Scholar] [CrossRef]
- Montes-Moreno, S.; Gonzalez-Medina, A.R.; Rodriguez-Pinilla, S.M.; Maestre, L.; Sanchez-Verde, L.; Roncador, G.; Mollejo, M.; Garcia, J.F.; Menarguez, J.; Montalban, C.; et al. Aggressive large B-cell lymphoma with plasma cell differentiation: Immunohistochemical characterization of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plasmablastic phenotype. Haematologica 2010, 95, 1342–1349. [Google Scholar] [CrossRef]
- Valera, A.; Balague, O.; Colomo, L.; Martinez, A.; Delabie, J.; Taddesse-Heath, L.; Jaffe, E.S.; Campo, E. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am. J. Surg. Pathol. 2010, 34, 1686–1694. [Google Scholar] [CrossRef]
- Dominguez-Sola, D.; Victora, G.D.; Ying, C.Y.; Phan, R.T.; Saito, M.; Nussenzweig, M.C.; Dalla-Favera, R. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat. Immunol. 2012, 13, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wong, K.; Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 1997, 276, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.; Wang, Y.; Siegel, D.S.; Wang, M.L. Daratumumab: A first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J. Hematol. Oncol. 2016, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
- de Weers, M.; Tai, Y.T.; van der Veer, M.S.; Bakker, J.M.; Vink, T.; Jacobs, D.C.; Oomen, L.A.; Peipp, M.; Valerius, T.; Slootstra, J.W.; et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol. 2011, 186, 1840–1848. [Google Scholar] [CrossRef]
- Overdijk, M.B.; Verploegen, S.; Bogels, M.; van Egmond, M.; Lammerts van Bueren, J.J.; Mutis, T.; Groen, R.W.; Breij, E.; Martens, A.C.; Bleeker, W.K.; et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 2015, 7, 311–321. [Google Scholar] [CrossRef]
- Johnsrud, J.J.; Susanibar, S.; Jo-Kamimoto, J.; Johnsrud, A.J.; Kothari, A.; Burgess, M.J.; Schinke, C. Infection Risk Associated with Daratumumab. Open Forum Infect. Dis. 2017, 4, S702–S703. [Google Scholar] [CrossRef]
- Lopez, A.; Abrisqueta, P. Plasmablastic lymphoma: Current perspectives. Blood Lymphat. Cancer 2018, 8, 63–70. [Google Scholar] [CrossRef]
- Castillo, J.; Pantanowitz, L.; Dezube, B.J. HIV-associated plasmablastic lymphoma: Lessons learned from 112 published cases. Am. J. Hematol. 2008, 83, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Winer, E.S.; Stachurski, D.; Perez, K.; Jabbour, M.; Milani, C.; Colvin, G.A.; Butera, J.N. HIV-negative plasmablastic lymphoma: Not in the mouth. Clin. Lymphoma Myeloma Leuk. 2011, 11, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Tchernonog, E.; Faurie, P.; Coppo, P.; Monjanel, H.; Bonnet, A.; Algarte Genin, M.; Mercier, M.; Dupuis, J.; Bijou, F.; Herbaux, C.; et al. Clinical characteristics and prognostic factors of plasmablastic lymphoma patients: Analysis of 135 patients from the LYSA group. Ann. Oncol. 2017, 28, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Schommers, P.; Wyen, C.; Hentrich, M.; Gillor, D.; Zoufaly, A.; Jensen, B.; Bogner, J.R.; Thoden, J.; Wasmuth, J.C.; Fatkenheuer, G.; et al. Poor outcome of HIV-infected patients with plasmablastic lymphoma: Results from the German AIDS-related lymphoma cohort study. AIDS 2013, 27, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Noy, A.; Lensing, S.Y.; Moore, P.C.; Gupta, N.; Aboulafia, D.; Ambinder, R.; Baiocchi, R.; Dezube, B.J.; Henry, D.; Kaplan, L.; et al. Plasmablastic lymphoma is treatable in the HAART era. A 10 year retrospective by the AIDS Malignancy Consortium. Leuk. Lymphoma 2016, 57, 1731–1734. [Google Scholar] [CrossRef]
- Castillo, J.J.; Guerrero-Garcia, T.; Baldini, F.; Tchernonog, E.; Cartron, G.; Ninkovic, S.; Cwynarski, K.; Dierickx, D.; Tousseyn, T.; Lansigan, F.; et al. Bortezomib plus EPOCH is effective as frontline treatment in patients with plasmablastic lymphoma. Br. J. Haematol. 2019, 184, 679–682. [Google Scholar] [CrossRef]
- Guerrero, T.; Bibas, M.; Baldini, F.; Cartron, G.; Cwynarski, K.; Dierickx, D.; Lansigan, F.; Linnik, Y.A.; Mogollon, R.; Navarro, J.T.; et al. Use of Bortezomib-Containing Regimens in the Frontline Treatment of Patients with Plasmablastic Lymphoma: A Multicenter Retrospective Analysis. Blood 2017, 130, 1580. [Google Scholar]
- Cheng, L.; Song, Q.; Liu, M.; Wang, Y.; Yi, H.; Qian, Y.; Xu, P.; Cheng, S.; Wang, C.; Wang, L.; et al. Case Report: Successful Management of a Refractory Plasmablastic Lymphoma Patient with Tislelizumab and Lenalidomide. Front. Immunol. 2021, 12, 702593. [Google Scholar] [CrossRef]
- Carbone, A. AIDS-related non-Hodgkin’s lymphomas: From pathology and molecular pathogenesis to treatment. Hum. Pathol. 2002, 33, 392–404. [Google Scholar] [CrossRef]
- Witte, H.M.; Kunstner, A.; Hertel, N.; Bernd, H.W.; Bernard, V.; Stolting, S.; Merz, H.; von Bubnoff, N.; Busch, H.; Feller, A.C.; et al. Integrative genomic and transcriptomic analysis in plasmablastic lymphoma identifies disruption of key regulatory pathways. Blood Adv. 2022, 6, 637–651. [Google Scholar] [CrossRef]
- Ramis-Zaldivar, J.E.; Gonzalez-Farre, B.; Nicolae, A.; Pack, S.; Clot, G.; Nadeu, F.; Mottok, A.; Horn, H.; Song, J.Y.; Fu, K.; et al. MAPK and JAK-STAT pathways dysregulation in plasmablastic lymphoma. Haematologica 2021, 106, 2682–2693. [Google Scholar] [CrossRef] [PubMed]
Demographic Feature | N (%) |
---|---|
Age (y), median (range) | 48 (25–88) |
Sex (%) | |
Male | 71% (5/7) |
Female | 29% (2/7) |
Race (%) | |
Black | 29% (2/7) |
White | 71% (5/7) |
Ethnicity (%) | |
Hispanic | 28.6% (2/7) |
Non-Hispanic | 71.4% (5/7) |
IPI score | |
ECOG | |
0–2 | 43% (3/7) |
3–4 | 57% (4/7) |
Stage | |
1–2 | 0% |
3–4 | 100% (7/7) |
Median LDH at diagnosis (range) | 277 (228–1817) |
Extranodal sites of disease | 100% (7/7) |
% IPI 1–2 | 29% (2/7) |
% IPI ≥3 | 71% (5/7) |
% of stage 1–2 | 0% (0/7) |
% of stage ≥3 | 100% (7/7) |
Underlying risks for lymphoma | |
HIV/AIDS | 57% (4/7) |
Transplant/immunosuppression | 29% (2/7) |
EBV/CMV | 71% (5/7) |
Median CD4 count at diagnosis (range) cells/mL | 34 (8–184) |
CD4 count <100 at diagnosis | 75% (3/4) |
Median % of CD4 cells | 6% (2–25%) |
Neoplastic markers | |
CD20+ | 14% (1/7) |
CD19+ | 14% (1/7) |
CD38+ | 100% (5/5) |
CD138+ | 86% (6/7) |
MUM1+ | 100% (7/7) |
c-myc+ | 100% (7/7) |
Patient | Age | Sex | Race | Risk for Lymphoma | Treatments | Duration of Response | Best Response | Notable Toxicity | Pathology |
---|---|---|---|---|---|---|---|---|---|
1 | 28 | F | White | Heart transplant/PTLD/EBV viremia | 6 cycles of low dose Dara-EP(O)CH 1 dose of ritux | 27 mo ongoing | CR after c2 | PICC associated DVT + PE s/p thrombectomy Neutropenic fever ×1 episode 2 months after completion of chemotherapy | CD138+/− |
CD38+ | |||||||||
MUM1+ | |||||||||
C-Myc > 90% | |||||||||
CD20− | |||||||||
EBER− | |||||||||
Ki67 80% | |||||||||
Kappa lambda− | |||||||||
P53+/− | |||||||||
Neg for IgH gene arrangement | |||||||||
2 | 73 | M | African American | HIV/AIDS CMV, EBV | 6 cycles of EPOCH- Dara added on c2 (1 dose c2, 2 doses from C3–6) Vincristine omitted on C6 | 25 mo ongong | CR at interim scan after 4 cycles | Neuropathy- held vincristine on C6 | CD138++ |
MUM1++ | |||||||||
BCL6− | |||||||||
c-MYC+ | |||||||||
BCL2+/− | |||||||||
CD79a+/− | |||||||||
CD20− | |||||||||
ki67 80–90% | |||||||||
3 | 88 | F | White | Chron’s disease on infliximab | dara × 4 weekly mixed response- > bortezomib 1.3 mg/m2 + dara × 4 weekly PD- > dara + lenalidomide + doxil × 36 weeks | 21 mon ongoing | CR | None | Variable CD138+/− |
MUM1++ | |||||||||
EBER ISH+ | |||||||||
CD79a+ | |||||||||
CD10++ | |||||||||
CD20- | |||||||||
Ki 67 70–80% | |||||||||
c-Myc+/− | |||||||||
BCL2− | |||||||||
4 | 79 | M | White | None | 6 cycles DARA- R-EPOCH alternating with IT MTX At relapse R-DHAX- Daratumumab | 4/2021–7/2021 so 3 mo | CR after 4 cycles of DARA-R EPOCH | Neutropenic fever × 1 episode | Sparsely CD138+, CD38+ |
CD19+, CD20+/− | |||||||||
CD79a+ | |||||||||
MUM1+ | |||||||||
BCL6dim+ | |||||||||
BCL2+/0 | |||||||||
C-Myc+/− | |||||||||
CD10− | |||||||||
Kappa− | |||||||||
Lambda+ | |||||||||
Ki67 70–80% | |||||||||
EBV neg | |||||||||
Foxp1+ | |||||||||
45,X,Y,ins(3;1)(p21.1;p13q33),del(1)(q41q42),del(6)(q16q24),t(14;15)(q32;q11.2),i(17)(q10)][19]/46,XY | |||||||||
IgH gene rearrangement+ | |||||||||
5 | 48 | M | Hispanic | HIV/AIDS (CD4 of 4 VL 191K) EBV | Dara-EPOCH × 6 cycles LP with HD MTX × 3 cycles Dara- HD MTX × 2 | PR after 2 cycles | Peripheral neuropathy Anemia requiring transfusion Difficulty clearing pre-exisiting infection (i.e., Norovirus causing critical hypoK and hypoMg from chronic diarrhea and malnutrition requiring treatment with nitazoxadine) | CD138++, | |
CD38 bright | |||||||||
P53+ | |||||||||
MUM1+ | |||||||||
C-MYC 40% | |||||||||
CD30+/0 | |||||||||
CD20− CD79a− | |||||||||
BCL6−, BCL2−, diffuse CD38 | |||||||||
Positive for EBV | |||||||||
Ki67 > 80% | |||||||||
Myc rearrangement in 93% | |||||||||
6 | 43 | M | White | HIV (off treatment, VL 7576 at dx) CMV, EBV | DARA-EPOCH × 3 cycles with IT MTX | unevaluable | COPD exacerbation from parainfluenza infection requiring supplemental oxygen and steroid | MUM1++ | |
CD138+/− | |||||||||
CD38+ | |||||||||
BCL2+/− | |||||||||
BCL6− | |||||||||
CD79a+/− | |||||||||
C-Myc+ | |||||||||
P53+/− | |||||||||
CD30− | |||||||||
Ki67 high | |||||||||
CD20- | |||||||||
EBERISH+/− | |||||||||
7 | 34 | M | African American | HIV/AIDS (CD4 of 11, VL > 100K) EBV | Dara-EPOCH × 6 cycles alternating with IT-MTX | CR after 4 cycles | MUM++ | ||
CD138− | |||||||||
CD38+/− | |||||||||
MUM1+ | |||||||||
CD45+/0 | |||||||||
Ki67 80–90% | |||||||||
P53+ minor subset | |||||||||
CD20−, CD19−, c-myc+/−, | |||||||||
76~84<3N>, XXY, add(1)(q21), +2, +3, add(3)(p21), +7, +8, +12, +12, del(12)(q14q24.1)x1~2, hsr(12)(q24)x3, +16, +17, +19, +20, −22, −22[cp5]/46,XY [17]IgH gene rearrangement |
Patient | Treatment Course | ||||||
---|---|---|---|---|---|---|---|
1 | C1 of Dara-EPOCHDoxorubicin 7 mg/m2 Etoposide 30 mg/m2 Cyclophosphamide 187 mg/m2 Dara 16 mg/kg on weekly throughout between cycles | C2 of Dara-EPOCH Doxorubicin 7 mg/m2 Etoposide 37 mg/m2 Cyclophosphamide 377 mg/m2 Dara 16 mg/kg on weekly throughout between cycles | C3 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Cyclophosphamide 400 mg/m2 Rituximab 550 mg Dara 16 mg/kg on weekly throughout between cycles | C4 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Cyclophosphamide 562 mg/m2 Dara 16 mg/kg on D1 | C5 of Dara-EPOCH Doxorubicin 7 mg/m2 Etoposide 50 mg/m2 Cyclophosphamide 364 mg/m2 Dara 16 mg/kg on D4 HD Methotrexate 3.5 g/m2 | C6 of Dara-EPOCH Doxorubicin 7 mg/m2 Etoposide 40 mg/m2 Cyclophosphamide 242 mg/m2 Dara 16 mg/kg on d4 | |
2 | C1 of EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 375 mg/m2 | C2 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 350 mg/m2 Dara 16 mg/kg on D1 | C3 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 750 mg/m2 Dara 16 mg/kg on D1 | C4 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 750 mg/m2 Dara 16 mg/kg on D1 and D5 | C5 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg /m2 Vincristine 0.4 mg/m2 Cyclophosphamide 750 mg/m2 Dara 16 mg/kg on D1 and D5 | C6 of Dara-EPOCH Doxorubicin 7.5 mg/m2 Etoposide 37.5 mg/m2 Cyclophosphamide 562 mg/m2 Dara 16 mg/kg on D1 and D5 | |
3 | Dara 1.6 mg/kg weekly × 4 | Bortezomib 1.3 mg/m2 weekly × 4Dara 16 mg/kg weekly × 4 | Dara 16 mg/kg q2 weekly Liposomal doxorubicin 40 mg/m2 q2 weekly Revlimid 15 mg daily or 20 mg q2 days | ||||
4 | C1 of Dara-R- EPOCH Vincristine 0.4 mg/m2 Doxorubicin 8 mg/m2 Etoposide 40 mg/m2 Cyclophosphamide 600 mg/m2 Rituximab 375 mg/m2 Dara 16 mg/kg on D1 and D5 Inthrathecal MTX 12 mg | C2 of Dara-R- EPOCH Vincristine 0.8 mg/m2 Doxorubicin 15 mg/m2 Etoposide 75 mg/m2 Cyclophosphamide 600 mg/m2 Rituximab 375 mg/m2 Dara 16 mg/kg on D1 and D5 Inthrathecal MTX 12 mg | C3 of Dara-R- EPOCH Vincristine 0.8 mg/m2 Doxorubicin 15 mg/m2 Etoposide 75 mg/m2 Cyclophosphamide 600 mg/m2 Rituximab 375 mg/m2 Dara 16 mg/kg on D1 and D5 Inthrathecal MTX 12 mg | C4 of Dara-R- EPOCH Vincristine 0.8 mg/m2 Doxorubicin 15 mg/m2 Etoposide 75 mg/m2 Cyclophosphamide 600 mg/m2 Rituximab 375 mg/m2 Dara 16 mg/kg on D1 and D5 Inthrathecal MTX 12 mg | C5 of Dara-R- EPOCH Vincristine 0.4 mg/m2 Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Cyclophosphamide 375 mg/m2 Rituximab 375 mg/m2 Dara 16 mg/kg on D1 and D5 Inthrathecal MTX 12 mg | C6 of Dara-R- EPOCH Vincristine 0.4 mg/m2 Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Cyclophosphamide 375 mg/m2 Rituximab 375 mg/m2 Dara 16 mg/kg on D1 and D5 Inthrathecal MTX 12 mg | C1 of R-DHAX Oxaliplatin 180 mg D1 Cytarabine 1130 mg D2 and D3 |
5 | C1 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 37.5 mg/m2 Vincristine 0.3 mg/m2 Cyclophosphamide 187.5 mg/m2 Dara 16 mg/kg on D1 and D8 Intrathecal MTX 12 mg C1D15 HD MTX 6 g/m2 with Dara 16 mg/kg | C2 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 37.5 mg/m2 Vincristine 0.2 mg/m2 Cyclophosphamide 187.5 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg | C3 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 187.5 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg C3D15 HD MTX 6 g/m2 with Dara 16 mg/kg | C4 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.2 mg/m2 Cyclophosphamide 187.5 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg | C5 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 187.5 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg C5D15 HD MTX 6 g/m2 with Dara 16 mg/kg | C6 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 187.5 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg | |
6 | C1 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 375 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg | C2 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 375 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg | C3 of Dara-EPOCH Doxorubicin 12 mg/m2 Etoposide 60 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 900 mg/m2 Dara 16 mg/kg on D1 and D5 | ||||
7 | C1 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 187 mg/m2 Dara 16 mg/kg on D1 Intrathecal MTX 12 mg | C2 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 350 mg/m2 Dara 16 mg/kg on D1 and D5 Intrathecal MTX 12 mg | C3 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 350 mg/m2 Dara 16 mg/kg on D1 and D5 Intrathecal MTX 12 mg | C4 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 350 mg/m2 Dara 16 mg/kg on D1 and D5 Intrathecal MTX 12 mg | C5 of Dara-EPOCH Doxorubicin 10 mg/m2 Etoposide 50 mg/m2 Vincristine 0.4 mg/m2 Cyclophosphamide 350 mg/m2 Dara 16 mg/kg on D1 and D5 Intrathecal MTX 12 mg | C6 of Dara-EPOCH Vincristine 0.4 mg/m2 Doxorubicin 10 mg/m2 Etoposide 50 mg Vincristine 0.4 mg/m2 Cyclophosphamide 350 mg/m2 Dara 16 mg/kg on D1 and D5 Intrathecal MTX 12 mg | Bortezomib 1.5 mgC1 of DHAX Bortezomib 2.1 mgOxaliplatin 210 mg Cytarabin 2100 mg on D1 and D2 C2 of DHAX Bortezomib 2.8 mgOxaliplatin 275 mg Cytarabine 4200 mg on D1 and D2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, Y.K.; Ricker, E.C.; Soderquist, C.R.; Francescone, M.A.; Lipsky, A.H.; Amengual, J.E. Targeting CD38 with Daratumumab Plus Chemotherapy for Patients with Advanced-Stage Plasmablastoid Large B-Cell Lymphoma. J. Clin. Med. 2022, 11, 4928. https://doi.org/10.3390/jcm11164928
Ryu YK, Ricker EC, Soderquist CR, Francescone MA, Lipsky AH, Amengual JE. Targeting CD38 with Daratumumab Plus Chemotherapy for Patients with Advanced-Stage Plasmablastoid Large B-Cell Lymphoma. Journal of Clinical Medicine. 2022; 11(16):4928. https://doi.org/10.3390/jcm11164928
Chicago/Turabian StyleRyu, Yun Kyoung, Edd C. Ricker, Craig R. Soderquist, Mark A. Francescone, Andrew H. Lipsky, and Jennifer E. Amengual. 2022. "Targeting CD38 with Daratumumab Plus Chemotherapy for Patients with Advanced-Stage Plasmablastoid Large B-Cell Lymphoma" Journal of Clinical Medicine 11, no. 16: 4928. https://doi.org/10.3390/jcm11164928
APA StyleRyu, Y. K., Ricker, E. C., Soderquist, C. R., Francescone, M. A., Lipsky, A. H., & Amengual, J. E. (2022). Targeting CD38 with Daratumumab Plus Chemotherapy for Patients with Advanced-Stage Plasmablastoid Large B-Cell Lymphoma. Journal of Clinical Medicine, 11(16), 4928. https://doi.org/10.3390/jcm11164928