New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature
Abstract
:1. Introduction
2. Janus Kinase Inhibitors
2.1. Delgocitinib
2.2. Ruxolitinib
2.3. Tofacitinib
2.4. Brepocitinib
2.5. Other JAK Inhibitors
3. Phosphodiesterase-4 Inhibitors
3.1. Crisaborole
3.2. Difamilast (OPA-15406)
3.3. E6005 (RVT-501)
3.4. Other PDE-4 Inhibitors
4. Aryl Hydrocarbon Receptor Agonists
Tapinarof
5. Transient Receptor Potential Vanilloid 1 Antagonists
Asivatrep
6. Skin Microbiome Modulators
7. Newer Emolients
8. Other
9. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic dermatitis. Nat. Rev. Dis. Prim. 2018, 4, 18003. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Strafella, C.; Germani, C.; Manzo, L.; Marsella, L.T.; Borgiani, P.; Sobhy, N.; Abdelmaksood, R.; Gerou, S.; Ioannides, D.; et al. FLG (filaggrin) null mutations and sunlight exposure: Evidence of a correlation. J. Am. Acad. Dermatol. 2015, 73, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Sideris, N.; Vakirlis, E.; Tsentemeidou, A.; Kourouklidou, A.; Ioannides, D.; Sotiriou, E. Under Development JAK Inhibitors for Dermatologic Diseases. Mediterr. J. Rheumatol. 2020, 31, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Kusari, A.; Han, A.M.; Schairer, D.; Eichenfield, L.F. Atopic Dermatitis. Dermatol. Clin. 2019, 37, 11–20. [Google Scholar] [CrossRef]
- Otsuka, A.; Nomura, T.; Rerknimitr, P.; Seidel, J.; Honda, T.; Kabashima, K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol. Rev. 2017, 278, 246–262. [Google Scholar] [CrossRef]
- Nygaard, U.; Deleuran, M.; Vestergaard, C. Emerging Treatment Options in Atopic Dermatitis: Topical Therapies. Dermatology 2017, 233, 333–343. [Google Scholar] [CrossRef]
- Aaronson, D.S.; Horvath, C.M. A Road Map for Those Who Don’t Know JAK-STAT. Science 2002, 296, 1653–1655. [Google Scholar] [CrossRef]
- Aittomäki, S.; Pesu, M. Therapeutic Targeting of the JAK/STAT Pathway. Basic Clin. Pharmacol. Toxicol. 2014, 114, 18–23. [Google Scholar] [CrossRef]
- Darnell, J.E., Jr.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264, 1415–1421. [Google Scholar] [CrossRef]
- Virtanen, A.T.; Haikarainen, T.; Raivola, J.; Silvennoinen, O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs 2019, 33, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.M.; Cooles, F.A.; Isaacs, J.D. Basic Mechanisms of JAK Inhibition. Mediterr. J. Rheumatol. 2020, 31, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.G.; Ahern, M.J.; Coleman, M.; Weedon, H.; Papangelis, V.; Beroukas, D.; Roberts-Thomson, P.J.; Smith, M.D. Characterisation of a dendritic cell subset in synovial tissue which strongly expresses Jak/STAT transcription factors from patients with rheumatoid arthritis. Ann. Rheum. Dis. 2007, 66, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef]
- Bao, L.; Zhang, H.; Chan, L.S. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAK-STAT 2013, 2, e24137. [Google Scholar] [CrossRef] [PubMed]
- Amano, W.; Nakajima, S.; Kunugi, H.; Numata, Y.; Kitoh, A.; Egawa, G.; Dainichi, T.; Honda, T.; Otsuka, A.; Kimoto, Y.; et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J. Allergy Clin. Immunol. 2015, 136, 667–677.e7. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nemoto, O.; Igarashi, A.; Saeki, H.; Kaino, H.; Nagata, T. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. J. Am. Acad. Dermatol. 2020, 82, 823–831. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nemoto, O.; Igarashi, A.; Saeki, H.; Murata, R.; Kaino, H.; Nagata, T. Long-term safety and efficacy of delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with atopic dermatitis. J. Dermatol. 2020, 47, 114–120. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nemoto, O.; Igarashi, A.; Saeki, H.; Kabashima, K.; Oda, M.; Nagata, T. Delgocitinib ointment in pediatric patients with atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and a subsequent open-label, long-term study. J. Am. Acad. Dermatol. 2021, 85, 854–862. [Google Scholar] [CrossRef]
- Suehiro, M.; Numata, T.; Murakami, E.; Takahashi, M.; Saito, R.; Morioke, S.; Kamegashira, A.; Takahagi, S.; Hide, M.; Tanaka, A. Real-world efficacy of proactive maintenance treatment with delgocitinib ointment twice weekly in adult patients with atopic dermatitis. Dermatol. Ther. 2022, 35, e15526. [Google Scholar] [CrossRef]
- McLornan, D.P.; E Pope, J.; Gotlib, J.; Harrison, C.N. Current and future status of JAK inhibitors. Lancet 2021, 398, 803–816. [Google Scholar] [CrossRef]
- Papp, K.; Szepietowski, J.C.; Kircik, L.; Toth, D.; Eichenfield, L.F.; Leung, D.Y.; Forman, S.B.; Venturanza, M.E.; Sun, K.; Kuligowski, M.E.; et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. J. Am. Acad. Dermatol. 2021, 85, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.; Szepietowski, J.C.; Kircik, L.; Toth, D.; Eichenfield, L.F.; Forman, S.B.; Kuligowski, M.E.; Venturanza, M.E.; Sun, K.; Simpson, E.L. Long-term safety and disease control with ruxolitinib cream in atopic dermatitis: Results from two phase III studies. Revolutionizing Atopic Dermatitis. Br. J. Dermatol. 2021, 185, e109–e146. [Google Scholar] [CrossRef]
- Bissonnette, R.; Papp, K.A.; Poulin, Y.; Gooderham, M.; Raman, M.; Mallbris, L.; Wang, C.; Purohit, V.; Mamolo, C.; Papacharalambous, J.; et al. Topical tofacitinib for atopic dermatitis: A phase II a randomized trial. Br. J. Dermatol. 2016, 175, 902–911. [Google Scholar] [CrossRef]
- Dose Ranging Study to Assess Efficacy, Safety, Tolerability and Pharmacokinetics of PF-06700841 Topical Cream in Participants With Mild or Moderate Atopic Dermatitis. Available online: https://clinicaltrials.gov/ct2/show/results/NCT03903822?term=PF-06700841&cond=Atopic+Dermatitis&draw=2&rank=1&view=results (accessed on 2 June 2022).
- Aclaris Therapeutics Announces Positive Preliminary Topline Data from Phase 2a Trial of ATI-1777 for Moderate to Severe Atopic Dermatitis. Available online: https://www.globenewswire.com/news-release/2021/06/08/2243460/37216/en/Aclaris-Therapeutics-Announces-Positive-Preliminary-Topline-Data-from-Phase-2a-Trial-of-ATI-1777-for-Moderate-to-Severe-Atopic-Dermatitis.html (accessed on 4 June 2022).
- Smith, S.; Bhatia, N.; Shanler, S.D.; Demoor, R.; Schnyder, J. 16089 Safety of ATI-502, a novel topical JAK1/3 inhibitor, in adults with moderate to severe atopic dermatitis: Results from a phase 2a open-label trial. J. Am. Acad. Dermatol. 2020, 83, AB170. [Google Scholar] [CrossRef]
- Dastidar, S.G.; Rajagopal, D.; Ray, A. Therapeutic benefit of PDE4 inhibitors in inflammatory diseases. Curr. Opin. Investig. Drugs. 2007, 8, 364–372. [Google Scholar] [PubMed]
- Bäumer, W.; Hoppmann, J.; Rundfeldt, C.; Kietzmann, M. Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm. Allergy-Drug Targets 2007, 6, 17–26. [Google Scholar] [CrossRef]
- Hanifin, J.M.; Chan, S.C.; Cheng, J.B.; Tofte, S.J.; Henderson, W.R.; Kirby, D.S.; Weiner, E.S. Type 4 Phosphodiesterase Inhibitors Have Clinical and In Vitro Anti-inflammatory Effects in Atopic Dermatitis. J. Investig. Dermatol. 1996, 107, 51–56. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Punzon, C.; Navarro, J.; Muñoz-Fernández, M.A.; Fresno, M. Phosphodiesterase 4 inhibitors prevent cytokine secretion by T lymphocytes by inhibiting nuclear factor-kappaB and nuclear factor of activated T cells activation. J. Pharmacol. Exp. Ther. 2001, 299, 753–759. [Google Scholar]
- Paller, A.S.; Tom, W.L.; Lebwohl, M.G.; Blumenthal, R.L.; Boguniewicz, M.; Call, R.S.; Eichenfield, L.F.; Forsha, D.W.; Rees, W.C.; Simpson, E.L.; et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J. Am. Acad. Dermatol. 2016, 75, 494–503.e6. [Google Scholar] [CrossRef]
- Schlessinger, J.; Shepard, J.S.; Gower, R.; Su, J.C.; Lynde, C.; Cha, A.; Ports, W.C.; Purohit, V.; Takiya, L.; Werth, J.L.; et al. Safety, Effectiveness, and Pharmacokinetics of Crisaborole in Infants Aged 3 to <24 Months with Mild-to-Moderate Atopic Dermatitis: A Phase IV Open-Label Study (CrisADe CARE 1). Am. J. Clin. Dermatol. 2020, 21, 275–284. [Google Scholar] [CrossRef]
- Lin, C.P.-L.; Gordon, S.; Her, M.J.; Rosmarin, D. A retrospective study: Application site pain with the use of crisaborole, a topical phosphodiesterase 4 inhibitor. J. Am. Acad. Dermatol. 2019, 80, 1451–1453. [Google Scholar] [CrossRef] [Green Version]
- Eichenfield, L.F.; Call, R.S.; Forsha, D.W.; Fowler, J., Jr.; Hebert, A.A.; Spellman, M.; Stein Gold, L.F.; Van Syoc, M.; Zane, L.T.; Tschen, E. Long-term safety of crisaborole ointment 2% in children and adults with mild to moderate atopic dermatitis. J. Am. Acad. Dermatol. 2017, 77, 641–649.e5. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, R.; Pavel, A.B.; Diaz, A.; Werth, J.L.; Zang, C.; Vranic, I.; Purohit, V.S.; Zielinski, M.A.; Vlahos, B.; Estrada, Y.D.; et al. Crisaborole and atopic dermatitis skin biomarkers: An intrapatient randomized trial. J. Allergy Clin. Immunol. 2019, 144, 1274–1289. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.M.; Ellis, C.N.; Frieden, I.J.; Fölster-Holst, R.; Stein Gold, L.F.; Secci, A.; Smith, A.J.; Zhao, C.; Kornyeyeva, E.; Eichenfield, L.F. OPA-15406, a novel, topical, nonsteroidal, selective phosphodiesterase-4 (PDE4) inhibitor, in the treatment of adult and adolescent patients with mild to moderate atopic dermatitis (AD): A phase-II randomized, double-blind, placebo-controlled study. J. Am. Acad. Dermatol. 2016, 75, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Saeki, H.; Ito, K.; Yokota, D.; Tsubouchi, H. Difamilast ointment in adult patients with atopic dermatitis: A phase 3 randomized, double-blind, vehicle-controlled trial. J. Am. Acad. Dermatol. 2022, 86, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Ohba, F.; Nomoto, M.; Hojo, S.; Akama, H. Safety, tolerability and pharmacokinetics of a novel phosphodiesterase inhibitor, E6005 ointment, in healthy volunteers and in patients with atopic dermatitis. J. Dermatol. Treat. 2016, 27, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Ohba, F.; Matsuki, S.; Imayama, S.; Matsuguma, K.; Hojo, S.; Nomoto, M.; Akama, H. Efficacy of a novel phosphodiesterase inhibitor, E6005, in patients with atopic dermatitis: An investigator-blinded, vehicle-controlled study. J. Dermatol. Treat. 2016, 27, 467–472. [Google Scholar] [CrossRef]
- Furue, M.; Kitahara, Y.; Akama, H.; Hojo, S.; Hayashi, N.; Nakagawa, H. The JAPANESE E6005 Study Investigators Safety and efficacy of topical E6005, a phosphodiesterase 4 inhibitor, in Japanese adult patients with atopic dermatitis: Results of a randomized, vehicle-controlled, multicenter clinical trial. J. Dermatol. 2014, 41, 577–585. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Anderson, K.R.; Tollefson, M.M. New and Emerging Therapies for Pediatric Atopic Dermatitis. Pediatr. Drugs 2019, 21, 239–260. [Google Scholar] [CrossRef]
- Ilyas, M.; Logas, C.M.; Glick, B.P.; Del Rosso, J.Q. Advancements in topical therapy. Dermatol. Rev. 2022, 3, 9–13. [Google Scholar] [CrossRef]
- Denison, M.S.; Nagy, S.R. Activation of the Aryl Hydrocarbon Receptor by Structurally Diverse Exogenous and Endogenous Chemicals. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 309–334. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Vázquez, C.; Quintana, F.J. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018, 48, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Nakahara, T. Revival of AHR Agonist for the Treatment of Atopic Dermatitis: Tapinarof. Curr. Treat. Options Allergy 2020, 7, 414–421.e3. [Google Scholar] [CrossRef]
- Furue, M.; Tsuji, G.; Mitoma, C.; Nakahara, T.; Chiba, T.; Morino-Koga, S.; Uchi, H. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J. Dermatol. Sci. 2015, 80, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, R.; Gold, L.S.; Rubenstein, D.S.; Tallman, A.M.; Armstrong, A. Tapinarof in the treatment of psoriasis: A review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor–modulating agent. J. Am. Acad. Dermatol. 2021, 84, 1059–1067. [Google Scholar] [CrossRef]
- Paghdal, K.V.; Schwartz, R.A. Topical tar: Back to the future. J. Am. Acad. Dermatol. 2009, 61, 294–302. [Google Scholar] [CrossRef]
- FDA Approves Dermavant’s VTAMA® (Tapinarof) Cream, 1% for the Treatment of Plaque Psoriasis in Adults: First Topical Novel Chemical Entity Launched for Psoriasis in the U.S. in 25 Years. Available online: https://www.globenewswire.com/news-release/2022/05/24/2449068/34323/en/FDA-Approves-Dermavant-s-VTAMA-tapinarof-cream-1-for-the-Treatment-of-Plaque-Psoriasis-in-Adults-First-Topical-Novel-Chemical-Entity-Launched-for-Psoriasis-in-the-U-S-in-25-Years.html (accessed on 13 June 2022).
- Paller, A.S.; Gold, L.S.; Soung, J.; Tallman, A.M.; Rubenstein, D.S.; Gooderham, M. Efficacy and patient-reported outcomes from a phase 2b, randomized clinical trial of tapinarof cream for the treatment of adolescents and adults with atopic dermatitis. J. Am. Acad. Dermatol. 2021, 84, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Peppers, J.; Paller, A.S.; Maeda-Chubachi, T.; Wu, S.; Robbins, K.; Gallagher, K.; Kraus, J.E. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. J. Am. Acad. Dermatol. 2019, 80, 89–98.e3. [Google Scholar] [CrossRef]
- Hwang, J.; Newton, E.M.; Hsiao, J.; Shi, V.Y. Aryl hydrocarbon receptor/nuclear factor E2-related factor 2 (AHR/NRF2) signalling: A novel therapeutic target for atopic dermatitis. Exp. Dermatol. 2022, 31, 485–497. [Google Scholar] [CrossRef]
- Gold, L.S.; Rubenstein, D.S.; Peist, K.; Jain, P.; Tallman, A.M. Tapinarof cream 1% once daily and benvitimod 1% twice daily are 2 distinct topical medications. J. Am. Acad. Dermatol. 2021, 85, e201–e202. [Google Scholar] [CrossRef]
- Messeguer, A.; Planells-Cases, R.; Ferrer-Montiel, A. Physiology and Pharmacology of the Vanilloid Receptor. Curr. Neuropharmacol. 2006, 4, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.-W.; Seo, J.A.; Jeong, Y.S.; Bae, I.-H.; Jang, W.-H.; Lee, J.; Kim, S.-Y.; Shin, S.-S.; Woo, B.-Y.; Lee, K.-W. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J. Dermatol. Sci. 2011, 62, 8–15. [Google Scholar] [CrossRef]
- Stander, S.; Moormann, C.; Schumacher, M.; Buddenkotte, J.; Artuc, M.; Shpacovitch, V.; Brzoska, T.; Lippert, U.; Henz, B.M.; Luger, T.A.; et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp. Dermatol. 2004, 13, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Armstrong, C. Novel therapeutic approach with PAC -14028 cream, a TRPV 1 antagonist, for patients with mild-to-moderate atopic dermatitis. Br. J. Dermatol. 2019, 180, 971–972. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Kim, B.J.; Lee, Y.W.; Won, C.; Park, C.O.; Chung, B.Y.; Lee, D.H.; Jung, K.; Nam, H.-J.; Choi, G.; et al. Asivatrep, a TRPV1 antagonist, for the topical treatment of atopic dermatitis: Phase 3, randomized, vehicle-controlled study (CAPTAIN-AD). J. Allergy Clin. Immunol. 2022, 149, 1340–1347.e4. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, C.S.; Bae, I.H.; Choi, J.K.; Park, Y.H.; Park, M. A novel, topical, nonsteroidal, TRPV1 antagonist, PAC-14028 cream improves skin barrier function and exerts anti-inflammatory action through modulating epidermal differentiation markers and suppressing Th2 cytokines in atopic dermatitis. J. Dermatol. Sci. 2018, 30, 184–194. [Google Scholar] [CrossRef]
- Choi, J.K.; Cho, W.; Lee, J.-H.; Choi, G.; Park, M. A TRPV1 antagonist, PAC-14028 does not increase the risk of tumorigenesis in chemically induced mouse skin carcinogenesis. Regul. Toxicol. Pharmacol. 2020, 112, 104613. [Google Scholar] [CrossRef]
- Park, M.; Naidoo, A.A.; Burns, A.; Choi, J.K.; Gatfield, K.M.; Vidgeon-Hart, M.; Bae, I.-H.; Lee, C.S.; Choi, G.; Powell, A.; et al. Do TRPV1 antagonists increase the risk for skin tumourigenesis? A collaborative in vitro and in vivo assessment. Cell Biol. Toxicol. 2018, 34, 143–162. [Google Scholar] [CrossRef]
- Lee, Y.; Won, C.-H.; Jung, K.; Nam, H.-J.; Choi, G.; Park, Y.-H.; Park, M.; Kim, B. Efficacy and safety of PAC -14028 Cream—A novel, topical, nonsteroidal, selective TRPV 1 antagonist in patients with mild-to-moderate atopic dermatitis: A phase II b randomized trial. Br. J. Dermatol. 2019, 180, 1030–1038. [Google Scholar] [CrossRef]
- Ederveen, T.H.A.; Smits, J.P.H.; Boekhorst, J.; Schalkwijk, J.; Bogaard, E.H.V.D.; Zeeuwen, P.L.J.M. Skin microbiota in health and disease: From sequencing to biology. J. Dermatol. 2020, 47, 1110–1118. [Google Scholar] [CrossRef]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; Murray, P.R.; et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, E.L.; Villarreal, M.; Jepson, B.; Rafaels, N.; David, G.; Hanifin, J.; Taylor, P.; Boguniewicz, M.; Yoshida, T.; De Benedetto, A.; et al. Patients with Atopic Dermatitis Colonized with Staphylococcus aureus Have a Distinct Phenotype and Endotype. J. Investig. Dermatol. 2018, 138, 2224–2233. [Google Scholar] [CrossRef] [PubMed]
- Na, C.; Baghoomian, W.; Simpson, E. A Therapeutic Renaissance—Emerging Treatments for Atopic Dermatitis. Acta Derm. Venereol. 2020, 100, adv00165. [Google Scholar] [CrossRef] [PubMed]
- Lunjani, N.; Hlela, C.; O’Mahony, L. Microbiome and skin biology. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Bieber, T. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 2022, 21, 21–40. [Google Scholar] [CrossRef]
- Paller, A.S.; Kong, H.H.; Seed, P.; Naik, S.; Scharschmidt, T.C.; Gallo, R.L.; Luger, T.; Irvine, A.D. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019, 143, 26–35. [Google Scholar] [CrossRef]
- Myles, I.A.; Earland, N.J.; Anderson, E.D.; Moore, I.N.; Kieh, M.D.; Williams, K.W.; Saleem, A.; Fontecilla, N.M.; Welch, P.A.; Darnell, D.A.; et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 2018, 3, e120608. [Google Scholar] [CrossRef]
- Clinical Trial of FB-401 For the Treatment of Atopic Dermatitis Fails to Meet Statistical Significance. Available online: https://www.fortebiorx.com/investor-relations/news/news-details/2021/Clinical-Trial-of-FB-401-For-the-Treatment-of-Atopic-Dermatitis-Fails-to-Meet-Statistical-Significance/default.aspx (accessed on 14 June 2022).
- Nakatsuji, T.; Hata, T.R.; Tong, Y.; Cheng, J.Y.; Shafiq, F.; Butcher, A.M.; Salem, S.S.; Brinton, S.L.; Spergel, A.K.R.; Johnson, K.; et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 2021, 27, 700–709. [Google Scholar] [CrossRef]
- Todd Krueger Discusses AOBiome’s Positive Results from its Phase 2b Trial for Both Pruritus (Itch) and Appearance of Atopic Dermatitis (Eczema). Available online: https://www.aobiome.com/pressreleases/aobiomes-ceo-president-todd-krueger-featured-in-ceo-cfo-magazine/#primary (accessed on 14 June 2022).
- Vakharia, P.P.; Silverberg, J.I. New therapies for atopic dermatitis: Additional treatment classes. J. Am. Acad. Dermatol. 2018, 78, S76–S83. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Scott, M.G. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 2000, 97, 8856–8861. [Google Scholar] [CrossRef]
- Der Kolk, T.N.; Van Der Wall, H.; Hogendoorn, G.K.; Rijneveld, R.; Luijten, S.; Van Alewijk, D.C.; Munckhof, E.H.V.D.; De Kam, M.L.; Feiss, G.L.; Prens, E.P.; et al. Pharmacodynamic Effects of Topical Omiganan in Patients With Mild to Moderate Atopic Dermatitis in a Randomized, Placebo-Controlled, Phase II Trial. Clin. Transl. Sci. 2020, 13, 994–1003. [Google Scholar] [CrossRef]
- Niemeyer-van der Kolk, T.; Buters, T.P.; Krouwels, L.; Boltjes, J.; de Kam, M.L.; van der Wall, H.; van Alewijk, D.C.J.G.; van den Munckhof, E.H.A.; Becker, M.J.; Feiss, G.; et al. Topical antimicrobial peptide omiganan recovers cutaneous dysbiosis but does not improve clinical symptoms in patients with mild to moderate atopic dermatitis in a phase 2 randomized controlled trial. J. Am. Acad. Dermatol. 2022, 86, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Guttman-Yassky, E.; Bissonnette, R.; Pavel, A.; Proulx, E.S.-C.; Prokocimer, P.; Toft-Kehler, R.; Sommer, M. 563 ATx201 modulates biomarkers of skin barrier function and cutaneous inflammation in patients with moderate atopic dermatitis. J. Investig. Dermatol. 2020, 140, S77. [Google Scholar] [CrossRef]
- Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A.; et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part I. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 657–682. [Google Scholar] [CrossRef] [PubMed]
- Eichenfield, L.F.; Tom, W.L.; Berger, T.G.; Krol, A.; Paller, A.S.; Schwarzenberger, K.; Bergman, J.N.; Chamlin, S.L.; Cohen, D.E.; Cooper, K.D.; et al. Guidelines of care for the management of atopic dermatitis. J. Am. Acad. Dermatol. 2014, 71, 116–132. [Google Scholar] [CrossRef]
- Bs, L.M.L.; Lee, D.E.; Shi, V.Y. A comparison of international management guidelines for atopic dermatitis. Pediatr. Dermatol. 2019, 36, 36–65. [Google Scholar] [CrossRef]
- Wollenberg, A.; Kinberger, M.; Arents, B.; Aszodi, N.; Avila Valle, G.; Barbarot, S.; Bieber, T.; Brough, H.A.; Calzavara Pinton, P.; Christen-Zäch, S.; et al. Euroguiderm Guideline On Atopic Eczema, Version 1.0, June 2022, European Dermatology Forum. Available online: https://www.edf.one/dam/jcr:0a8bb62f-7abe-4f86-84d9-bc0a0b370efb/0_Atopic_Eczema_GL_full_version_Jun_2022_.pdf (accessed on 27 July 2022).
- Boralevi, F.; Aroman, M.S.; Delarue, A.; Raudsepp, H.; Kaszuba, A.; Bylaite, M.; Tiplica, G.S. Long-term emollient therapy improves xerosis in children with atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1456–1462. [Google Scholar] [CrossRef]
- Correa, M.C.M.; Nebus, J. Management of Patients with Atopic Dermatitis: The Role of Emollient Therapy. Dermatol. Res. Pract. 2012, 2012, 836931. [Google Scholar] [CrossRef]
- Van Zuuren, E.J.; Fedorowicz, Z.; Arents, B.W.M. Performance and Tolerability of the Moisturizers Cetaphil® and Excipial® in Atopic Dermatitis: What is the Evidence Based on Randomized Trials? Dermatol. Ther. 2017, 7, 331–347. [Google Scholar] [CrossRef]
- Aries, M.F.; Hernandez-Pigeon, H.; Vaissière, C.; Delga, H.; Caruana, A.; Lévêque, M.; Bourrain, M.; Ravard Helffer, K.; Chol, B.; Nguyen, T.; et al. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin. Cosmet. Investig. Dermatol. 2016, 9, 421–434. [Google Scholar] [CrossRef]
- Mahe, Y.F.; Perez, M.J.; Tacheau, C.; Fanchon, C.; Martin, R.; Rousset, F.; Seite, S. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin. Cosmet. Investig. Dermatol. 2013, 6, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Fostini, A.C.; Georgescu, V.; DeCoster, C.J.; Girolomoni, G. A cream based on Aquaphilus dolomiae extracts alleviates non-histaminergic pruritus in humans. Eur. J. Dermatol. 2017, 27, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Gueniche, A.; Knaudt, B.; Schuck, E.; Volz, T.; Bastien, P.; Martin, R.; Röcken, M.; Breton, L.; Biedermann, T. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: A prospective, randomized, double-blind, placebo-controlled clinical study. Br. J. Dermatol. 2008, 159, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, P.; Theunis, J.; Casas, C.; Villeneuve, C.; Patrizi, A.; Phulpin, C.; Bacquey, A.; Redoulès, D.; Mengeaud, V.; Schmitt, A. Effects of a New Emollient-Based Treatment on Skin Microflora Balance and Barrier Function in Children with Mild Atopic Dermatitis. Pediatr. Dermatol. 2016, 33, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.C. New topical treatments for atopic dermatitis: Active comparators are needed. J. Am. Acad. Dermatol. 2021, 85, 1065–1066. [Google Scholar] [CrossRef]
- Zhang, L.; Du, D.; Wang, L.; Guo, L.; Jiang, X. Efficacy and safety of topical Janus kinase and phosphodiesterase inhibitor-4 inhibitors for the treatment of atopic dermatitis: A network meta-analysis. J. Dermatol. 2021, 48, 1877–1883. [Google Scholar] [CrossRef] [PubMed]
Name | Selectivity | Phase | Age/Severity | Regimens |
---|---|---|---|---|
Delgocitinib | pan-JAK | approved (Japan) | approved for children 2–15, adults >16, moderate-to-severe | 0.25% children 0.5% adults, b.i.d |
Ruxolitinib | JAK1, 2 | approved (USA) | approved for >12, on trial for 2–12, mild-to-moderate | 1.5% b.i.d |
Tofacitinib | JAK1, 3 | II | 18–60, mild-to-moderate | 2% b.i.d for 4 weeks |
Brepocitinib | JAK1, TYK2 | II | 12–75, mild-to-moderate | 0.1%, 0.3%, 1%, 3% q.d, 0.3%, 1% b.i.d for 6 weeks |
ATI-1777 | JAK1, 3 | II | 18–65, moderate-to-severe | 2% b.i.d for 4 weeks |
Ifidancitinib | JAK1, 3 | II | >18, moderate-to-severe | 0.46% b.i.d for 4 weeks |
Jaktinib | pan-JAK | II | 18–65, mild-to-moderate | 0.5%, 1.5%, 2.5% b.i.d, 2.5% q.d |
Ivarmacitinib | JAK1 | III | >12, mild-to-moderate | 0.5%, 1%, 2% b.i.d |
Name | Phase | Age/Severity | Regimens |
---|---|---|---|
Crisaborole | approved | >3 months, mild-to-moderate | 2% b.i.d |
Difamilast (OPA-15406) | III | 15–70, mild-to-moderate | 1% b.i.d for 4 weeks |
Lotamilast (E6005, RVT-501) | II | 20–64, all | 0.2% b.i.d for 12 weeks |
Roflumilast | II | 18–65, moderate. 3 months—17 years currently on trial | 0.5% b.i.d for 15 days, 0.05% and 0.15% for 4 weeks currently on trial |
DRM02 | II | 18–70 | 0.25% b.i.d for 6 weeks |
Hemay808 | II | 18–65, mild-to-moderate | 1%, 3%, 7% for 29 days |
PF-07038124 | II | 18–70, mild-to-moderate | 0.01% q.d for 6 weeks |
LEO-39652 | I | >18, mild-to-moderate | 3 weeks |
Orismilast (LEO-32731) | I | >18, mild-to-moderate | 3 weeks |
Drug | Primary End-Point | Other End-Points |
---|---|---|
Delgocitinib | JapicCTI-173554: Mean percent change in mEASI at week 4: −44.3% in the drug group vs. 1.7% for vehicle. (p < 0.001). JapicCTI-173555: Safety: AEs in 69% of patients. 15.4% considered treatment-related. 1.4% considered serious (Kaposi’s varicelliform eruption) | JapicCTI-173554: mEASI-50 at week 4: 51.9% for drug vs. 11.5% for vehicle (p < 0.001). mEASI-75 at week 4: 26.4% vs. 5.8% respectively (p < 0.01). IGA response rates at week 4: p = 0.32 for overall score, p < 0.05 for face/neck score. NRS: lower in drug group. All results maintained at week 24. JapicCTI-173555: mEASI-50 at week 4, 24, 52: 31.5%, 42.3% and 51.9%. mEASI-75 at week 4, 24, 52: 10.9%, 22.7% and 27.5% IGA and NRS: improved at weeks 4, 24 and 52 |
Ruxolitinib | IGA 0–1 at week 8: 53.8%(TRuE-AD1) and 51.3% (TRuE-AD2) in the 1.5% cream groups vs. 15.1% and 7.6% for vehicle (p < 0.0001) | EASI-75 at week 8: 62.1% and 61.8% in the 1.5% cream groups vs. 24.6% and 14.4% for vehicle (p < 0.0001). EASI90 at week 8: (p < 0.0001) vs. vehicle. Reduction in NRS: (p < 0.05) vs. vehicle |
Tofacitinib | EASI score change at week 4: 81.7% vs. 29.9% for vehicle. | EASI 50, 75 and 90: Significantly higher for drug vs. vehicle (p < 0.05) at weeks 2 and 4. Change in BSA: −76% for drug vs. −31% for vehicle, significantly greater (p < 0.001) at week 4. ISI scores: significantly greater for drug vs. vehicle at weeks 2 and 4 (p < 0.001). |
Brepocitinib | EASI score change at week 6: 70.1%, 67.9%, and 75%, for the 1%, 3% q.d and 1% b.i.d groups respectively. 44.4% and 47.6% in the q.d and b.i.d vehicle groups. | IGA score of 0/1 at week 6: 27.8–44.4% of patients on q.d drug vs. 10.8% for q.d vehicle. EASI 90 at week 6: 27.8–41.7% of patients on 0.3%, 1%, and 3% q.d cream, vs. 10.8% for q.d vehicle, 27% of patients on 1% b.i.d cream, vs. 8.3% b.i.d vehicle. Improvement of at least 4 points on the PP-NRS at week 6: 45.2% of patients on 1% cream q.d, 50% on 3% q.d, and 40.7% on 1% b.i.d, vs. 17% for vehicle. |
ATI-1777 | Reduction in mEASI score at week 4: 74.4% in the drug arm, vs. 41.4% for vehicle | not yet available |
Ifidancitinib | PGA of near clear with ≥2 grade improvement: 10.5%, 23.5%, 41.2% of patients at weeks 1, 2, and 4. | Change in EASI: 18%, 35%, 40% at weeks 1, 2, and 4. Percent change in SPA: 35%, 46% and 31% at weeks 1, 2, and 4. |
Jaktinib | PGA 0/1 or a decrease of ≥2, 7 days after the last dose: not yet available | PGA 0/1 at 8 and 16 weeks: not yet available |
Ivarmacitinib | Change in EASI at Week 8: not yet available | not yet available |
Crisaborole | ISGA score 0/1 with ≥2 grade improvement at day 29: 32.8% (AD-301) and 31.4% (AD-302) reduction vs. 25.4% (p = 0.038) and 18% (p < 0.001) for vehicle. | ISGA score 0/1 at day 29: 51.7% vs. 40.6% (p < 0.005) and 48.5% vs. 29.7% (p < 0.001) respectively. Time to ISGA success: 14.7% for drug vs. 5.4% for vehicle at day 8. Median time to improvement in pruritus: 4 days for drug vs. 9 days for vehicle. Mean change in DLQI at day 29: −5.2 for drug vs. −3.5 for vehicle. |
Difamilast (OPA-15406) | IGA 0–1 with ≥2 grade improvement at week 4: 38.46% of patients in the ointment group vs. 12.64% for vehicle (p < 0.0001) | EASI 50, 75, 90 at week 4: 58.24%, 42.86% and 24.73 of patients in drug group vs. 25.82%, 13.19% and 5.49% for vehicle. Mean percent change in EASI score at week 1: −32.6% vs. −10.4% for drug and vehicle respectively (p < 0.0001). POEM, affected BSA, pruritus VRS, Skindex-16: all significantly improved vs. vehicle (p < 0.0001) at week 4 |
Lotamilast (E6005, RVT-501) | Long-term safety and tolerance: Neither death nor serious TEAEs were encountered in the entire study period. In the randomization phase, the incidence of TEAEs was 50.0% in the drug group vs. 38.5% for vehicle group. The incidence of TEAEs leading to study withdrawal was 9.6% in the drug group and 15.4% for vehicle group. | Scores reduction at week 12: significantly reduced: EASI, p = 0.030; SCORAD-objective, p < 0.001; SCORAD-C, p = 0.038) Not significantly reduced: Itch Behavioral Rating Scale, (p = 0.462) |
Roflumilast | Change in Modified Local SCORAD at day 15: Not significant reduction vs. vehicle (p = 0.276) | Change in PAP at day 15: Significantly reduced (p < 0.013) |
DRM02 | not yet available | not yet available |
Hemay808 | not yet available | not yet available |
PF-07038124 | not yet available | not yet available |
LEO-39652 | not yet available | not yet available |
Orismilast (LEO-32731) | not yet available | not yet available |
Tapinarof | IGA response rates at week 12: 53% (1% b.i.d; p = 0.008), 46% (1% q.d; p = 0.084), 37% (0.5% b.i.d; p = 0.240), and 34% (0.5% q.d; p = 0.535) vs. 24% (vehicle b.i.d) and 28% (vehicle q.d). | EASI75 at week 12: significantly higher in the tapinarof groups, except the 0.5% q.d, vs. vehicle groups. EASI90 at week 12: significantly higher in the tapinarof groups, except the 0.5% b.i.d, vs. vehicle groups. Mean percent change in EASI at week 12: significantly higher in all tapinarof groups vs. vehicle groups. Mean percent change in BSA at week 12: significantly greater in the tapinarof groups, except the 0.5% b.i.d, vs. vehicle groups. |
Asivatrep | IGA score of 0 or 1 at week 8: 36.0% in the drug group vs. 12.8% for vehicle. | Improvement ≥2 points on IGA score at week 8: 20.3% for drug vs. 7.7% for vehicle. EASI reduction at week 8: 44.3% vs. 21.4% respectively. EASI-50, 75, and 90 at week 8: 50.3%, 23.5%, and 9.8% of patients on drug vs. 28.2%, 11.5%, and 2.6% on vehicle. Statistical significance achieved in all secondary end-points, as also in pruritus and sleep disturbance reduction. |
R.mucosa | 50% improvement in SCORAD: 66.7% of patients | 75% improvement in SCORAD: 40% of patients. Subjective pruritus: significantly decreased. |
FB-401 | EASI50: 58% in drug arm vs. 60% in placebo arm | - |
ShA9 | Safety through day 8 compared to vehicle: Significantly fewer AEs in participants treated with ShA9 (p = 0.044) | EASI and SCORAD: no significant difference Decrease in S. aureus and increased ShA9 DNA: endpoints met |
Nitrosomonas eutropha | Not yet available, positive results in pruritus and AD appearance reported in press release | - |
Omiganan gel | S.aureus reduction at day 28: Statistically significant in the omiganan 1% (p = 0.03) and 2.5% (p = 0.01) vs. vehicle. | Clinical improvement evaluated by EASI, SCORAD, IGA, POEM, DLQI and NRS: no improvement |
ATx201 | Safety: safe and well tolerated | Expression of biomarkers related to skin-barrier function: Significantly increased (p < 0.05). Histological responders: 51.7% of those receiving 2% cream vs. 31.0% for vehicle. |
Agent | Mechanicm of Action | NCT ID |
---|---|---|
ALX-101 Gel 1.5% (Rovazolac) | LXR agonists | NCT03175354 |
AM1030-CREAM | 5-HT2BR antagonist | NCT02379910 |
AMTX-100 CF | Nuclear transport modifier (NTM) | NCT04313400 |
ASN008 (*1) | Targets small afferent sodium channels/Antipruritic | NCT03798561 |
Atuzabrutinib (SAR 444727 or PRN 473) | BTK inhibitor | NCT04992546 |
Aurstat Hydrogel | Emolient/Antipruritic | NCT01905631 |
BEN2293 | TRK inhibitor | NCT04737304 |
BioLexa | Antibacterial | NCT04544943 |
BMX-010 | Antioxidant | NCT03381625 |
BPR 277 | Kallikrein-related peptidase | NCT01428297 |
BX005-A (*2) | Phage cocktail targeting S.aureus | NCT05240300 |
CD 5024/Ivermectin (Soolantra) | Chloride channel agonists | NCT03250624 |
CYCLATOP(Cyclosporine 5% solution) (*3) | Calcineurin inhibitor | NCT02865356 |
DBI-001 (*4) | Antibacterial | NCT05253755 |
DMT210 Topical Gel | G protein-coupled receptor agonist | NCT02949960 |
DS 107/DGLA (*5) | Bioactive lipid (dihomo-γ-linolenic acid) inhibiting the expression of CD40 | NCT02925793 NCT03676036 NCT03676933 |
Ectoin Dermatitis Cream 7% (EHK02) | Emolient | NCT04097327 |
FMX114 (tofacitinib and fingolimod) (*6) | Jak inhibitor and sphingosine-1-phosphate receptor modulator | NCT04927572 |
GM-XANTHO | Βotanical drug balm | NCT04369846 |
HAT01 | Botanical complex | NCT03089229 |
HL-009 Liposomal Gel(Cobamamide) | Vitamin B12 analogues, Nitric oxide inhibitor. | NCT01568489 |
HY209 Gel/Taurodeoxycholic acid | G Protein Coupled Receptor 19(GPCR19) agonist | NCT04530643 |
IDP-124 | Undefined mechanism | NCT03058783 NCT03002571 |
Isopentenyltheophylline 0.44% + Glycerin 4.56% | Undefined mechanism | NCT05057351 |
Jaungo (Shiunko in Chinese) (*7) | Herbal ointment | NCT02900131 |
Lactibiane Topic AD | Εmolient/Cosmetic product | NCT04728269 |
Lactobacillus reuteri (ADreuteri) | Probiotic | NCT04265716 |
Levagen+/ Palmitoylethanolamide (PEA) | Endocannabinoid-like lipid mediator | NCT05003453 |
Menthoxypropanediol | Anti-TRPM8/Antipruritic | NCT03610386 |
MH004 | Unknown | NCT04815148 |
NLAC (Natural Lactic Acid-enriched Cream) | Emolient | NCT05092464 |
PR022 (Hypochlorous acid) | Antiseptic | NCT03351777 |
Q301(Zileuton) (*8) | leukotriene inhibitor | NCT03571620 NCT02426359 |
RelizemaTM cream | Antioxidant/ Antipruritus | NCT05259774 |
SB414 (Berdazimer sodium) (*9) | Nitric oxide donors | NCT03431610 |
SB011 | GATA3 transcription factor inhibitor | NCT02079688 |
SNG100 | Unknown | NCT04615962 |
TER-101 | Unknown | NCT04753034 |
Topialyse Baume Barrière (TOPIA) | Emolient | NCT05006300 |
ZEP-3Na | synthetic analogue of a compound of rattle snake venom | NCT04307862 |
ZK245186 (Mapracorat) | Selective glucocorticoid receptor agonists (SEGRAs). | NCT01228513 NCT00944632 NCT01359787 |
0.5% Cannabidiol and 1% Hemp Oil (Celosia) | Emolient | NCT04045314 |
2.5% and 5% Cis-urocanic Acid | Emolient | NCT01320579 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sideris, N.; Paschou, E.; Bakirtzi, K.; Kiritsi, D.; Papadimitriou, I.; Tsentemeidou, A.; Sotiriou, E.; Vakirlis, E. New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature. J. Clin. Med. 2022, 11, 4974. https://doi.org/10.3390/jcm11174974
Sideris N, Paschou E, Bakirtzi K, Kiritsi D, Papadimitriou I, Tsentemeidou A, Sotiriou E, Vakirlis E. New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature. Journal of Clinical Medicine. 2022; 11(17):4974. https://doi.org/10.3390/jcm11174974
Chicago/Turabian StyleSideris, Nikolaos, Eleni Paschou, Katerina Bakirtzi, Dimitra Kiritsi, Ilias Papadimitriou, Aikaterini Tsentemeidou, Elena Sotiriou, and Efstratios Vakirlis. 2022. "New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature" Journal of Clinical Medicine 11, no. 17: 4974. https://doi.org/10.3390/jcm11174974
APA StyleSideris, N., Paschou, E., Bakirtzi, K., Kiritsi, D., Papadimitriou, I., Tsentemeidou, A., Sotiriou, E., & Vakirlis, E. (2022). New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature. Journal of Clinical Medicine, 11(17), 4974. https://doi.org/10.3390/jcm11174974