Hyperglycemia and Hypoglycemia Are Associated with In-Hospital Mortality among Patients with Coronavirus Disease 2019 Supported with Extracorporeal Membrane Oxygenation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics and Outcome of the Patients
3.2. Evaluation of Risk Factors for In-Hospital Mortality after ECMO Support
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab. Res. Rev. 2020, 36, e3319. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yang, Y.; Wang, F.; Ren, H.; Zhang, S.; Shi, X.; Yu, X.; Dong, K. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001343. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Mantovani, A.; Wang, X.-B.; Yan, H.-D.; Sun, Q.-F.; Pan, K.-H.; Byrne, C.D.; Zheng, K.I.; Chen, Y.-P.; Eslam, M.; et al. Patients with diabetes are at higher risk for severe illness from COVID-19. Diabetes Metab. 2020, 46, 335–337. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Z.; Zhu, F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res. Clin. Pract. 2020, 164, 108214. [Google Scholar] [CrossRef]
- Wang, S.; Ma, P.; Zhang, S.; Song, S.; Wang, Z.; Ma, Y.; Xu, J.; Wu, F.; Duan, L.; Yin, Z.; et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: A multicentre retrospective study. Diabetologia 2020, 63, 2102–2111. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Zhang, J.; Cao, Y.; Zhao, X.; Yu, N.; Gao, Y.; Ma, J.; Zhang, H.; Zhang, J.; et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: A single-centre, retrospective, observational study in Wuhan. Diabetes Obes. Metab. 2020, 22, 1443–1454. [Google Scholar] [CrossRef]
- Ukena, C.; Dobre, D.; Mahfoud, F.; Kindermann, I.; Lamiral, Z.; Tala, S.; Rossignol, P.; Turgonyi, E.; Pitt, B.; Böhm, M.; et al. Hypo- and hyperglycemia predict outcome in patients with left ventricular dysfunction after acute myocardial infarction: Data from EPHESUS. J. Card. Fail. 2012, 18, 439–445. [Google Scholar] [CrossRef]
- Klonoff, D.C.; Messler, J.C.; Umpierrez, G.E.; Peng, L.; Booth, R.; Crowe, J.; Garrett, V.; McFarland, R.; Pasquel, F.J. Association Between Achieving Inpatient Glycemic Control and Clinical Outcomes in Hospitalized Patients With COVID-19: A Multicenter, Retrospective Hospital-Based Analysis. Diabetes Care 2021, 44, 578–585. [Google Scholar] [CrossRef]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.W.; Fanning, J.J.; et al. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the Extracorporeal Life Support Organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef]
- Schmidt, M.; Hajage, D.; Lebreton, G.; Monsel, A.; Voiriot, G.; Levy, D.; Baron, E.; Beurton, A.; Chommeloux, J.; Meng, P.; et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 1121–1131. [Google Scholar] [CrossRef]
- Diaz, R.A.; Graf, J.; Zambrano, J.M.; Ruiz, C.; Espinoza, J.A.; Bravo, S.I.; Salazar, P.A.; Bahamondes, J.C.; Castillo, L.B.; Gajardo, A.I.J.; et al. Extracorporeal membrane oxygenation for COVID-19-associated severe acute respiratory distress syndrome in Chile: A nationwide incidence and cohort study. Am. J. Respir. Crit. Care Med. 2021, 204, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, G.; Schmidt, M.; Ponnaiah, M.; Folliguet, T.; Para, M.; Guihaire, J.; Lansac, E.; Sage, E.; Cholley, B.; Mégarbane, B.; et al. Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: A multicentre cohort study. Lancet Respir. Med. 2021, 9, 851–862. [Google Scholar] [CrossRef]
- Biancari, F.; Mariscalco, G.; Dalén, M.; Settembre, N.; Welp, H.; Perrotti, A.; Wiebe, K.; Leo, E.; Loforte, A.; Chocron, S.; et al. Six-month survival after extracorporeal membrane oxygenation for severe COVID-19. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1999–2006. [Google Scholar] [CrossRef]
- Giraud, R.; Legouis, D.; Assouline, B.; De Charriere, A.; Decosterd, D.; Brunner, M.-E.; Moret-Bochatay, M.; Fumeaux, T.; Bendjelid, K. Timing of VV-ECMO therapy imple-mentation influences prognosis of COVID-19 patients. Physiol. Rep. 2021, 9, e14715. [Google Scholar] [CrossRef]
- Haye, G.; Fourdrain, A.; Abou-Arab, O.; Berna, P.; Mahjoub, Y. COVID-19 outbreak in France: Setup and activities of a mobile extracorporeal membrane oxygenation team during the first 3 weeks. J. Cardiothorac. Vasc. Anesth. 2020, 34, 3493–3495. [Google Scholar] [CrossRef]
- Le Breton, C.; Besset, S.; Freita-Ramos, S.; Amouretti, M.; Billiet, P.; Dao, M.; Dumont, L.; Federici, L.; Gaborieau, B.; Longrois, D.; et al. Extracorporeal membrane oxygenation for refractory COVID-19 acute respiratory distress syndrome. J. Crit. Care 2020, 60, 10–12. [Google Scholar] [CrossRef]
- Shaefi, S.; Brenner, S.K.; Gupta, S.; O’Gara, B.P.; Krajewski, M.L.; Charytan, D.M.; Chaudhry, S.; Mirza, S.H.; Peev, V.; Anderson, M.; et al. Extracorporeal membrane oxygenation in patients with severe respiratory failure from COVID-19. Intensive Care Med. 2021, 47, 208–221. [Google Scholar] [CrossRef]
- Sromicki, J.; Schmiady, M.; Maisano, F.; Mestres, C.A. ECMO therapy in COVID-19: An experience from Zurich. J. Card. Surg. 2021, 36, 1707–1712. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z.; Li, B.; Zhang, X.; Tian, R.; Wu, W.; Zhang, Z.; Lu, Y.; Chen, N.; Clifford, S.P.; et al. Extracorporeal membrane oxygenation for coronavirus disease 2019 in Shanghai, China. ASAIO J. 2020, 66, 475–481. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Stammers, A.H.; Louis, J.S.; Hayanga, J.W.A.; Firstenberg, M.S.; Mongero, L.B.; Tesdahl, E.A.; Rajagopal, K.; Cheema, F.H.; Coley, T.; et al. Extracorporeal Membrane Oxygenation in the Treatment of Severe Pulmonary and Cardiac Compromise in Coronavirus Disease 2019: Experience with 32 Patients. ASAIO J. 2020, 66, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Tonna, J.E.; Abrams, D.; Brodie, D.; Greenwood, J.C.; Mateo-Sidron, J.A.R.; Usman, A.; Fan, E. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J. 2021, 67, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Moghissi, E.S.; Korytkowski, M.T.; DiNardo, M.; Einhorn, D.; Hellman, R.; Hirsch, I.B.; Inzucchi, S.E.; Ismail-Beigi, F.; Kirkman, M.S.; Umpierrez, G.E. American Association of Clinical Endo-crinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 2009, 32, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Umpierrez, G.E.; Hellman, R.; Korytkowski, M.T.; Kosiborod, M.; Maynard, G.A.; Montori, V.; Seley, J.J.; Berghe, G.V.D. Management of hyperglycemia in hospitalized patients in non-critical care setting: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2012, 97, 16–38. [Google Scholar] [CrossRef]
- American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care 2015, 38 (Suppl. 1), S8–S16. [Google Scholar] [CrossRef]
- World Health Organization (WHO); International Association for the Study of Obesity (IASO); International Obesity Task Force (IOTF). The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; World Health Organization: Geneva, Switzerland, 2000; pp. 378–420. [Google Scholar]
- Takeda, Y.; Shimomura, T.; Wakabayashi, I. Immunological disorders of diabetes mellitus in experimental rat models. Nihon Eiseigaku Zasshi 2014, 69, 166–176. [Google Scholar] [CrossRef]
- Hatanaka, E.; Monteagudo, P.T.; Marrocos, M.S.; Campa, A. Neutrophils and monocytes as potentially important sources of pro-inflammatory cytokines in diabetes. Clin. Exp. Immunol. 2006, 146, 443–447. [Google Scholar] [CrossRef]
- Baggiolini, M.; Dewald, B.; Moser, B. Human chemokines: An update. Annu. Rev. Immunol. 1997, 15, 675–705. [Google Scholar] [CrossRef]
- Palm, N.W.; Medzhitov, R. Not so fast: Adaptive suppression of innate immunity. Nat. Med. 2007, 13, 1142–1144. [Google Scholar] [CrossRef]
- Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E736–E741. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.M.; Caplice, N.M. Is adipose tissue a reservoir for viral spread, immune activation, and cytokine amplification in coronavirus Disease 2019? Obesity 2020, 28, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, E.; Buzzetti, R. COVID-19 and diabetes mellitus: Unveiling the interaction of two pandemics. Diabetes Metab. Res. Rev. 2020, 36, e33213321. [Google Scholar] [CrossRef] [PubMed]
- Corrao, S.; Pinelli, K.; Vacca, M.; Raspanti, M.; Argano, C. Type 2 diabetes mellitus and COVID-19: A narrative review. Front. Endocrinol. 2021, 12, 609470. [Google Scholar] [CrossRef] [PubMed]
- Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef]
- Delgado-Roche, L.; Mesta, F. Oxidative stress as key player in severe acute respiratory syndrome Coronavirus (SARS-CoV) infection. Arch. Med. Res. 2020, 51, 384–387. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Singh, A.K.; Gupta, R.; Misra, A. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab. Syndr. 2020, 14, 283–287. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Demeterco-Berggren, C.; Ebekozien, O.; Rompicherla, S.; Jacobsen, L.; Accacha, S.; Gallagher, M.P.; Alonso, G.T.; Seyoum, B.; Vendrame, F.; Haw, J.S.; et al. Age and Hospitalization Risk in People With Type 1 Diabetes and COVID-19: Data From the T1D Exchange Surveillance Study. J. Clin. Endocrinol. Metab. 2022, 107, 410–418. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Xu, Y.; He, B.; Hu, M.; Cao, G.; Li, L.; Wu, S.; Wang, X.; Zhang, C.; et al. Hyperglycemia and correlated high levels of inflammation have a positive relationship with the severity of coronavirus Disease 2019. Mediat. Inflamm. 2021, 2021, 8812304. [Google Scholar] [CrossRef]
- Cryer, P.E. Hypoglycemia, functional brain failure, and brain death. J. Clin. Investig. 2007, 117, 868–870. [Google Scholar] [CrossRef] [PubMed]
- International Hypoglycaemia Study Group. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019, 7, 385–396. [Google Scholar] [CrossRef]
- Dungan, K.M.; Braithwaite, S.S.; Preiser, J.C. Stress hyperglycaemia. Lancet 2009, 373, 1798–1807. [Google Scholar] [CrossRef]
- McCowen, K.C.; Malhotra, A.; Bistrian, B.R. Stress-induced hyperglycemia. Crit. Care Clin. 2001, 17, 107–124. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Umpierrez, G.E. Oxidative stress and inflammation in hyperglycemic crises and resolution with insulin: Im-plications for the acute and chronic complications of hyperglycemia. J. Diabetes Its Complicat. 2012, 26, 257–258. [Google Scholar] [CrossRef]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef]
- Dhatariya, K.; Corsino, L.; Umpierrez, G.E. Management of Diabetes and Hyperglycemia in Hospitalized Patients; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Hayashi, Y.; Sawa, Y.; Fukuyama, N.; Nakazawa, H.; Matsuda, H. Inducible nitric oxide production is an adaptation to cardio-pulmonary bypass-induced inflammatory response. Ann. Thorac. Surg. 2001, 72, 149–155. [Google Scholar] [CrossRef]
- Podgoreanu, M.V.; Michelotti, G.; Sato, Y.; Smith, M.P.; Lin, S.; Morris, R.W.; Grocott, H.P.; Mathew, J.P.; Schwinn, D. Differential cardiac gene expression during car-diopulmonary bypass: Ischemia-independent upregulation of proinflammatory genes. J. Thorac. Cardiovasc. Surg. 2005, 130, 330–339. [Google Scholar] [CrossRef]
- Fujii, Y.; Abe, T.; Ikegami, K. Diabetic Pathophysiology Enhances Inflammation during Extracorporeal Membrane Oxygenation in a Rat Model. Membranes 2021, 11, 283. [Google Scholar] [CrossRef]
- Huang, J.; Li, L.; Fan, L.; Chen, D.L. Evaluation of right ventricular systolic and diastolic dysfunctions in patients with type 2 diabetes mellitus with poor glycemic control by layer specific global longitudinal strain and strain rate. Diabetol. Metab. Syndr. 2022, 14, 49. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhu, S.; Xie, Y.; Wang, B.; He, L.; Zhang, D.; Zhang, Y.; Yuan, H.; Wu, C.; et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19. JACC Cardiovasc. Imaging 2020, 13, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Pal, R.; Dutta, S. Risk of incident diabetes post-COVID-19: A systematic review and meta-analysis. Prim. Care Diabetes 2022, 16, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Nuzzi, V.; Castrichini, M.; Collini, V.; Roman-Pognuz, E.; Di Bella, S.; Luzzati, R.; Berlot, G.; Confalonieri, M.; Merlo, M.; Stolfo, D.; et al. Impaired Right Ventricular Longitudinal Strain Without Pulmonary Hypertension in Patients Who Have Recovered From COVID-19. Circ. Cardiovasc. Imaging 2021, 14, e012166. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Preiser, J.C. Toward understanding tight glycemic control in the ICU: A systematic review and metaanalysis. Chest 2010, 137, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Boucai, L.; Southern, W.N.; Zonszein, J. Hypoglycemia-associated mortality is not drug-associated but linked to comorbidities. Am. J. Med. 2011, 124, 1028–1035. [Google Scholar] [CrossRef]
- Nirantharakumar, K.; Marshall, T.; Hodson, J.; Narendran, P.; Deeks, J.; Coleman, J.; Ferner, R. Hypoglycemia in non-diabetic in-patients: Clinical or criminal? PLoS ONE 2012, 7, e40384. [Google Scholar] [CrossRef]
- NICE-SUGAR Study Investigators; Finfer, S.; Liu, B.; Chittock, D.R.; Norton, R.; Myburgh, J.A.; McArthur, C.; Mitchell, I.; Foster, D.; Dhingra, V.; et al. Hypoglycemia and risk of death in critically ill patients. N. Engl. J. Med. 2012, 367, 1108–1118. [Google Scholar] [CrossRef]
- Todi, S.; Bhattacharya, M. Glycemic variability and outcome in critically ill. Indian J. Crit. Care Med. 2014, 18, 285–290. [Google Scholar] [CrossRef]
- Kalfon, P.; Le Manach, Y.; Ichai, C.; Bréchot, N.; Cinotti, R.; Dequin, P.F.; Riu-Poulenc, B.; Montravers, P.; Annane, D.; Dupont, H.; et al. Severe and multiple hypoglycemic episodes are associated with increased risk of death in ICU patients. Crit. Care 2015, 19, 153. [Google Scholar] [CrossRef]
- Piarulli, F.; Lapolla, A. COVID 19 and low-glucose levels: Is there a link? Diabetes Res. Clin. Pract. 2020, 166, 108283. [Google Scholar] [CrossRef]
- Mirabella, S.; Gomez-Paz, S.; Lam, E.; Gonzalez-Mosquera, L.; Fogel, J.; Rubinstein, S. Glucose dysregulation and its association with COVID-19 mortality and hospital length of stay. Diabetes Metab. Syndr. 2022, 16, 102439. [Google Scholar] [CrossRef] [PubMed]
- Bemtgen, X.; Rilinger, J.; Jäckel, M.; Zotzmann, V.; Supady, A.; Benk, C.; Bode, C.; Wengenmayer, T.; Lother, A.; Staudacher, D.L. Admission blood glucose level and outcome in patients requiring venoarterial extracorporeal membrane oxygenation. Clin. Res. Cardiol. 2021, 110, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Lacherade, J.C.; Jacqueminet, S.; Preiser, J.C. An overview of hypoglycemia in the critically ill. J. Diabetes Sci. Technol. 2009, 3, 1242–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | HR | 95% CI | p-Value |
---|---|---|---|
Age, years | |||
19–49 | Reference | ||
50–59 | 1.42 | 0.73–2.56 | 0.30 |
60–69 | 1.84 | 1.05–3.23 | 0.03 |
≥70 | 1.91 | 0.98–3.72 | 0.05 |
History of diabetes | 1.50 | 1.01–2.21 | 0.04 |
Smoking | |||
Current smoker | 2.57 | 0.83–8.00 | 0.10 |
Ex-smoker | 2.19 | 0.80–6.02 | 0.13 |
Never smoker | Reference | ||
Initial diastolic BP <80 mmHg | 1.30 | 0.88–1.91 | 0.18 |
BMI, kg/m2 | |||
<18.5 | 7.87 | 1.83–33.79 | <0.01 |
18.5–24.9 | Reference | ||
≥25 | 0.75 | 0.51–1.10 | 0.13 |
Ventilator to ECMO >7 days | 1.03 | 0.67–1.57 | 0.90 |
RRT before ECMO | 2.47 | 1.42–4.28 | <0.01 |
SOFA >8 | 1.54 | 0.95–2.49 | 0.06 |
Initial glucose >200 mg/dL | 1.12 | 0.73–1.72 | 0.60 |
Glucose before ventilator >200 mg/dL | 1.69 | 1.05–2.72 | 0.03 |
Glucose before ECMO >200 mg/dL | 1.86 | 1.17–2.96 | <0.01 |
Maximal glucose >200 mg/dL | 0.70 | 0.31–1.62 | 0.41 |
Initial glucose >140 mg/dL | 0.86 | 0.58–1.27 | 0.44 |
Glucose before ventilator >140 mg/dL | 0.85 | 0.54–1.35 | 0.50 |
Glucose before ECMO >140 mg/dL | 1.45 | 0.80–2.63 | 0.22 |
Minimal glucose <70 mg/dL | 3.07 | 1.94–4.85 | <0.01 |
Variable | HR | 95% CI | p-Value |
---|---|---|---|
Age, years | |||
19–49 | Reference | ||
50–59 | 1.04 | 0.39–2.76 | 0.94 |
60–69 | 1.90 | 0.84–4.29 | 0.13 |
≥70 | 2.53 | 1.00–6.39 | 0.049 |
BMI, kg/m2 | |||
<18.5 | 9.82 | 2.01–47.99 | <0.01 |
18.5–24.9 | Reference | ||
≥25 | 0.79 | 0.47–1.31 | 0.36 |
RRT before ECMO | 2.19 | 1.08–4.42 | 0.03 |
Combination of DM history and glucose before ECMO | |||
No DM and glucose before ECMO ≤200 mg/dL | Reference | ||
DM and glucose before ECMO ≤200 mg/dL | 1.28 | 0.61–2.71 | 0.52 |
No DM and glucose before ECMO >200 mg/dL | 1.97 | 1.00–3.83 | 0.047 |
DM and glucose before ECMO >200 mg/dL | 2.16 | 1.17–3.97 | 0.01 |
Variable | HR | 95% CI | p-Value |
---|---|---|---|
Age, years | |||
19–49 | Reference | ||
50–59 | 0.82 | 0.35–1.94 | 0.65 |
60–69 | 1.52 | 0.75–3.09 | 0.25 |
≥70 | 1.98 | 0.85–4.64 | 0.12 |
BMI, kg/m2 | |||
<18.5 | 12.71 | 2.54–63.49 | <0.01 |
18.5–24.9 | Reference | ||
≥25 | 0.79 | 0.47–1.31 | 0.37 |
RRT before ECMO | 3.17 | 1.57–6.41 | <0.01 |
Combination of DM history and minimal glucose | |||
No DM and minimal glucose ≥70 mg/dL | Reference | ||
DM and minimal glucose ≥70 mg/dL | 1.78 | 0.98–3.23 | 0.59 |
No DM and minimal glucose <70 mg/dL | 6.66 | 3.48–12.75 | <0.01 |
DM and glucose before ECMO <70 mg/dL | 2.82 | 1.24–6.42 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, K.H.; Kim, W.-H.; Kwak, J.G.; Choi, C.-H.; Lee, S.I.; Ko, U.W.; Kim, H.S.; Lee, H.; Chung, E.S.; Kim, J.-B.; et al. Hyperglycemia and Hypoglycemia Are Associated with In-Hospital Mortality among Patients with Coronavirus Disease 2019 Supported with Extracorporeal Membrane Oxygenation. J. Clin. Med. 2022, 11, 5106. https://doi.org/10.3390/jcm11175106
Son KH, Kim W-H, Kwak JG, Choi C-H, Lee SI, Ko UW, Kim HS, Lee H, Chung ES, Kim J-B, et al. Hyperglycemia and Hypoglycemia Are Associated with In-Hospital Mortality among Patients with Coronavirus Disease 2019 Supported with Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine. 2022; 11(17):5106. https://doi.org/10.3390/jcm11175106
Chicago/Turabian StyleSon, Kuk Hui, Woong-Han Kim, Jae Gun Kwak, Chang-Hyu Choi, Seok In Lee, Ui Won Ko, Hyoung Soo Kim, Haeyoung Lee, Euy Suk Chung, Jae-Bum Kim, and et al. 2022. "Hyperglycemia and Hypoglycemia Are Associated with In-Hospital Mortality among Patients with Coronavirus Disease 2019 Supported with Extracorporeal Membrane Oxygenation" Journal of Clinical Medicine 11, no. 17: 5106. https://doi.org/10.3390/jcm11175106
APA StyleSon, K. H., Kim, W. -H., Kwak, J. G., Choi, C. -H., Lee, S. I., Ko, U. W., Kim, H. S., Lee, H., Chung, E. S., Kim, J. -B., Jang, W. S., Jung, J. S., Kim, J., Yoon, Y. K., Song, S., Sung, M., Jang, M. H., Kim, Y. S., Jeong, I. -S., ... on behalf of The Korean Society for Thoracic and Cardiovascular Surgery COVID-19 ECMO Task Force Team. (2022). Hyperglycemia and Hypoglycemia Are Associated with In-Hospital Mortality among Patients with Coronavirus Disease 2019 Supported with Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine, 11(17), 5106. https://doi.org/10.3390/jcm11175106