Deep Learning-Based Automatic Detection of ASPECTS in Acute Ischemic Stroke: Improving Stroke Assessment on CT Scans
Abstract
:1. Introduction
2. Methods
2.1. Dataset and Image Annotation
2.2. Development of the DLAD Algorithm for AIS
2.3. Assessment of DLAD and Physicians’ Performance
3. Results
3.1. Dataset Characteristic
3.2. Performance of DLAD
3.3. Performance of Physicians without and with DLAD
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Boh, M.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef] [PubMed]
- Barber, P.A.; Demchuk, A.M.; Zhang, J.; Buchan, A.M. Validity and Reliability of a Quantitative Computed Tomography Score in Predicting Outcome of Hyperacute Stroke Before Thrombolytic Therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000, 355, 1670–1674. [Google Scholar] [CrossRef]
- Pexman, J.W.; Barber, P.A.; Hill, M.D.; Sevick, R.J.; Demchuk, A.M.; Hudon, M.E.; Hu, W.Y.; Buchan, A.M. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for Assessing CT scans In Patients with Acute Stroke. Am. J. Neuroradiol. 2001, 22, 1534–1542. [Google Scholar] [PubMed]
- Lee, E.-J.; Kim, Y.-H.; Kim, N.; Kang, D.-W. Deep into the Brain: Artificial Intelligence in Stroke Imaging. J. Stroke 2017, 19, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bentley, P.; Rueckert, D. Fully Automatic Acute Ischemic Lesion Segmentation in DWI Using Convolutional Neural Networks. NeuroImage Clin. 2017, 15, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Najm, M.; Chakraborty, D.; Maraj, N.; Sohn, S.; Goyal, M.; Hill, M.; Demchuk, A.; Menon, B.; Qiu, W. Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning. Am. J. Neuroradiol. 2018, 40, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Lee, Y.; Tsai, D.-Y.; Matsuyama, E.; Kinoshita, T.; Ishii, K. An Automated Detection Method for the MCA Dot Sign of Acute Stroke in Unenhanced CT. Radiol. Phys. Technol. 2013, 7, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dhar, R.; Heitsch, L.; Ford, A.; Fernandez-Cade, I.; Carrera, C.; Montaner, J.; Lin, W.; Shen, D.; An, H.; et al. Automated Quantification of Cerebral Edema Following Hemispheric Infarction: Application of A Machine-Learning Algorithm to Evaluate CSF Shifts on Serial Head CTs. NeuroImage Clin. 2016, 12, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.L.; Menon, B.K.; Qiu, W. Segmenting Hemorrhagic and Ischemic Infarct Simultaneously from Follow-Up Non-Contrast CT Images in Patients with Acute Ischemic Stroke. IEEE Access 2019, 7, 39842–39851. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:14126980. [Google Scholar]
- McTaggart, R.A.; Jovin, T.G.; Lansberg, M.G.; Mlynash, M.; Jayaraman, M.V.; Choudhri, O.A.; Inoue, M.; Marks, M.P.; Albers, G.W. Alberta Stroke Program Early Computed Tomographic Scoring Performance in a Series of Patients Undergoing Computed Tomography And MRI: Reader Agreement, Modality Agreement, And Outcome Prediction. Stroke 2015, 46, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Kobkitsuksakul, C.; Tritanon, O.; Suraratdecha, V. Interobserver Agreement Between Senior Radiology Resident, Neuroradiology Fellow, and Experienced Neuroradiologist in the Rating of Alberta Stroke Program Early Computed Tomography Score (ASPECTS). Diagn. Interv. Radiol. 2018, 24, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.H.; Ng, D.K.; Chow, D.H. An Image Feature Approach for Computer-Aided Detection of Ischemic Stroke. Comput. Biol. Med. 2011, 41, 529–536. [Google Scholar] [CrossRef] [PubMed]
Modules | Components |
---|---|
Slice encoder | 3D-Conv (8@3 × 3×1, s: 1 × 1 × 1, p: 1 × 1 × 0) ReLU |
3D-Conv (8@3 × 3 × 1, s: 2 × 2 × 1, p: 1 × 1 × 0) ReLU | |
3D-Conv (16@3 × 3 × 1, s: 1 × 1 × 1, p: 1 × 1 × 0) ReLU | |
3D-Conv (16@3 × 3 × 1, s: 2 × 2 × 1, p: 1 × 1 × 0) ReLU | |
3D-Conv (32@3 × 3 × 1, s: 1 × 1 × 1, p: 1 × 1× 0) ReLU | |
3D-Conv (32@3 × 3 × 1, s: 1 × 1 × 1, p: 1 × 1 × 0) ReLU | |
3D-Conv (32@3 × 3 × 1, s: 2 × 2 × 1, p: 1 × 1 ×0) ReLU | |
Prediction aggregation | 3DAdaptiveMaxPooling@4 × 4 × 20 |
3D-Conv (16@1 × 1 × 20) | |
Classifier | 3D-Conv (32@4 × 4 × 1, s: 1 × 1 × 1, p: 0 × 0 × 0), ReLU, Dropout (p:0.5) |
3D-Conv (1@1 × 1 × 1, s: 1 × 1 × 1, p: 0 × 0 × 0), Sigmoid |
Training Data (Mean ± SD) | Testing Data (Mean ± SD) | |
---|---|---|
Paient number | 168 | 90 |
Age | 66.1 ± 11.8 | 70.1 ± 12.3 |
Gender: male | 60% | 69% |
NIHSS at ER | 15.94 ± 6.98 | 15.71 ± 6.67 |
Pre-stroke mRS | 0.37 ± 0.94 | 0.43 ± 0.98 |
Time to CT (min) | 259 ± 166 | 286 ± 209 |
AIS (%) | 81.0% | 62.2% |
Regions | Sensitivity | Specificity | Accuracy | Precision | F1 Score | Kappa | AUC |
---|---|---|---|---|---|---|---|
Caudate | 40.9% | 93.7% | 87.2% | 47.4% | 0.439 | 0.367 | 0.770 |
Putamen | 86.5% | 55.9% | 62.2% | 33.7% | 0.485 | 0.268 | 0.822 |
Internal capsule | 64.3% | 68.7% | 68.3% | 14.8% | 0.240 | 0.130 | 0.691 |
Insula | 87.1% | 67.8% | 71.1% | 36.0% | 0.509 | 0.351 | 0.878 |
M1 | 63.6% | 95.3% | 93.3% | 46.7% | 0.538 | 0.503 | 0.854 |
M2 | 76.2% | 88.7% | 87.2% | 47.1% | 0.582 | 0.511 | 0.868 |
M3 | 33.3% | 85.2% | 80.0% | 20.0% | 0.250 | 0.143 | 0.652 |
M4 | 72.7% | 88.8% | 87.8% | 29.6% | 0.421 | 0.366 | 0.832 |
M5 | 58.3% | 80.1% | 77.2% | 31.1% | 0.406 | 0.281 | 0.757 |
M6 | 38.9% | 87.7% | 82.8% | 25.9% | 0.311 | 0.217 | 0.638 |
All ASPECTS Regions | Sensitivity | Specificity | Accuracy | F1 Score | Kappa | AUC |
---|---|---|---|---|---|---|
DLAD algorithm | 65.2% | 81.6% | 79.7% | 0.43 | 0.32 | 0.73 |
Doctor-alone performance | ||||||
ER physician | 15.9% | 97.0% | 87.7% | 0.23 | 0.18 | 0.56 |
Neurologist | 30.4% | 95.4% | 87.9% | 0.37 | 0.30 | 0.63 |
Radiologist | 37.2% | 93.7% | 87.2% | 0.40 | 0.33 | 0.65 |
Neuroradiologist | 51.7% | 94.7% | 89.7% | 0.54 | 0.48 | 0.73 |
Doctor with DLAD performance | ||||||
ER physician | 44.9% * | 93.8% | 88.2% | 0.47 * | 0.40 * | 0.69 * |
Neurologist | 66.7% * | 87.8% | 85.4% | 0.51 * | 0.43 * | 0.77 * |
Radiologist | 52.2% * | 92.8% | 88.1% | 0.50 * | 0.44 * | 0.72 * |
Neuroradiologist | 51.2% | 94.1% | 89.2% | 0.52 | 0.46 | 0.73 |
Dichotomized ASPECTS≥6 and <6 | Sensitivity | Specificity | Accuracy | F1 score | ICC | AUC |
DLAD algorithm | 72.2% | 90.7% | 88.9% | 0.57 | 0.68 | 0.82 |
Doctor-alone performance | ||||||
ER physician | 5.6% | 100.0% | 90.6% | 0.11 | 0.19 | 0.53 |
Neurologist | 27.8% | 98.1% | 91.1% | 0.38 | 0.52 | 0.63 |
Radiologist | 22.2% | 99.4% | 91.7% | 0.35 | 0.50 | 0.61 |
Neuroradiologist | 50.0% | 95.7% | 91.1% | 0.53 | 0.65 | 0.73 |
Doctor with DLAD performance | ||||||
ER physician | 27.8% * | 96.3% | 89.4% | 0.34 * | 0.45 | 0.62 * |
Neurologist | 72.2% * | 90.1% | 88.3% | 0.55 | 0.67 | 0.81 * |
Radiologist | 50.0% * | 98.1% | 93.3% | 0.60 * | 0.73 * | 0.74 * |
Neuroradiologist | 61.1% | 95.1% | 91.7% | 0.59 | 0.71 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, P.-L.; Lin, S.-Y.; Chen, M.-H.; Chen, Y.-S.; Wang, C.-K.; Wu, M.-C.; Huang, Y.-T.; Lee, M.-Y.; Chen, Y.-S.; Lin, W.-C. Deep Learning-Based Automatic Detection of ASPECTS in Acute Ischemic Stroke: Improving Stroke Assessment on CT Scans. J. Clin. Med. 2022, 11, 5159. https://doi.org/10.3390/jcm11175159
Chiang P-L, Lin S-Y, Chen M-H, Chen Y-S, Wang C-K, Wu M-C, Huang Y-T, Lee M-Y, Chen Y-S, Lin W-C. Deep Learning-Based Automatic Detection of ASPECTS in Acute Ischemic Stroke: Improving Stroke Assessment on CT Scans. Journal of Clinical Medicine. 2022; 11(17):5159. https://doi.org/10.3390/jcm11175159
Chicago/Turabian StyleChiang, Pi-Ling, Shih-Yen Lin, Meng-Hsiang Chen, Yueh-Sheng Chen, Cheng-Kang Wang, Min-Chen Wu, Yii-Ting Huang, Meng-Yang Lee, Yong-Sheng Chen, and Wei-Che Lin. 2022. "Deep Learning-Based Automatic Detection of ASPECTS in Acute Ischemic Stroke: Improving Stroke Assessment on CT Scans" Journal of Clinical Medicine 11, no. 17: 5159. https://doi.org/10.3390/jcm11175159
APA StyleChiang, P. -L., Lin, S. -Y., Chen, M. -H., Chen, Y. -S., Wang, C. -K., Wu, M. -C., Huang, Y. -T., Lee, M. -Y., Chen, Y. -S., & Lin, W. -C. (2022). Deep Learning-Based Automatic Detection of ASPECTS in Acute Ischemic Stroke: Improving Stroke Assessment on CT Scans. Journal of Clinical Medicine, 11(17), 5159. https://doi.org/10.3390/jcm11175159