Evaluation of the Influence of Short Tourniquet Ischemia on Tissue Oxygen Saturation and Skin Temperature Using Two Portable Imaging Modalities
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, J.H. Friedrich Esmarch als Erfinder der künstlichen Blutleere bei Operationen. Oper. Orthop. Traumatol. 1990, 2, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Drolet, B.C.; Okhah, Z.; Phillips, B.Z.; Christian, B.P.; Akelman, E.; Katarincic, J.; Schmidt, S.T. Evidence for safe tourniquet use in 500 consecutive upper extremity procedures. Hand 2014, 9, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Gitajn, I.L.; Werth, P.M.; Sprague, S.; Bzovsky, S.; Petrisor, B.A.; Jeray, K.J.; O’Hara, N.N.; Bhandari, M.; Slobogean, G. Effect of Tourniquet Use During Surgical Treatment of Open Fractures. J. Bone Jt. Surg. Am. 2021, 103, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Kam, P.C.; Kavanagh, R.; Yoong, F.F. The arterial tourniquet: Pathophysiological consequences and anaesthetic implications. Anaesthesia 2001, 56, 534–545. [Google Scholar] [CrossRef]
- Rydevik, B.; Nordborg, C. Changes in nerve function and nerve fibre structure induced by acute, graded compression. J. Neurol NeuroSurg. Psychiatry 1980, 43, 1070–1082. [Google Scholar] [CrossRef]
- Leurcharusmee, P.; Sawaddiruk, P.; Punjasawadwong, Y.; Chattipakorn, N.; Chattipakorn, S.C. The Possible Pathophysiological Outcomes and Mechanisms of Tourniquet-Induced Ischemia-Reperfusion Injury during Total Knee Arthroplasty. Oxid. Med. Cell Longev. 2018, 2018, 8087598. [Google Scholar] [CrossRef]
- Hughes, S.F.; Cotter, M.J.; Evans, S.A.; Jones, K.P.; Adams, R.A. Role of leucocytes in damage to the vascular endothelium during ischaemia-reperfusion injury. Br. J. BioMed. Sci. 2006, 63, 166–170. [Google Scholar] [CrossRef]
- Busse, E.; Hickey, C.; Vasilakos, N.; Stewart, K.; O’Brien, F.; Rivera, J.; Marrero, L.; Lacey, M.; Schroll, R.; Van Meter, K.; et al. Plasma flow distal to tourniquet placement provides a physiological mechanism for tissue salvage. PLoS ONE 2020, 15, e0244236. [Google Scholar] [CrossRef]
- Nischwitz, S.P.; Luze, H.; Schellnegger, M.; Gatterer, S.J.; Tuca, A.C.; Winter, R.; Kamolz, L.P. Thermal, Hyperspectral, and Laser Doppler Imaging: Non-Invasive Tools for Detection of The Deep Inferior Epigastric Artery Perforators-A Prospective Comparison Study. J. Pers. Med. 2021, 11, 1005. [Google Scholar] [CrossRef]
- Lau, H.; Lopez, A.J.; Eguchi, N.; Shimomura, A.; Ferrey, A.; Tantisattamo, E.; Reddy, U.; Dafoe, D.; Ichii, H. Intraoperative Near-Infrared Spectroscopy Monitoring of Renal Allograft Reperfusion in Kidney Transplant Recipients: A Feasibility and Proof-of-Concept Study. J. Clin. Med. 2021, 10, 4292. [Google Scholar] [CrossRef]
- Fodor, M.; Hofmann, J.; Lanser, L.; Otarashvili, G.; Pühringer, M.; Hautz, T.; Sucher, R.; Schneeberger, S. Hyperspectral Imaging and Machine Perfusion in Solid Organ Transplantation: Clinical Potentials of Combining Two Novel Technologies. J. Clin. Med. 2021, 10, 3838. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.; Blatt, S.; Pabst, A.; Heimes, D.; Al-Nawas, B.; Kämmerer, P.W.; Thiem, D.G.E. Comparison of Hyperspectral Imaging and Microvascular Doppler for Perfusion Monitoring of Free Flaps in an In Vivo Rodent Model. J. Clin. Med. 2022, 11, 4134. [Google Scholar] [CrossRef] [PubMed]
- Thiem, D.G.E.; Römer, P.; Blatt, S.; Al-Nawas, B.; Kämmerer, P.W. New Approach to the Old Challenge of Free Flap Monitoring-Hyperspectral Imaging Outperforms Clinical Assessment by Earlier Detection of Perfusion Failure. J. Pers. Med. 2021, 11, 1101. [Google Scholar] [CrossRef] [PubMed]
- Müller-Seubert, W.; Ostermaier, P.; Horch, R.E.; Distel, L.; Frey, B.; Cai, A.; Arkudas, A. Intra- and Early Postoperative Evaluation of Malperfused Areas in an Irradiated Random Pattern Skin Flap Model Using Indocyanine Green Angiography and Near-Infrared Reflectance-Based Imaging and Infrared Thermography. J. Pers. Med. 2022, 12, 237. [Google Scholar] [CrossRef]
- Luze, H.; Nischwitz, S.P.; Wurzer, P.; Winter, R.; Spendel, S.; Kamolz, L.P.; Bjelic-Radisic, V. Assessment of Mastectomy Skin Flaps for Immediate Reconstruction with Implants via Thermal Imaging-A Suitable, Personalized Approach? J. Pers. Med. 2022, 12, 740. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, Y.C.; Cheng, K.S.; Yu, P.J.; Wang, J.L.; Ko, N.Y. Higher Periwound Temperature Associated with Wound Healing of Pressure Ulcers Detected by Infrared Thermography. J. Clin. Med. 2021, 10, 2883. [Google Scholar] [CrossRef]
- Muller-Seubert, W.; Roth, S.; Hauck, T.; Arkudas, A.; Horch, R.E.; Ludolph, I. Novel imaging methods reveal positive impact of topical negative pressure application on tissue perfusion in an in vivo skin model. Int. Wound J. 2021, 18, 932–939. [Google Scholar] [CrossRef]
- Landsman, A.S.; Barnhart, D.; Sowa, M. Near-Infrared Spectroscopy Imaging for Assessing Skin and Wound Oxygen Perfusion. Clin. Podiatr. Med. Surg. 2018, 35, 343–355. [Google Scholar] [CrossRef]
- Available online: https://flir.netx.net/file/asset/11910/original (accessed on 3 August 2022).
- Babilas, P.; Lamby, P.; Prantl, L.; Schreml, S.; Jung, E.M.; Liebsch, G.; Wolfbeis, O.S.; Landthaler, M.; Szeimies, R.M.; Abels, C. Transcutaneous pO2 imaging during tourniquet-induced forearm ischemia using planar optical oxygen sensors. Ski. Res. Technol. 2008, 14, 304–311. [Google Scholar] [CrossRef]
- Lin, L.; Li, G.; Li, J.; Meng, L. Tourniquet-induced tissue hypoxia characterized by near-infrared spectroscopy during ankle surgery: An observational study. BMC Anesth. 2019, 19, 70. [Google Scholar] [CrossRef] [Green Version]
- Akata, T.; Kanna, T.; Izumi, K.; Kodama, K.; Takahashi, S. Changes in body temperature following deflation of limb pneumatic tourniquet. J. Clin. Anesth. 1998, 10, 17–22. [Google Scholar] [CrossRef]
- Radowsky, J.S.; Caruso, J.D.; Luthra, R.; Bradley, M.J.; Elster, E.A.; Forsberg, J.A.; Crane, N.J. Noninvasive Multimodal Imaging to Predict Recovery of Locomotion after Extended Limb Ischemia. PLoS ONE 2015, 10, e0137430. [Google Scholar] [CrossRef] [PubMed]
- Hampson, N.B.; Piantadosi, C.A. Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia. J. Appl. Physiol. 1988, 64, 2449–2457. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Lee, J.; Roe, J.; Tromberg, B.J.; Brenner, M.; Walters, T.J. Hemodynamic changes in rat leg muscles during tourniquet-induced ischemia-reperfusion injury observed by near-infrared spectroscopy. Physiol. Meas. 2009, 30, 529–540. [Google Scholar] [CrossRef]
- Tujjar, O.; De Gaudio, A.R.; Tofani, L.; Di Filippo, A. Effects of prolonged ischemia on human skeletal muscle microcirculation as assessed by near-infrared spectroscopy. J. Clin. Monit. Comput. 2017, 31, 581–588. [Google Scholar] [CrossRef]
- Muellner, T.; Nikolic, A.; Schramm, W.; Vécsei, V. New instrument that uses near-infrared spectroscopy for the monitoring of human muscle oxygenation. J. Trauma Inj. Infect. Crit. Care 1999, 46, 1082–1084. [Google Scholar] [CrossRef]
- Corcoran, H.A.; Smith, B.E.; Mathers, P.; Pisacreta, D.; Hershey, J.C. Laser Doppler imaging of reactive hyperemia exposes blood flow deficits in a rat model of experimental limb ischemia. J. Cardiovasc. Pharm. 2009, 53, 446–451. [Google Scholar] [CrossRef]
- Estebe, J.P.; Davies, J.M.; Richebe, P. The pneumatic tourniquet: Mechanical, ischaemia-reperfusion and systemic effects. Eur. J. Anaesthesiol. 2011, 28, 404–411. [Google Scholar] [CrossRef]
- Blaisdell, F.W. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: A review. Cardiovasc. Surg. 2002, 10, 620–630. [Google Scholar] [CrossRef]
- Ince, C. The microcirculation is the motor of sepsis. Crit Care 2005, 9 (Suppl. S4), S13–S19. [Google Scholar] [CrossRef] [Green Version]
- Sexton, W.L.; Korthuis, R.J.; Laughlin, M.H. Ischemia-reperfusion injury in isolated rat hindquarters. J. Appl. Physiol. 1990, 68, 387–392. [Google Scholar] [CrossRef]
- Ahmed, I.; Chawla, A.; Underwood, M.; Price, A.J.; Metcalfe, A.; Hutchinson, C.E.; Warwick, J.; Seers, K.; Parsons, H.; Wall, P.D.H. Time to reconsider the routine use of tourniquets in total knee arthroplasty surgery. Bone Jt. J. 2021; 103-b, 830–839. [Google Scholar] [CrossRef]
- Ejaz, A.; Laursen, A.C.; Kappel, A.; Jakobsen, T.; Nielsen, P.T.; Rasmussen, S. Tourniquet induced ischemia and changes in metabolism during TKA: A randomized study using microdialysis. BMC Musculoskelet. Disord. 2015, 16, 326. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Bennett, M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 2012, 111, 245–259. [Google Scholar] [CrossRef]
- Lindstedt, S.; Wlosinska, M.; Nilsson, A.C.; Hlebowicz, J.; Fakhro, M.; Sheikh, R. Successful improved peripheral tissue perfusion was seen in patients with atherosclerosis after 12 months of treatment with aged garlic extract. Int. Wound J. 2021, 18, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Karmakar, M.K.; Li, X.; Kwok, W.H.; Ngan Kee, W.D. Regional hemodynamic changes after an axillary brachial plexus block: A pulsed-wave Doppler ultrasound study. Reg. Anesth. Pain Med. 2012, 37, 111–118. [Google Scholar] [CrossRef]
- Lumenta, D.B.; Haslik, W.; Beck, H.; Pollreisz, A.; Andel, H.; Frey, M. Influence of brachial plexus blockade on oxygen balance during surgery. Anesth. Analg. 2011, 113, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Cross, G.D.; Porter, J.M. Blood flow in the upper limb during brachial plexus anaesthesia. Anaesthesia 1988, 43, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.B.; Aviles, R.J.; Faranesh, A.Z.; Raman, V.K.; Wright, V.; Balaban, R.S.; McVeigh, E.R.; Lederman, R.J. Measurement of skeletal muscle perfusion during postischemic reactive hyperemia using contrast-enhanced MRI with a step-input function. Magn. Reson. Med. 2005, 54, 289–298. [Google Scholar] [CrossRef]
- Vuilleumier, P.; Decosterd, D.; Maillard, M.; Burnier, M.; Hayoz, D. Postischemic forearm skin reactive hyperemia is related to cardovascular risk factors in a healthy female population. J. Hypertens. 2002, 20, 1753–1757. [Google Scholar] [CrossRef]
- Ma, K.F.; Kleiss, S.F.; Schuurmann, R.C.L.; Nijboer, T.S.; El Moumni, M.; Bokkers, R.P.H.; de Vries, J.P.M. Laser Doppler Flowmetry Combined with Spectroscopy to Determine Peripheral Tissue Perfusion and Oxygen Saturation: A Pilot Study in Healthy Volunteers and Patients with Peripheral Arterial Disease. J. Pers. Med. 2022, 12, 853. [Google Scholar] [CrossRef]
- Pruimboom, T.; van Kuijk, S.M.J.; Qiu, S.S.; van den Bos, J.; Wieringa, F.P.; van der Hulst, R.; Schols, R.M. Optimizing Indocyanine Green Fluorescence Angiography in Reconstructive Flap Surgery: A Systematic Review and Ex Vivo Experiments. Surg. Innov. 2020, 27, 103–119. [Google Scholar] [CrossRef]
- Geierlehner, A.; Horch, R.E.; Ludolph, I.; Arkudas, A. Intraoperative Blood Flow Analysis of DIEP vs. ms-TRAM. Flap Breast Reconstruction Combining Transit-Time Flowmetry and Microvascular Indocyanine Green Angiography. J. Pers. Med. 2022, 12, 482. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Khavanin, N.; Wu, J.; Zang, M.; Zhu, S.; Chen, B.; Li, S.; Liu, Y.; Sacks, J.M. Indocyanine Green Angiography Predicts Tissue Necrosis More Accurately Than Thermal Imaging and Near-Infrared Spectroscopy in a Rat Perforator Flap Model. Plast. Reconstr. Surg. 2020, 146, 1044–1054. [Google Scholar] [CrossRef]
- Jaspers, M.E.H.; Carrière, M.E.; Meij-de Vries, A.; Klaessens, J.; van Zuijlen, P.P.M. The FLIR ONE thermal imager for the assessment of burn wounds: Reliability and validity study. Burns 2017, 43, 1516–1523. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Seubert, W.; Herold, H.; Graf, S.; Ludolph, I.; Horch, R.E. Evaluation of the Influence of Short Tourniquet Ischemia on Tissue Oxygen Saturation and Skin Temperature Using Two Portable Imaging Modalities. J. Clin. Med. 2022, 11, 5240. https://doi.org/10.3390/jcm11175240
Müller-Seubert W, Herold H, Graf S, Ludolph I, Horch RE. Evaluation of the Influence of Short Tourniquet Ischemia on Tissue Oxygen Saturation and Skin Temperature Using Two Portable Imaging Modalities. Journal of Clinical Medicine. 2022; 11(17):5240. https://doi.org/10.3390/jcm11175240
Chicago/Turabian StyleMüller-Seubert, Wibke, Helen Herold, Stephanie Graf, Ingo Ludolph, and Raymund E. Horch. 2022. "Evaluation of the Influence of Short Tourniquet Ischemia on Tissue Oxygen Saturation and Skin Temperature Using Two Portable Imaging Modalities" Journal of Clinical Medicine 11, no. 17: 5240. https://doi.org/10.3390/jcm11175240
APA StyleMüller-Seubert, W., Herold, H., Graf, S., Ludolph, I., & Horch, R. E. (2022). Evaluation of the Influence of Short Tourniquet Ischemia on Tissue Oxygen Saturation and Skin Temperature Using Two Portable Imaging Modalities. Journal of Clinical Medicine, 11(17), 5240. https://doi.org/10.3390/jcm11175240