Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Selection
2.3. Treatment Plan
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Outcomes
3.2.1. Pharmacokinetic Data
3.2.2. Safety and Side-Effects
3.2.3. Hemoglobin and Ferritin Levels
3.2.4. Epistaxis Severity
3.2.5. Quality of Life, Fatigue and Experience of Treatment
3.2.6. Iron Infusions and Blood Transfusions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McAllister, K.A.; Grogg, K.M.; Johnson, D.W.; Gallione, C.J.; Baldwin, M.A.; Jackson, C.E.; Helmbold, E.A.; Markel, D.S.; McKinnon, W.C.; Murrell, J.; et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 1994, 8, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.W.; Berg, J.N.; Baldwin, M.A.; Gallione, C.J.; Marondel, I.; Yoon, S.-J.; Stenzel, T.T.; Speer, M.; Pericakvance, M.A.; Diamond, A.; et al. Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 1996, 13, 189–195. [Google Scholar] [CrossRef]
- McDonald, J.; Wooderchak-Donahue, W.; VanSant Webb, C.; Whitehead, K.; Stevenson, D.A.; Bayrak-Toydemir, P. Hereditary hemorrhagic telangiectasia: Genetics and molecular diagnostics in a new era. Front Genet. 2015, 6, 1. [Google Scholar] [CrossRef]
- Albiñana, V.; Cuesta, A.M.; De Rojas-P, I.; Gallardo-Vara, E.; Recio-Poveda, L.; Bernabéu, C.; Botella, L.M. Review of Pharmacological Strategies with Repurposed Drugs for Hereditary Hemorrhagic Telangiectasia Related Bleeding. J. Clin. Med. 2020, 9, 1766. [Google Scholar] [CrossRef]
- Zarrabeitia, R.; Fariñas-Álvarez, C.; Santibáñez, M.; Señaris, B.; Fontalba, A.; Botella, L.M.; Parra, J.A. Quality of life in patients with hereditary haemorrhagic telangiectasia (HHT). Health Qual. Life Outcomes 2017, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Skaro, A.I.; Marotta, P.J.; McAlister, V.C. Regression of cutaneous and gastrointestinal telangiectasia with sirolimus and aspirin in a patient with hereditary hemorrhagic telangiectasia. Ann. Intern. Med. 2006, 144, 226–227. [Google Scholar]
- Albiñana, V.; Sanz-Rodríguez, F.; Recio-Poveda, L.; Bernabeu, C.; Botella, L.M. Immunosuppressor FK506 Increases Endoglin and Activin Receptor-Like Kinase 1 Expression and Modulates Transforming Growth Factor-β1 Signaling in Endothelial Cells. Mol. Pharmacol. 2011, 79, 833–843. [Google Scholar] [CrossRef]
- Ruiz, S.; Chandakkar, P.; Zhao, H.; Papoin, J.; Chatterjee, P.K.; Christen, E.; Metz, C.N.; Blanc, L.; Campagne, F.; Marambaud, P. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum. Mol. Genet. 2017, 26, 4786–4798. [Google Scholar] [CrossRef] [PubMed]
- Sommer, N.; Droege, F.; Gamen, E.; Geisthoff, U.; Gall, H.; Tello, K.; Richter, M.J.; Deubner, L.; Schmiedel, R.; Hecker, M.; et al. Treatment with low-dose tacrolimus inhibits bleeding complications in a patient with hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. Pulm. Circ. 2019, 9, 2045894018805406. [Google Scholar] [CrossRef] [PubMed]
- Pruijsen, J.M.; Kroon, S.; Mager, J.J.; Bungener, L.B.; van der Doef, H.P.J. Tacrolimus in Gastrointestinal Bleeding in a Young Boy With Hereditary Hemorrhagic Telangiectasia. JPGN Rep. 2021, 2, e133. [Google Scholar] [CrossRef]
- Dupuis-Girod, S.; Fargeton, A.-E.; Grobost, V.; Rivière, S.; Beaudoin, M.; Decullier, E.; Bernard, L.; Bréant, V.; Colombet, B.; Philouze, P.; et al. Efficacy and Safety of a 0.1% Tacrolimus Nasal Ointment as a Treatment for Epistaxis in Hereditary Hemorrhagic Telangiectasia: A Double-Blind, Randomized, Placebo-Controlled, Multicenter Trial. J. Clin. Med. 2020, 9, 1262. [Google Scholar] [CrossRef] [PubMed]
- Shovlin, C.L.; Guttmacher, A.E.; Buscarini, E.; Faughnan, M.E.; Hyland, R.H.; Westermann, C.J.; Kjeldsen, A.D.; Plauchu, H. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am. J. Med. Genet. 2000, 91, 66–67. [Google Scholar] [CrossRef]
- Hoag, J.B.; Terry, P.; Mitchell, S.; Reh, D.; Merlo, C.A. An epistaxis severity score for hereditary hemorrhagic telangiectasia. Laryngoscope 2010, 120, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Smets, E.M.A.; Garssen, B.; Bonke, B.; De Haes, J.C.J.M. The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef]
- Tual-Chalot, S.; Oh, S.P.; Arthur, H.M. Mouse models of hereditary hemorrhagic telangiectasia: Recent advances and future challenges. Front. Genet. 2015, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Geisthoff, U.; Nguyen, H.-L.; Lefering, R.; Maune, S.; Thangavelu, K.; Droege, F. Trauma Can Induce Telangiectases in Hereditary Hemorrhagic Telangiectasia. J. Clin. Med. 2020, 9, 1507. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.W.; Bonham, C.A.; Zeevi, A. Mode of Action of Tacrolimus (FK506): Molecular and Cellular Mechanisms. Ther. Drug Monit. 1995, 17, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Sadick, H.; Riedel, F.; Naim, R.; Goessler, U.; Hörmann, K.; Hafner, M.; Lux, A. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-β1 as well as high ALK1 tissue expression. Haematologica 2005, 90, 818–828. [Google Scholar]
- Dupuis-Girod, S.; Ginon, I.; Saurin, J.-C.; Marion, D.; Guillot, E.; Decullier, E.; Roux, A.; Carette, M.-F.; Gilbert-Dussardier, B.; Hatron, P.-Y.; et al. Bevacizumab in Patients With Hereditary Hemorrhagic Telangiectasia and Severe Hepatic Vascular Malformations and High Cardiac Output. JAMA 2012, 307, 948–955. [Google Scholar] [CrossRef]
- Turgut, B.; Guler, M.; Akpolat, N.; Demır, T.; Celıker, U. The Impact of Tacrolimus on Vascular Endothelial Growth Factor in Experimental Corneal Neovascularization. Curr. Eye Res. 2011, 36, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Siamakpour-Reihani, S.; Caster, J.; Nepal, D.B.; Courtwright, A.; Hilliard, E.; Usary, J.; Ketelsen, D.; Darr, D.; Shen, X.J.; Patterson, C.; et al. The Role of Calcineurin/NFAT in SFRP2 Induced Angiogenesis—A Rationale for Breast Cancer Treatment with the Calcineurin Inhibitor Tacrolimus. PLoS ONE 2011, 6, e20412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroon, S.; Snijder, R.J.; Hosman, A.E.; Vorselaars, V.M.; Disch, F.J.; Post, M.C.; Mager, J.J. Oral itraconazole for epistaxis in hereditary hemorrhagic telangiectasia: A proof of concept study. Angiogenesis 2021, 24, 379–386. [Google Scholar] [CrossRef]
- Kroon, S.; Snijder, R.J.; Mager, J.J.; Post, M.C.; Van Noorden, J.T.; Van Geenen, E.J.M.; Drenth, J.P.H.; Grooteman, K.V. Octreotide for gastrointestinal bleeding in hereditary hemorrhagic telangiectasia: A prospective case series. Am. J. Hematol. 2019, 94, E247–E249. [Google Scholar] [CrossRef] [PubMed]
- Rohde, K.A.; Schlei, Z.W.; Katers, K.M.; Weber, A.K.; Brokhof, M.M.; Hawes, D.S.; Radford, K.L.; Francois, M.L.; Menninga, N.J.; Cornwell, R.; et al. Insomnia and Relationship With Immunosuppressant Therapy After Lung Transplantation. Prog. Transplant. 2017, 27, 167–174. [Google Scholar] [CrossRef]
- Scheffert, J.L.; Raza, K. Immunosuppression in lung transplantation. J. Thorac. Dis. 2014, 6, 1039–1053. [Google Scholar] [PubMed]
- Hwang, Y.H.; Kim, H.; Min, K.; Yang, J. Tacrolimus trough levels in kidney transplant recipients. BMC Nephrol. 2021, 22, 405. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Absence of evidence is not evidence of absence. BMJ 1995, 311, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Value |
---|---|
Number of patients, n | 25 |
Median age, years (IQR) | 59 (52–66) |
Sex, n (%) | |
Female | 11 (44) |
Male | 14 (56) |
Clinical diagnosis (≥3 Curaçao criteria), n (%) | 21 (100) |
HHT type, n (%) | |
Type 1 | 13 (52) |
Type 2 | 11 (44) |
Type unknown | 1 (4) |
Visceral localization, n (%) | |
PAVM on chest CT | 13 (52) |
CAVM * | 1 (2.8) |
Digestive tract telangiectases ¥ | 10 (40) |
Previous systemic epistaxis treatment, n (%) | |
Tranexamic acid oral | 17 (71) |
Propranolol | 5 (21) |
Bevacizumab | 4 (17) |
Previous surgical interventions for epistaxis, n (%) | |
Argon Plasma Coagulation | 22 (92) |
Septodermoplasty | 10 (42) |
Nasal embolisation | 4 (17) |
Anticoagulant therapy before enrollment, n (%) | 0 (0) |
Smoker, n (%) | |
Never | 6 (24) |
Former | 11 (44) |
Active | 8 (32) |
Median body mass index, kg/m2 (IQR) | 25 (23–28) |
Tacrolimus usage, n (%) | |
Epistaxis | 16 (64) |
Gastrointestinal bleeding | 2 (8) |
Both epistaxis and gastrointestinal bleeding | 7 (28) |
Adverse Event | Number of Patients, n | Grade |
---|---|---|
Headache | 10 | Grade 1 |
Abdominal pain | 8 | Grade 1 |
Diarrhea | 7 | Grade 1 |
1 | Grade 2 | |
Insomnia | 5 | Grade 1 |
Nausea | 3 | Grade 1 |
Muscle cramp | 3 | Grade 1 |
Tinnitus (increase in severity of pre-existing tinnitus) | 2 | Grade 1 |
Obstipation | 1 | Grade 1 |
Hyperhidrosis | 1 | Grade 1 |
Nasal congestion | 1 | Grade 1 |
Dizziness | 1 | Grade 1 |
Urinary tract infection | 1 | Grade 1 |
Urinary frequency (increase) | 1 | Grade 1 |
Dry mouth | 1 | Grade 1 |
Gingivitis | 1 | Grade 1 |
Skin infection (neck abscess and subsequent bacteremia) | 1 | Grade 3 |
Acute lymphatic leukemia, SARS CoV-2 infection | 1 | Grade 5 |
Parameter | Patients, n | Baseline | End of Trial | p-Value |
---|---|---|---|---|
Hemoglobin levels, mmol/L (IQR) | All patients (n = 20) | 6.1 (5.2–6.9) | 6.7 (6.5–7.1) | 0.003 * |
Epistaxis (n = 11) | 6.2 (5.2–7.3) | 6.6 (5.5–7.5) | 0.083 | |
GI bleeding (n = 2) | 6.5 | 6.9 | n.a. | |
Both (n = 7) | 5.5 (4.6–6.7) | 6.8 (6.5–7.0) | 0.028 * | |
Hemoglobin levels, g/dL (IQR) | All patients (n = 20) | 9.8 (8.4–11.2) | 10.8 (10.5–11.4) | 0.003 * |
Epistaxis (n = 11) | 10.0 (8.4–11.8) | 10.6 (8.9–12.1) | 0.083 | |
GI bleeding (n = 2) | 10.4 | 11.0 | n.a. | |
Both (n = 7) | 8.9 (7.4–10.8) | 11.0 (10.5–11.3) | 0.028 * | |
Ferritin levels, ug/L (IQR) | All patients (n = 20) | 50.5 (13.5–283.5) | 58.0 (16.3–426.3) | 0.117 |
SF-36 | All patients (n = 19) † | |||
PCS | 35.1 (29.4–46.0) | 39.2 (35.5–46.1) | 0.260 | |
MCS | 46.0 (38.2–52.8) | 48.4 (38.3–56.3) | 0.117 | |
Fatigue | All patients (n = 19) † | |||
General fatigue | 17.0 (14.0–19.0) | 16.0 (13.0–18.0) | 0.325 | |
Physical fatigue | 16.0 (13.0–18.0) | 15.0 (13.0–17.0) | 0.419 | |
Reduced activity | 14.0 (13.0–16.0) | 14.0 (12.0–16.0) | 0.585 | |
Reduced motivation | 10.0 (8.0–15.0) | 10.0 (8.0–13.0) | 0.435 | |
Mental fatigue | 10.0 (7.0–16.0) | 9.0 (6.0–14.0) | 0.219 | |
ESS (IQR) | All patients (n = 20) | 7.1 (5.3–7.3) | 5.5 (4.0–6.4) | 0.003 * |
Epistaxis (n = 11) | 7.3 (7.1–8.4) | 6.1 (4.9–6.8) | 0.003 * | |
Both (n = 7) | 5.3 (4.7–7.1) | 5.3 (4.8–5.9) | 0.463 | |
Monthly epistaxis number, n (IQR) # | All patients (n = 19) † | 47 (33–91) | 19 (9–51) | 0.010 * |
Epistaxis (n = 10) † | 46 (36–60) | 19 (14–41) | 0.005 * | |
Both (n = 7) | 97 (32−110) | 63 (3–107) | 0.600 | |
Monthly epistaxis duration, minutes (IQR) # | All patients (n = 19) † | 377 (257–677) | 253 (16–392) | 0.014 * |
Epistaxis (n = 10) † | 503 (371–946) | 237 (118–456) | 0.007 * | |
Both (n = 7) | 297 (172–400) | 357 (16–426) | 1.000 |
Parameter | Patients, n | 5 Months before Enrollment | 5 Months during Trial | p-Value |
---|---|---|---|---|
Iron infusions, number | All patients (n = 20) | 38 | 35 | |
Iron infusions, median (IQR; Range) | All patients (n = 20) | 1.0 (0.0–3.8; 0–6) | 1.0 (0.0–3.8; 0–6) | 0.499 |
Iron infusions, mean ± SD | All patients (n = 20) | 1.9 ± 2.0 | 1.8 ± 2.0 | 0.505 |
Blood transfusions, number | All patients (n = 20) | 99 | 38 | |
Blood transfusions, median (IQR, range) | All patients (n = 20) | 0.0 (0.0–7.5; 0–35) | 0.0 (0.0–2.0; 0–12) | 0.046 * |
Epistaxis (n = 11) | 0.0 (0.0–6.0; 0–10) | 0.0 (0.0–2.0; 0–4) | 0.207 | |
GI bleeding (n = 2) | Range: 10–35 | Range: 0–12 | n.a. | |
Both (n = 7) | 0.0 (0.0–5.0; 0–23) | 2.0 (0.0–2.0; 0–11) | 0.498 | |
Blood transfusions, mean ± SD | All patients (n = 20) | 5.0 ± 9.2 | 1.9 ± 3.5 | 0.040 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hessels, J.; Kroon, S.; Boerman, S.; Nelissen, R.C.; Grutters, J.C.; Snijder, R.J.; Lebrin, F.; Post, M.C.; Mummery, C.L.; Mager, J.-J. Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study. J. Clin. Med. 2022, 11, 5280. https://doi.org/10.3390/jcm11185280
Hessels J, Kroon S, Boerman S, Nelissen RC, Grutters JC, Snijder RJ, Lebrin F, Post MC, Mummery CL, Mager J-J. Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study. Journal of Clinical Medicine. 2022; 11(18):5280. https://doi.org/10.3390/jcm11185280
Chicago/Turabian StyleHessels, Josefien, Steven Kroon, Sanne Boerman, Rik C. Nelissen, Jan C. Grutters, Repke J. Snijder, Franck Lebrin, Marco C. Post, Christine L. Mummery, and Johannes-Jurgen Mager. 2022. "Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study" Journal of Clinical Medicine 11, no. 18: 5280. https://doi.org/10.3390/jcm11185280
APA StyleHessels, J., Kroon, S., Boerman, S., Nelissen, R. C., Grutters, J. C., Snijder, R. J., Lebrin, F., Post, M. C., Mummery, C. L., & Mager, J. -J. (2022). Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study. Journal of Clinical Medicine, 11(18), 5280. https://doi.org/10.3390/jcm11185280