Comparing Door-To-Balloon Time between ST-Elevation Myocardial Infarction Electrocardiogram and Its Equivalents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koutsoukis, A.; Kanakakis, I. Challenges and unanswered questions in STEMI management. Hell. J. Cardiol. 2019, 60, 211–215. [Google Scholar] [CrossRef]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 61, e78–e140. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed]
- Keeley, E.C.; Boura, J.A.; Grines, C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet 2003, 361, 13–20. [Google Scholar] [CrossRef]
- Stenestrand, U.; Lindback, J.; Wallentin, L. Long-term outcome of primary percutaneous coronary intervention vs prehospital and in-hospital thrombolysis for patients with ST-elevation myocardial infarction. JAMA 2006, 296, 1749–1756. [Google Scholar] [CrossRef]
- Cannon, C.P.; Antman, E.M.; Walls, R.; Braunwald, E. Time as an Adjunctive Agent to Thrombolytic Therapy. J. Thromb. Thrombolysis. 1994, 1, 27–34. [Google Scholar] [CrossRef]
- Rathore, S.S.; Curtis, J.P.; Chen, J.; Wang, Y.; Nallamothu, B.K.; Epstein, A.J.; Krumholz, H.M. Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: National cohort study. BMJ 2009, 338, b1807. [Google Scholar] [CrossRef]
- Nallamothu, B.K.; Normand, S.-L.T.; Wang, Y.; Hofer, T.P.; Brush, J.E.; Messenger, J.C.; Bradley, E.H.; Rumsfeld, J.S.; Krumholz, H.M. Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: A retrospective study. Lancet 2015, 385, 1114–1122. [Google Scholar] [CrossRef]
- Park, J.; Choi, K.H.; Lee, J.M.; Kim, H.K.; Hwang, D.; Rhee, T.M.; Kim, J.; Park, T.K.; Yang, J.H.; Song, Y.B.; et al. Prognostic Implications of Door-to-Balloon Time and Onset-to-Door Time on Mortality in Patients with ST -Segment-Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2019, 8, e012188. [Google Scholar] [CrossRef]
- Scholz, K.H.; Maier, S.K.G.; Maier, L.S.; Lengenfelder, B.; Jacobshagen, C.; Jung, J.; Fleischmann, C.; Werner, G.S.; Olbrich, H.G.; Ott, R.; et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: Results from the German prospective, multicentre FITT-STEMI trial. Eur. Heart J. 2018, 39, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Scholz, K.H.; Meyer, T.; Lengenfelder, B.; Vahlhaus, C.; Tongers, J.; Schnupp, S.; Burckhard, R.; von Beckerath, N.; Grusnick, H.M.; Jeron, A.; et al. Patient delay and benefit of timely reperfusion in ST-segment elevation myocardial infarction. Open Heart 2021, 8, e001650. [Google Scholar] [CrossRef]
- Cammalleri, V.; Marsili, G.; Stelitano, M.; Tavernese, A.; Mauceri, A.; Macrini, M.; Stifano, G.; Muscoli, S.; Mollace, R.; Di Luozzo, M.; et al. Every minute counts: In-hospital changes of left ventricular regional and global function in patients with ST-segment elevation myocardial infarction. J Cardiovasc. Med 2021, 22, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Foo, C.Y.; Bonsu, K.O.; Nallamothu, B.K.; Reid, C.M.; Dhippayom, T.; Reidpath, D.D.; Chaiyakunapruk, N. Coronary intervention door-to-balloon time and outcomes in ST-elevation myocardial infarction: A meta-analysis. Heart 2018, 104, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Tsukui, T.; Sakakura, K.; Taniguchi, Y.; Yamamoto, K.; Wada, H.; Momomura, S.I.; Fujita, H. Determinants of short and long door-to-balloon time in current primary percutaneous coronary interventions. Heart Vessel. 2018, 33, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Meng, S.W.; Lee, M.H.; Chen, H.C.; Wang, C.L.; Wang, H.N.; Liao, M.T.; Hsieh, M.Y.; Huang, Y.C.; Huang, E.P.; et al. The impact of door-to-electrocardiogram time on door-to-balloon time after achieving the guideline-recommended target rate. PLoS ONE 2019, 14, e0222019. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.M.; Armstrong, E.J.; Hoffmayer, K.S.; Bhave, P.D.; MacGregor, J.S.; Hsue, P.; Stein, J.C.; Kinlay, S.; Ganz, P. Impact of door-to-activation time on door-to-balloon time in primary percutaneous coronary intervention for ST-segment elevation myocardial infarctions: A report from the Activate-SF registry. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 672–679. [Google Scholar] [CrossRef]
- Tzimas, G.; Antiochos, P.; Monney, P.; Eeckhout, E.; Meier, D.; Fournier, S.; Harbaoui, B.; Muller, O.; Schlapfer, J. Atypical Electrocardiographic Presentations in Need of Primary Percutaneous Coronary Intervention. Am. J. Cardiol. 2019, 124, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.; White, L.D.; Lee, A. Novel ECG changes in acute coronary syndromes. Would improvement in the recognition of ‘STEMI-equivalents’ affect time until reperfusion? Intern. Emerg. Med. 2018, 13, 243–249. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Comparison of door-to-balloon time and in-hospital outcomes in patients with ST-elevation myocardial infarction between before versus after COVID-19 pandemic. Cardiovasc. Interv. Ther. 2022, 37, 641–650. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.W.; Dodd, K.W.; Henry, T.D.; Dvorak, D.M.; Pearce, L.A. Diagnosis of ST-elevation myocardial infarction in the presence of left bundle branch block with the ST-elevation to S-wave ratio in a modified Sgarbossa rule. Ann. Emerg. Med. 2012, 60, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Pride, Y.B.; Tung, P.; Mohanavelu, S.; Zorkun, C.; Wiviott, S.D.; Antman, E.M.; Giugliano, R.; Braunwald, E.; Gibson, C.M.; TIMI Study Group. Angiographic and clinical outcomes among patients with acute coronary syndromes presenting with isolated anterior ST-segment depression: A TRITON-TIMI 38 (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis In Myocardial Infarction 38) substudy. JACC Cardiovasc. Interv. 2010, 3, 806–811. [Google Scholar] [CrossRef]
- Sgarbossa, E.B.; Pinski, S.L.; Barbagelata, A.; Underwood, D.A.; Gates, K.B.; Topol, E.J.; Califf, R.M.; Wagner, G.S. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle-branch block. GUSTO-1 (Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries) Investigators. N. Engl. J. Med. 1996, 334, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Oraii, S.; Maleki, M.; Tavakolian, A.A.; Eftekharzadeh, M.; Kamangar, F.; Mirhaji, P. Prevalence and outcome of ST-segment elevation in posterior electrocardiographic leads during acute myocardial infarction. J. Electrocardiol. 1999, 32, 275–278. [Google Scholar] [CrossRef]
- Harhash, A.A.; Huang, J.J.; Reddy, S.; Natarajan, B.; Balakrishnan, M.; Shetty, R.; Hutchinson, M.D.; Kern, K.B. aVR ST Segment Elevation: Acute STEMI or Not? Incidence of an Acute Coronary Occlusion. Am. J. Med. 2019, 132, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, A.; Rodriguez, M.; Cinca, J.; Bayes-Genis, A.; Ortiz-Perez, J.T.; Ariza-Sole, A.; Sanchez-Salado, J.C.; Sionis, A.; Rodriguez, J.; Toledano, B.; et al. New Electrocardiographic Algorithm for the Diagnosis of Acute Myocardial Infarction in Patients With Left Bundle Branch Block. J. Am. Heart Assoc. 2020, 9, e015573. [Google Scholar] [CrossRef]
- Wung, S.F.; Drew, B.J. New electrocardiographic criteria for posterior wall acute myocardial ischemia validated by a percutaneous transluminal coronary angioplasty model of acute myocardial infarction. Am. J. Cardiol. 2001, 87, 970–974. [Google Scholar] [CrossRef]
- Barrabes, J.A.; Figueras, J.; Moure, C.; Cortadellas, J.; Soler-Soler, J. Prognostic value of lead aVR in patients with a first non-ST-segment elevation acute myocardial infarction. Circulation 2003, 108, 814–819. [Google Scholar] [CrossRef]
- Kosuge, M.; Kimura, K.; Ishikawa, T.; Ebina, T.; Shimizu, T.; Hibi, K.; Toda, N.; Tahara, Y.; Tsukahara, K.; Kanna, M.; et al. Predictors of left main or three-vessel disease in patients who have acute coronary syndromes with non-ST-segment elevation. Am. J. Cardiol. 2005, 95, 1366–1369. [Google Scholar] [CrossRef]
- Jong, G.P.; Ma, T.; Chou, P.; Shyu, M.Y.; Tseng, W.K.; Chang, T.C. Reciprocal changes in 12-lead electrocardiography can predict left main coronary artery lesion in patients with acute myocardial infarction. Int. Heart J. 2006, 47, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.I.; Buckberg, G.D. Pathophysiology of subendocardial ischaemia. Br. Med. J. 1975, 1, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, P.; Cannizzaro, S.; Scalzo, S.; Maringhini, G.; Sarullo, F.M.; Cacia, A.; Paterna, S. Sensitivity, specificity and predictive value of the echocardiography and troponin-T test combination in patients with non-ST elevation acute coronary syndromes. Int. J. Cardiovasc. Imaging 2004, 20, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Pancholy, S.; Patel, T.; Sanghvi, K.; Thomas, M.; Patel, T. Comparison of door-to-balloon times for primary PCI using transradial versus transfemoral approach. Catheter. Cardiovasc. Interv. 2010, 75, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Staer-Jensen, H.; Nakstad, E.R.; Fossum, E.; Mangschau, A.; Eritsland, J.; Draegni, T.; Jacobsen, D.; Sunde, K.; Andersen, G.O. Post-Resuscitation ECG for Selection of Patients for Immediate Coronary Angiography in Out-of-Hospital Cardiac Arrest. Circ. Cardiovasc. Interv. 2015, 8, e002784. [Google Scholar] [CrossRef]
- Kern, K.B.; Radsel, P.; Jentzer, J.C.; Seder, D.B.; Lee, K.S.; Lotun, K.; Janardhanan, R.; Stub, D.; Hsu, C.H.; Noc, M. Randomized Pilot Clinical Trial of Early Coronary Angiography Versus No Early Coronary Angiography After Cardiac Arrest Without ST-Segment Elevation: The PEARL Study. Circulation 2020, 142, 2002–2012. [Google Scholar] [CrossRef] [PubMed]
- Desch, S.; Freund, A.; Akin, I.; Behnes, M.; Preusch, M.R.; Zelniker, T.A.; Skurk, C.; Landmesser, U.; Graf, T.; Eitel, I.; et al. Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation. N. Engl. J. Med. 2021, 385, 2544–2553. [Google Scholar] [CrossRef]
- Almendro-Delia, M.; Seoane Garcia, T.; Villar Calle, P.; Garcia Gonzalez, N.; Lorenzo Lopez, B.; Cortes, F.J.; Garcia Del Rio, M.; Ruiz Garcia, M.D.P.; Hidalgo Urbano, R.J.; Garcia-Rubira, J.C. Prevalence and clinical significance of totally occluded infarct-related arteries in patients with non-ST-segment elevation acute coronary syndromes. Int. J. Cardiol. 2021, 324, 1–7. [Google Scholar] [CrossRef]
- Hung, C.S.; Chen, Y.H.; Huang, C.C.; Lin, M.S.; Yeh, C.F.; Li, H.Y.; Kao, H.L. Prevalence and outcome of patients with non-ST segment elevation myocardial infarction with occluded "culprit" artery—a systemic review and meta-analysis. Crit. Care 2018, 22, 34. [Google Scholar] [CrossRef]
- Miranda, D.F.; Lobo, A.S.; Walsh, B.; Sandoval, Y.; Smith, S.W. New Insights into the Use of the 12-Lead Electrocardiogram for Diagnosing Acute Myocardial Infarction in the Emergency Department. Can. J. Cardiol. 2018, 34, 132–145. [Google Scholar] [CrossRef]
- Aslanger, E.K.; Meyers, H.P.; Bracey, A.; Smith, S.W. The STEMI/NonSTEMI Dichotomy needs to be replaced by Occlusion MI vs. Non-Occlusion MI. Int. J. Cardiol. 2021, 330, 15. [Google Scholar] [CrossRef]
- Meyers, H.P.; Bracey, A.; Lee, D.; Lichtenheld, A.; Li, W.J.; Singer, D.D.; Kane, J.A.; Dodd, K.W.; Meyers, K.E.; Thode, H.C.; et al. Comparison of the ST-Elevation Myocardial Infarction (STEMI) vs. NSTEMI and Occlusion MI (OMI) vs. NOMI Paradigms of Acute MI. J. Emerg. Med. 2021, 60, 273–284. [Google Scholar] [CrossRef] [PubMed]
- de Winter, R.J.; Verouden, N.J.; Wellens, H.J.; Wilde, A.A.; Interventional Cardiology Group of the Academic Medical Center. A new ECG sign of proximal LAD occlusion. N. Engl. J. Med. 2008, 359, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Littmann, L. South African flag sign: A teaching tool for easier ECG recognition of high lateral infarct. Am. J. Emerg. Med. 2016, 34, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Aslanger, E.; Yildirimturk, O.; Simsek, B.; Sungur, A.; Turer Cabbar, A.; Bozbeyoglu, E.; Karabay, C.Y.; Smith, S.W.; Degertekin, M. A new electrocardiographic pattern indicating inferior myocardial infarction. J. Electrocardiol. 2020, 61, 41–46. [Google Scholar] [CrossRef]
Left bundle branch block | Criteria that can be used to improve the diagnostic accuracy of STEMI in LBBB. |
* Concordant ST-segment elevation ≥ 1 mm in leads with a positive QRS complex. | |
* Concordant ST-segment depression ≥ 1 mm in V1–V3. | |
* Excessive relative discordant ST-segment elevation in any single lead, defined by ST-segment elevation ≥ 25% of preceding S-wave depth [21]. | |
Ventricular paced rhythm | During right ventricular pacing, the ECG also shows LBBB, and the above rules apply to the diagnosis of myocardial infarction; however, they are less specific. |
Right bundle branch block | The presence of RBBB may confound the diagnosis of STEMI. |
Isolated posterior myocardial infarction | Isolated ST-segment depression ≥ 0.5 mm in leads V1–V3 and/or ST-segment elevation ≥ 0.5 mm in posterior chest wall leads V7–V9. |
ST-segment elevation in aVR | ST-segment depression ≥ 1 mm in eight or more surface leads, coupled with ST-segment elevation in aVR and/or V1, suggests left main or left main equivalent coronary obstruction, or severe three-vessel disease. |
STEMI | STEMI-Equivalent | p | |
---|---|---|---|
n = 157 | n = 23 | ||
Age, y | 62 (53–73) | 69 (55–81) | 0.168 |
Female sex | 32 (20.4) | 7 (30.4) | 0.276 |
Body mass index, kg/m2 | 24.0 ± 3.0 | 24.3 ± 2.9 | 0.637 |
Comorbidities | |||
Hypertension | 68 (43.3) | 12 (52.2) | 0.426 |
Diabetes mellitus | 37 (23.6) | 8 (34.8) | 0.247 |
Known previous coronary artery disease | 14 (8.9) | 4 (17.4) | 0.207 |
History of smoking | 70 (44.6) | 8 (34.8) | 0.377 |
ED presentation at working hours | 63 (40.1) | 8 (34.8) | 0.625 |
Transferred in from another hospital | 48 (30.6) | 6 (26.1) | 0.662 |
Initial vital signs | |||
Mean arterial pressure, mmHg | 88.1 ± 17.6 | 84.8 ± 22.1 | 0.414 |
Heart rate, bpm | 77 (66–89) | 85 (75–107) | 0.044 |
Body temperature, °C | 36.0 (36.0–36.2) | 36.0 (36.0–36.0) | 0.109 |
Oxygen saturation, % | 98 (96–100) | 99 (95–100) | 0.596 |
Initial laboratory findings | |||
Hemoglobin, g/dL | 15.0 (13.4–16.0) | 14.4 (12.3–15.5) | 0.152 |
Serum creatinine, mg/dL | 1.13 (0.97–1.31) | 1.36 (1.18–1.69) | 0.002 |
Troponin T, ng/mL | 0.042 (0.016–0.484) | 0.114 (0.048–0.422) | 0.095 |
Creatine kinase, U/L | 163 (101–466) | 211 (124–329) | 0.416 |
Creatine kinase-myocardial band, ng/mL | 3.61 (2.14–13.97) | 7.64 (3.94–17.33) | 0.079 |
Pulmonary edema in initial chest X-ray | 62 (39.5) | 10 (43.5) | 0.716 |
Left ventricular ejection fraction, % | 52.5 (45.0–58.0) | 54.0 (45.0–60.0) | 0.935 |
Medication use | |||
Aspirin | 154 (98.1) | 22 (95.7) | 0.460 |
Clopidogrel | 37 (23.6) | 7 (30.4) | 0.475 |
Prasugrel | 9 (5.7) | 1 (4.3) | 0.787 |
Ticagrelor | 117 (74.5) | 15 (65.2) | 0.347 |
Heparin | 79 (50.3) | 10 (43.5) | 0.541 |
Glycoprotein IIb/IIIa inhibitor | 50 (31.8) | 5 (21.7) | 0.327 |
Trimetazidine | 15 (9.6) | 2 (8.7) | 0.896 |
Cardiac arrest before pPCI | 16 (10.2) | 10 (43.5) | <0.001 |
STEMI | STEMI-Equivalent | p | |
---|---|---|---|
n = 157 | n = 23 | ||
Angiographic characteristics | |||
Number of narrowed vessels | 0.195 | ||
Single-vessel disease | 95 (60.5) | 11 (47.8) | |
Double-vessel disease | 38 (24.2) | 5 (21.7) | |
Triple-vessel disease | 24 (15.3) | 7 (30.4) | |
Culprit artery | <0.001 | ||
Left main artery | 2 (1.3) | 3 (13.0) | |
Left anterior descending artery | 76 (48.4) | 8 (34.8) | |
Right coronary artery | 69 (43.9) | 6 (26.1) | |
Left circumflex artery | 10 (6.4) | 6 (26.1) | |
Pre-pPCI TIMI grade flow of culprit artery | 0 (0–1) | 1 (0–2) | 0.026 |
Positive spasm provocation test | 2 (1.3) | 0 (0.0) | 0.587 |
Procedural characteristics | |||
Radial artery cannulation | 115 (73.2) | 11 (47.8) | 0.013 |
Thrombus aspiration before balloon dilatation | 15 (9.6) | 2 (8.7) | 0.896 |
Time variables | |||
Door-to-ECG (DTE) time, min | 4 (1–7) | 2 (1–7) | 0.641 |
ECG-to-activation (ETA) time, min | 2 (1–5) | 4 (2–12) | 0.036 |
Activation-to-laboratory arrival (ATL) time, min | 49 (40–54) | 63 (47–82) | 0.001 |
Laboratory arrival-to-balloon (LTB) time, min | 22 (17–27) | 22 (19–29) | 0.473 |
Door-to-balloon (DTB) time, min | 81 (70–88) | 89 (80–122) | 0.001 |
Crude | Adjusted | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
STEMI-equivalent ECG | 7.549 | 2.889–19.728 | <0.001 | 4.692 | 1.632–13.490 | 0.004 |
Age, y | 1.021 | 0.990–1.053 | 0.192 | |||
Female sex | 0.984 | 0.369–2.625 | 0.974 | |||
ED presentation at working hours | 0.688 | 0.292–1.619 | 0.391 | |||
Transferred in from another hospital | 0.591 | 0.225–1.552 | 0.285 | |||
Cardiac arrest before pPCI | 7.393 | 2.921–18.713 | <0.001 | 3.511 | 1.184–10.411 | 0.024 |
Radial artery cannulation for pPCI | 0.250 | 0.109–0.575 | 0.001 | 0.448 | 0.170–1.184 | 0.105 |
Thrombus aspiration before balloon dilatation during pPCI | 2.536 | 0.817–7.872 | 0.107 |
Crude | Adjusted | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
STEMI-equivalent ECG | 3.947 | 1.601–9.726 | 0.003 | 1.592 | 0.522–4.852 | 0.414 |
Door to balloon time, min | 1.028 | 1.012–1.045 | 0.001 | 1.020 | 1.002–1.038 | 0.033 |
Age, y | 1.061 | 1.031–1.093 | <0.001 | 1.070 | 1.033–1.109 | <0.001 |
Female sex | 2.218 | 1.039–4.734 | 0.040 | 1.000 | 0.402–2.491 | 1.000 |
Cardiac arrest before pPCI | 3.667 | 1.552–8.663 | 0.003 | 4.508 | 1.473–13.792 | 0.008 |
Triple-vessel disease | 2.136 | 0.943–4.839 | 0.069 | |||
Left main artery disease | 3.047 | 0.593–15.658 | 0.182 | |||
Pre-pPCI TIMI grade flow of 0 | 1.284 | 0.615–2.677 | 0.506 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Kim, K.; Oh, J.S.; Jeong, H.H.; Park, J.T.; Kyong, Y.Y.; Oh, Y.M.; Choi, S.M.; Choi, K.H. Comparing Door-To-Balloon Time between ST-Elevation Myocardial Infarction Electrocardiogram and Its Equivalents. J. Clin. Med. 2022, 11, 5547. https://doi.org/10.3390/jcm11195547
Choi Y, Kim K, Oh JS, Jeong HH, Park JT, Kyong YY, Oh YM, Choi SM, Choi KH. Comparing Door-To-Balloon Time between ST-Elevation Myocardial Infarction Electrocardiogram and Its Equivalents. Journal of Clinical Medicine. 2022; 11(19):5547. https://doi.org/10.3390/jcm11195547
Chicago/Turabian StyleChoi, Youngchul, Kiwook Kim, Joo Suk Oh, Hyun Ho Jeong, Jung Taek Park, Yeon Young Kyong, Young Min Oh, Se Min Choi, and Kyoung Ho Choi. 2022. "Comparing Door-To-Balloon Time between ST-Elevation Myocardial Infarction Electrocardiogram and Its Equivalents" Journal of Clinical Medicine 11, no. 19: 5547. https://doi.org/10.3390/jcm11195547
APA StyleChoi, Y., Kim, K., Oh, J. S., Jeong, H. H., Park, J. T., Kyong, Y. Y., Oh, Y. M., Choi, S. M., & Choi, K. H. (2022). Comparing Door-To-Balloon Time between ST-Elevation Myocardial Infarction Electrocardiogram and Its Equivalents. Journal of Clinical Medicine, 11(19), 5547. https://doi.org/10.3390/jcm11195547