Expression of Fucosyltransferase 4 (FUT4) mRNA Is Increased in Endometrium from Women with Endometriosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Material Collection
2.2. RNA Isolation and Quantitative Reversed-Transcription Polymerase Chain Reaction (qRT-PCR) Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broi, M.G.D.; Ferriani, R.A.; Navarro, P.A. Ethiopathogenic mechanisms of endometriosis-related infertility. JBRA Assist. Reprod. 2019, 23, 273–280. [Google Scholar] [CrossRef]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Endometriosis and infertility. Fertil. Steril. 2006, 86, S156–S160. [Google Scholar] [CrossRef] [PubMed]
- Zondervan, K.T.; Becker, C.M.; Koga, K.; Missmer, S.A.; Taylor, R.N.; Vigano, P. Endometriosis. Nat. Rev. Dis. Primers 2018, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Vercellini, P.; Vigano, P.; Somigliana, E.; Fedele, L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014, 10, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Klemmt, P.A.B.; Starzinski-Powitz, A. Molecular and Cellular Pathogenesis of Endometriosis. Curr. Womens Health Rev. 2018, 14, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Koninckx, P.R.; Ussia, A.; Adamyan, L.; Wattiez, A.; Gomel, V.; Martin, D.C. Pathogenesis of endometriosis: The genetic/epigenetic theory. Fertil. Steril. 2019, 111, 327–340. [Google Scholar] [CrossRef]
- Patel, B.G.; Lenk, E.E.; Lebovic, D.I.; Shu, Y.; Yu, J.; Taylor, R.N. Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 50, 50–60. [Google Scholar] [CrossRef]
- Sampson, J.A. Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. Am. J. Pathol. 1927, 3, 93–110 143. [Google Scholar]
- Gazvani, R.; Templeton, A. Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction 2002, 123, 217–226. [Google Scholar] [CrossRef]
- Klemmt, P.A.; Carver, J.G.; Koninckx, P.; McVeigh, E.J.; Mardon, H.J. Endometrial cells from women with endometriosis have increased adhesion and proliferative capacity in response to extracellular matrix components: Towards a mechanistic model for endometriosis progression. Hum. Reprod. 2007, 22, 3139–3147. [Google Scholar] [CrossRef] [Green Version]
- Matarese, G.; De Placido, G.; Nikas, Y.; Alviggi, C. Pathogenesis of endometriosis: Natural immunity dysfunction or autoimmune disease? Trends Mol. Med. 2003, 9, 223–228. [Google Scholar] [CrossRef]
- Yang, Y.M.; Yang, W.X. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2017, 8, 41679–41689. [Google Scholar] [CrossRef] [PubMed]
- Sciezynska, A.; Komorowski, M.; Soszynska, M.; Malejczyk, J. NK Cells as Potential Targets for Immunotherapy in Endometriosis. J. Clin. Med. 2019, 8, 1468. [Google Scholar] [CrossRef] [PubMed]
- Cousins, F.L.; Dorien, F.O.; Gargett, C.E. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 50, 27–38. [Google Scholar] [CrossRef]
- Gargett, C.E.; Schwab, K.E.; Deane, J.A. Endometrial stem/progenitor cells: The first 10 years. Hum. Reprod. Update 2016, 22, 137–163. [Google Scholar] [CrossRef]
- Nikoo, S.; Ebtekar, M.; Jeddi-Tehrani, M.; Shervin, A.; Bozorgmehr, M.; Vafaei, S.; Kazemnejad, S.; Zarnani, A.-H. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Mol. Hum. Reprod. 2014, 20, 905–918. [Google Scholar] [CrossRef]
- Gargett, C.E.; Schwab, K.E.; Brosens, J.J.; Puttemans, P.; Benagiano, G.; Brosens, I. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis. Mol. Hum. Reprod. 2014, 20, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Gotte, M.; Wolf, M.; Staebler, A.; Buchweitz, O.; Kiesel, L.; Schuring, A.N. Aberrant expression of the pluripotency marker SOX-2 in endometriosis. Fertil. Steril. 2011, 95, 338–341. [Google Scholar] [CrossRef]
- Gotte, M.; Wolf, M.; Staebler, A.; Buchweitz, O.; Kelsch, R.; Schuring, A.N.; Kiesel, L. Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J. Pathol. 2008, 215, 317–329. [Google Scholar] [CrossRef]
- Schuring, A.N.; Dahlhues, B.; Korte, A.; Kiesel, L.; Titze, U.; Heitkotter, B.; Ruckert, C.; Gotte, M. The endometrial stem cell markers notch-1 and numb are associated with endometriosis. Reprod. Biomed. Online 2018, 36, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Anwar, S.S.; Buhring, H.J.; Rao, J.R.; Gargett, C.E. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant 2012, 21, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Schuring, A.N.; Schulte, N.; Kelsch, R.; Ropke, A.; Kiesel, L.; Gotte, M. Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil. Steril. 2011, 95, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Werkmeister, J.A.; Gargett, C.E. Inhibition of Transforming Growth Factor-β Receptor signaling promotes culture expansion of undifferentiated human Endometrial Mesenchymal Stem/stromal Cells. Sci. Rep. 2015, 5, 15042. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.E.; Gurung, S. Endometrial Mesenchymal Stem/Stromal Cells, Their Fibroblast Progeny in Endometriosis, and More. Biol. Reprod. 2016, 94, 129. [Google Scholar] [CrossRef]
- Nguyen, H.P.T.; Xiao, L.; Deane, J.A.; Tan, K.-S.; Cousins, F.L.; Masuda, H.; Sprung, C.N.; Rosamilia, A.; Gargett, C.E. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum. Reprod. 2017, 32, 2254–2268. [Google Scholar] [CrossRef]
- Valentijn, A.J.; Palial, K.; Al-Lamee, H.; Tempest, N.; Drury, J.; Von Zglinicki, T.; Saretzki, G.; Murray, P.; Gargett, C.E.; Hapangama, D.K. SSEA-1 isolates human endometrial basal glandular epithelial cells: Phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum. Reprod. 2013, 28, 2695–2708. [Google Scholar] [CrossRef]
- Hapangama, D.K.; Drury, J.; Da Silva, L.; Al-Lamee, H.; Earp, A.; Valentijn, A.J.; Edirisinghe, D.P.; Murray, P.A.; Fazleabas, A.T.; Gargett, C.E. Abnormally located SSEA1+/SOX9+ endometrial epithelial cells with a basalis-like phenotype in the eutopic functionalis layer may play a role in the pathogenesis of endometriosis. Hum. Reprod. 2019, 34, 56–68. [Google Scholar] [CrossRef]
- Stanley, P.; Cummings, R.D. Structures Common to Different Glycans. In Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2015; pp. 161–178. [Google Scholar] [CrossRef]
- Fenderson, B.A.; Eddy, E.M.; Hakomori, S. Glycoconjugate expression during embryogenesis and its biological significance. Bioessays 1990, 12, 173–179. [Google Scholar] [CrossRef]
- Handa, K.; Hakomori, S.I. Changes of glycoconjugate expression profiles during early development. Glycoconj. J. 2017, 34, 693–699. [Google Scholar] [CrossRef]
- Pang, P.C.; Chiu, P.C.; Lee, C.L.; Chang, L.Y.; Panico, M.; Morris, H.R.; Haslam, S.M.; Khoo, K.H.; Clark, G.F.; Yeung, W.S.; et al. Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science 2011, 333, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.F. The role of carbohydrate recognition during human sperm-egg binding. Hum. Reprod. 2013, 28, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H. Roles of sulfated glycans in lymphocyte homing. Biol. Pharm. Bull. 2006, 29, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Kannagi, R.; Izawa, M.; Koike, T.; Miyazaki, K.; Kimura, N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004, 95, 377–384. [Google Scholar] [CrossRef]
- Nakayama, F.; Nishihara, S.; Iwasaki, H.; Kudo, T.; Okubo, R.; Kaneko, M.; Nakamura, M.; Karube, M.; Sasaki, K.; Narimatsu, H. CD15 expression in mature granulocytes is determined by α1,3-fucosyltransferase IX, but in promyelocytes and monocytes by α1,3-fucosyltransferase IV. J. Biol. Chem. 2001, 276, 16100–16106. [Google Scholar] [CrossRef]
- Goelz, S.E.; Hession, C.; Goff, D.; Griffiths, B.; Tizard, R.; Newman, B.; Chi-Rosso, G.; Lobb, R. ELFT: A gene that directs the expression of an ELAM-1 ligand. Cell 1990, 63, 1349–1356. [Google Scholar] [CrossRef]
- Reguigne, I.; James, M.R.; Richard, C.W., 3rd; Mollicone, R.; Seawright, A.; Lowe, J.B.; Oriol, R.; Couillin, P. The gene encoding myeloid alpha-3-fucosyl-transferase (FUT4) is located between D1 1S388 and D11S919 on 11q21. Cytogenet. Cell Genet. 1994, 66, 104–106. [Google Scholar] [CrossRef]
- Society, A.F. Revised American Fertility Society classification of endometriosis: 1985. Fertil. Steril. 1985, 43, 351–352. [Google Scholar] [CrossRef]
- Ponnampalam, A.P.; Rogers, P.A. Expression and regulation of fucosyltransferase 4 in human endometrium. Reproduction 2008, 136, 117–123. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Zhang, Y.-Y.; Bulbul, A.; Shan, X.; Wang, X.-Q.; Yan, Q. Baicalin promotes embryo adhesion and implantation by upregulating fucosyltransferase IV (FUT4) via Wnt/beta-catenin signaling pathway. FEBS Lett. 2015, 589, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Ponnampalam, A.P.; Weston, G.C.; Trajstman, A.C.; Susil, B.; Rogers, P.A. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol. Hum. Reprod. 2004, 10, 879–893. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Song, E.-J.; Hwangbo, Y.; Lee, S.; Park, C.K. Change of uterine histroph proteins during follicular and luteal phase in pigs. Anim. Reprod. Sci. 2016, 168, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ge, C.H.; Kong, Y.; Xin, Y.; Zhu, Z.M. Ovary Hormonal Control of Le(y) Oligosaccharide Expression during Peri-implantation of Mouse Endometrium. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2001, 33, 542–546. [Google Scholar] [PubMed]
- Iwanari, O.; Miyako, J.; Date, Y.; Nakayama, S.; Kijima, S.; Moriyama, M.; Takahashi, K.; Yoshino, N.; Karino, K.; Endoh, J.; et al. Differential diagnosis of ovarian cancer, benign ovarian tumor and endometriosis by a combination assay of serum sialyl SSEA-1 antigen and CA125 levels. Gynecol. Obstet. Investig. 1990, 29, 71–74. [Google Scholar] [CrossRef]
- Iwanari, O.; Miyako, J.; Date, Y.; Nakayama, S.; Kijima, S.; Moriyama, M.; Karino, K.; Endoh, J.; Kitao, M. Clinical evaluations of the tumor marker sialyl SSEA-1 antigen for clinical gynecological disease. Gynecol. Obstet. Investig. 1990, 29, 214–218. [Google Scholar] [CrossRef]
- Yan, X.; Lin, Y.; Liu, S.; Aziz, F.; Yan, Q. Fucosyltransferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed. Pharmacother. 2015, 70, 299–304. [Google Scholar] [CrossRef]
- Shan, M.; Yang, D.; Dou, H.; Zhang, L. Fucosylation in cancer biology and its clinical applications. Prog. Mol. Biol. Transl. Sci. 2019, 162, 93–119. [Google Scholar] [CrossRef]
- Keeley, T.S.; Yang, S.; Lau, E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers 2019, 11, 1241. [Google Scholar] [CrossRef]
- Koike, T.; Kimura, N.; Miyazaki, K.; Yabuta, T.; Kumamoto, K.; Takenoshita, S.; Chen, J.; Kobayashi, M.; Hosokawa, M.; Taniguchi, A.; et al. Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA 2004, 101, 8132–8137. [Google Scholar] [CrossRef]
- Schnyder-Candrian, S.; Borsig, L.; Moser, R.; Berger, E.G. Localization of α1,3-fucosyltransferase VI in Weibel-Palade bodies of human endothelial cells. Proc. Natl. Acad. Sci. USA 2000, 97, 8369–8374. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, J.; Liu, S.; Yan, Q. HSF1 and Sp1 regulate FUT4 gene expression and cell proliferation in breast cancer cells. J. Cell Biochem. 2014, 115, 168–178. [Google Scholar] [CrossRef] [PubMed]
Control Group | Endometriosis Group | ||||||
---|---|---|---|---|---|---|---|
All | Mid-Proliferative Phase | Mid-Secretory Phase | All | Mid-Proliferative Phase | Mid-Secretory Phase | ||
Number of cases (N) | 28 | 12 (42.9%) | 16 (57.1%) | 49 | 18 (36.7%) | 31 (63.3%) | |
Age, years (mean ± SD) | 35.2 ± 6.40 | 36.0 ± 5.02 | 34.5 ± 7.37 | 31.9 ± 5.53 | 29.4 ± 3.73 | 33.4 ± 5.93 | |
BMI, kg/m2 (mean ± SD) | 22.2 ± 4.79 | 22.8 ± 6.08 | 21.9 ± 3.96 | 21.7 ± 3.12 | 21.5 ± 2.44 | 21.8 ± 3.50 | |
Parity | 0.8 ± 0.96 | 1.0 ± 1.10 | 0.6 ± 0.84 | 0.35 ± 0.67 * | 0.18 ± 0.39 | 0.45 ± 0.78 | |
Infertility | 0 | 0 | 0 | 18 (36.7%) ** | 9 (50.0%) | 9 (29.0%) | |
rAFS | I (minimal) | - | - | - | 8 (16.3%) | 2 (11.1%) | 6 (19.4%) |
II (mild) | - | - | - | 6 (12.2%) | 0 (0%) | 6 (19.4%) | |
III (moderate) | - | - | - | 25 (51.0%) | 11 (61.1%) | 14 (45.1%) | |
IV (severe) | - | - | - | 10 (20.5%) | 5 (27.8%) | 5 (16.1%) | |
Lesion localization | Ovarian | - | - | - | 37 (75.5%) | 16 (88.9%) | 21 (67.7%) |
Peritoneal | - | - | - | 35 (71.4%) | 13 (72.2%) | 22 (71.0%) | |
Both | - | - | - | 23 (46.9%) | 11 (61.1%) | 12 (38.7%) |
Sensitivity (95%CI) | 94.12% (84.08–98.40%) |
Specificity (95%CI) | 89.29% (72.80–96.29%) |
Positive Predictive Value (PPV) | 93.9% |
Negative Predictive Value (NPV) | 89.3% |
Likelihood Ratio | 8.784 |
Accuracy | 92.2% |
Youden’s Index | 0.8341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żeberkiewicz, M.; Hyc, A.; Iwan, A.; Zwierzchowska, A.; Ścieżyńska, A.; Kalaszczyńska, I.; Barcz, E.; Malejczyk, J. Expression of Fucosyltransferase 4 (FUT4) mRNA Is Increased in Endometrium from Women with Endometriosis. J. Clin. Med. 2022, 11, 5606. https://doi.org/10.3390/jcm11195606
Żeberkiewicz M, Hyc A, Iwan A, Zwierzchowska A, Ścieżyńska A, Kalaszczyńska I, Barcz E, Malejczyk J. Expression of Fucosyltransferase 4 (FUT4) mRNA Is Increased in Endometrium from Women with Endometriosis. Journal of Clinical Medicine. 2022; 11(19):5606. https://doi.org/10.3390/jcm11195606
Chicago/Turabian StyleŻeberkiewicz, Marta, Anna Hyc, Anna Iwan, Aneta Zwierzchowska, Aneta Ścieżyńska, Ilona Kalaszczyńska, Ewa Barcz, and Jacek Malejczyk. 2022. "Expression of Fucosyltransferase 4 (FUT4) mRNA Is Increased in Endometrium from Women with Endometriosis" Journal of Clinical Medicine 11, no. 19: 5606. https://doi.org/10.3390/jcm11195606
APA StyleŻeberkiewicz, M., Hyc, A., Iwan, A., Zwierzchowska, A., Ścieżyńska, A., Kalaszczyńska, I., Barcz, E., & Malejczyk, J. (2022). Expression of Fucosyltransferase 4 (FUT4) mRNA Is Increased in Endometrium from Women with Endometriosis. Journal of Clinical Medicine, 11(19), 5606. https://doi.org/10.3390/jcm11195606