Review and Updates on the Diagnosis of Tuberculosis
Abstract
:1. Introduction
2. Mtb Diagnosis
2.1. Microscopy
2.2. Culture
2.2.1. Solid and Liquid Culture
2.2.2. Rapid Identification from Positive Cultures
2.2.3. Phenotypic Tests for DST
2.3. Molecular Tests
2.3.1. Xpert MTB/RIF
2.3.2. Loop-Mediated Isothermal Amplification (LAMP)
2.3.3. Line Probe Assay (LPA)
2.3.4. Micro Real-Time PCR
3. Immunological Diagnosis
3.1. Antibody Detection
3.2. Antigen Detection
3.3. Tuberculin Skin Testing (TST)
3.4. Interferon-Gamma (IFN-γ) Release Assays (IGRAs)
3.4.1. T-SPOT
3.4.2. QFT
4. New Techniques
4.1. Next-Generation Sequencing (NGS)
4.2. Mass Spectrometry
4.3. Artificial Intelligence (AI)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 22 September 2022).
- World Health Organization. The End TB Strategy. Available online: https://www.who.int/publications/i/item/WHO-HTM-TB-2015.19 (accessed on 22 September 2022).
- Steingart, K.R.; Henry, M.; Ng, V.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.; Aziz, M.A.; Pai, M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 570–581. [Google Scholar] [CrossRef]
- Steingart, K.R.; Ramsay, A.; Pai, M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev. Anti Infect. Ther. 2007, 5, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Shingadia, D.; Novelli, V. Diagnosis and treatment of tuberculosis in children. Lancet Infect. Dis. 2003, 3, 624–632. [Google Scholar] [CrossRef]
- Elliott, A.M.; Namaambo, K.; Allen, B.W.; Luo, N.; Hayes, R.J.; Pobee, J.O.; McAdam, K.P. Negative sputum smear results in HIV-positive patients with pulmonary tuberculosis in Lusaka, Zambia. Tuber. Lung Dis. 1993, 74, 191–194. [Google Scholar] [CrossRef]
- Lombardi, G.; Di Gregori, V.; Girometti, N.; Tadolini, M.; Bisognin, F.; Dal Monte, P. Diagnosis of smear-negative tuberculosis is greatly improved by Xpert MTB/RIF. PLoS ONE 2017, 12, e0176186. [Google Scholar] [CrossRef] [PubMed]
- Steingart, K.R.; Ng, V.; Henry, M.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.D.; Aziz, M.A.; Pai, M. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 664–674. [Google Scholar] [CrossRef]
- Pai, M.; Nicol, M.P.; Boehme, C.C. Tuberculosis Diagnostics: State of the Art and Future Directions. Microbiol. Spectr. 2016, 4, 361–378. [Google Scholar] [CrossRef]
- World Health Organization. Fluorescent Light-Emitting Diode (LED) Microscopy for Diagnosis of Tuberculosis: Policy Statement. Available online: https://apps.who.int/iris/bitstream/handle/10665/44602/9789241501613_eng.pdf?sequence=1&isAllowed=y (accessed on 22 September 2022).
- Boyd, J.C.; Marr, J.J. Decreasing reliability of acid-fast smear techniques for detection of tuberculosis. Ann. Intern. Med. 1975, 82, 489–492. [Google Scholar] [CrossRef]
- Minion, J.; Shenai, S.; Vadwai, V.; Tipnis, T.; Greenaway, C.; Menzies, D.; Ramsay, A.; Rodrigues, C.; Pai, M. Fading of auramine-stained mycobacterial smears and implications for external quality assurance. J. Clin. Microbiol. 2011, 49, 2024–2026. [Google Scholar] [CrossRef]
- Foulds, J.; O’Brien, R. New tools for the diagnosis of tuberculosis: The perspective of developing countries. Int. J. Tuberc. Lung Dis. 1998, 2, 778–783. [Google Scholar]
- Kanade, S.; Nataraj, G.; Ubale, M.; Mehta, P. Fluorescein diacetate vital staining for detecting viability of acid-fast bacilli in patients on antituberculosis treatment. Int. J. Mycobacteriol. 2016, 5, 294–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, S.; Sherman, J.M.; Bravard, M.A.; Valencia, T.; Gilman, R.H.; Evans, C.A. Clinical evaluation of tuberculosis viability microscopy for assessing treatment response. Clin. Infect. Dis. 2015, 60, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.J.; Chihota, V.N.; van der Meulen, M.; Fourie, P.B.; Fielding, K.L.; Grant, A.D.; Dorman, S.E.; Churchyard, G.J. “Proof-of-concept” evaluation of an automated sputum smear microscopy system for tuberculosis diagnosis. PLoS ONE 2012, 7, e50173. [Google Scholar] [CrossRef] [PubMed]
- Rageade, F.; Picot, N.; Blanc-Michaud, A.; Chatellier, S.; Mirande, C.; Fortin, E.; van Belkum, A. Performance of solid and liquid culture media for the detection of Mycobacterium tuberculosis in clinical materials: Meta-analysis of recent studies. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 867–870. [Google Scholar] [CrossRef]
- Chien, H.P.; Yu, M.C.; Wu, M.H.; Lin, T.P.; Luh, K.T. Comparison of the BACTEC MGIT 960 with Löwenstein-Jensen medium for recovery of mycobacteria from clinical specimens. Int. J. Tuberc. Lung Dis. 2000, 4, 866–870. [Google Scholar]
- Hassan, A.A.; Khan, I.U.H.; Ganz, S.; Wehrend, A.; Failing, K.; Eisenberg, T.; Abdulmawjood, A.; Bülte, M. Assessing efficacy of N-Acetyl-l-Cysteine-Sodium Hydroxide on bacterial viability and enhanced recovery of Mycobacterium avium subsp. paratuberculosis from bovine colostrum. J. Microbiol. Methods 2020, 175, 105968. [Google Scholar] [CrossRef]
- Procop, G.W. Laboratory Diagnosis and Susceptibility Testing for Mycobacterium tuberculosis. Microbiol. Spectr. 2016, 4, 45–58. [Google Scholar] [CrossRef]
- Orikiriza, P.; Nyehangane, D.; Atwine, D.; Kisakye, J.J.; Kassaza, K.; Amumpaire, J.M.; Boum, Y., 2nd. Evaluation of the SD Bioline TB Ag MPT64 test for identification of Mycobacterium tuberculosis complex from liquid cultures in Southwestern Uganda. Afr. J. Lab. Med. 2017, 6, 383. [Google Scholar] [CrossRef]
- Brent, A.J.; Mugo, D.; Musyimi, R.; Mutiso, A.; Morpeth, S.; Levin, M.; Scott, J.A. Performance of the MGIT TBc identification test and meta-analysis of MPT64 assays for identification of the Mycobacterium tuberculosis complex in liquid culture. J. Clin. Microbiol. 2011, 49, 4343–4346. [Google Scholar] [CrossRef]
- Oommen, S.; Banaji, N. Laboratory diagnosis of tuberculosis: Advances in technology and drug susceptibility testing. Indian J. Med. Microbiol. 2017, 35, 323–331. [Google Scholar] [CrossRef]
- Scarparo, C.; Ricordi, P.; Ruggiero, G.; Piccoli, P. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460TB method. J. Clin. Microbiol. 2004, 42, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Katoch, C.D.S.; Kumar, M.; Dhole, T.N.; Sharma, Y.K. Evaluation of Microscopic observation drug susceptibility (MODS) assay as a rapid, sensitive and inexpensive test for detection of tuberculosis and multidrug resistant tuberculosis. Med. J. Armed Forces India 2019, 75, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Ardizzoni, E.; Mulders, W.; Kotrikadze, T.; Aspindzelashvili, R.; Goginashvili, L.; Pangtey, H.; Varaine, F.; Bastard, M.; Rigouts, L.; de Jong, B.C. The thin-layer agar method for direct phenotypic detection of multi- and extensively drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2015, 19, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Portaels, F.; Palomino, J.C. Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2007, 59, 175–183. [Google Scholar] [CrossRef]
- Kontsevaya, I.; Werngren, J.; Holicka, Y.; Klaos, K.; Tran, A.; Nikolayevskyy, V. Non-commercial phenotypic assays for the detection of Mycobacterium tuberculosis drug resistance: A systematic review. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 415–426. [Google Scholar] [CrossRef]
- Shah, N.S.; Moodley, P.; Babaria, P.; Moodley, S.; Ramtahal, M.; Richardson, J.; Heysell, S.; Li, X.; Moll, A.; Friedland, G.; et al. Rapid diagnosis of tuberculosis and multidrug resistance by the microscopic-observation drug-susceptibility assay. Am. J. Respir. Crit. Care Med. 2011, 183, 1427–1433. [Google Scholar] [CrossRef]
- Venter, R.; Derendinger, B.; de Vos, M.; Pillay, S.; Dolby, T.; Simpson, J.; Kitchin, N.; Ruiters, A.; van Helden, P.D.; Warren, R.M.; et al. Mycobacterial genomic DNA from used Xpert MTB/RIF cartridges can be utilised for accurate second-line genotypic drug susceptibility testing and spoligotyping. Sci. Rep. 2017, 7, 14854. [Google Scholar] [CrossRef]
- Lawn, S.D.; Nicol, M.P. Xpert® MTB/RIF assay: Development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol. 2011, 6, 1067–1082. [Google Scholar] [CrossRef]
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 2010, 363, 1005–1015. [Google Scholar] [CrossRef]
- Kilaru, S.C.; Chenimilla, N.P.; Syed, U.; Momin, K.; Kilaru, H.; Patil, E.; Nerurkar, V. Role of Xpert MTB/RIF in Bronchoalveolar lavage fluid of sputum-scarce, suspected Pulmonary TB patients. J. Clin. Tuberc. Other Mycobact. Dis. 2019, 14, 7–11. [Google Scholar] [CrossRef]
- Barnard, D.A.; Irusen, E.M.; Bruwer, J.W.; Plekker, D.; Whitelaw, A.C.; Deetlefs, J.D.; Koegelenberg, C.F. The utility of Xpert MTB/RIF performed on bronchial washings obtained in patients with suspected pulmonary tuberculosis in a high prevalence setting. BMC Pulm. Med. 2015, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ji, Y.; Martinez, L.; Lu, W.; Shi, X.; Wang, J.; Zeng, Y. Combined tests with Xpert MTB/RIF assay with bronchoalveolar lavage fluid increasing the diagnostic performance of smear-negative pulmonary tuberculosis in Eastern China. Epidemiol. Infect. 2020, 149, e5. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.C.; Ray, A.; Soneja, M.; Khanna, A.; Sinha, S. Evaluation of Xpert(®)Mycobacterium tuberculosis/rifampin in sputum-smear negative and sputum-scarce patients with pulmonary tuberculosis using bronchoalveolar lavage fluid. Lung India Off. Organ Indian Chest Soc. 2018, 35, 295–300. [Google Scholar] [CrossRef]
- D’Souza, D.T.; Mistry, N.F.; Vira, T.S.; Dholakia, Y.; Hoffner, S.; Pasvol, G.; Nicol, M.; Wilkinson, R.J. High levels of multidrug resistant tuberculosis in new and treatment-failure patients from the Revised National Tuberculosis Control Programme in an urban metropolis (Mumbai) in Western India. BMC Public Health 2009, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Theron, G.; Venter, R.; Calligaro, G.; Smith, L.; Limberis, J.; Meldau, R.; Chanda, D.; Esmail, A.; Peter, J.; Dheda, K. Xpert MTB/RIF Results in Patients With Previous Tuberculosis: Can We Distinguish True From False Positive Results? Clin. Infect. Dis. 2016, 62, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, S.; Simmons, A.M.; Rowneki, M.; Parmar, H.; Cao, Y.; Ryan, J.; Banada, P.P.; Deshpande, S.; Shenai, S.; Gall, A.; et al. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. mBio 2017, 8, e00812-17. [Google Scholar] [CrossRef]
- Horne, D.J.; Kohli, M.; Zifodya, J.S.; Schiller, I.; Dendukuri, N.; Tollefson, D.; Schumacher, S.G.; Ochodo, E.A.; Pai, M.; Steingart, K.R. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 2019, 6, Cd009593. [Google Scholar] [CrossRef]
- World Health Organization. WHO Meeting Report of a Technical Expert Consultation: Non-Inferiority Analysis of Xpert MTB/RIF Ultra Compared to Xpert MTB/RIF. Available online: https://apps.who.int/iris/bitstream/handle/10665/254792/WHO-HTM-TB-2017.04-eng.pdf?sequence=1&isAllowed=y (accessed on 23 August 2022).
- The Foundation for Innovative New Diagnostics. New Rapid Molecular Test for Tuberculosis Can Simultaneously Detect Resistance to First- and Second-Line Drugs. Available online: https://www.finddx.org/newsroom/pr-16jul20/ (accessed on 23 August 2022).
- Iwamoto, T.; Sonobe, T.; Hayashi, K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol. 2003, 41, 2616–2622. [Google Scholar] [CrossRef]
- Phetsuksiri, B.; Klayut, W.; Rudeeaneksin, J.; Srisungngam, S.; Bunchoo, S.; Toonkomdang, S.; Wongchai, T.; Nakajima, C.; Suzuki, Y. The performance of an in-house loop-mediated isothermal amplification for the rapid detection of Mycobacterium tuberculosis in sputum samples in comparison with Xpert MTB/RIF, microscopy and culture. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e36. [Google Scholar] [CrossRef]
- World Health Organization. The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance. Available online: https://apps.who.int/iris/bitstream/handle/10665/249154/9789241511186-eng.pdf?sequence=1&isAllowed=y (accessed on 22 September 2022).
- Rossau, R.; Traore, H.; De Beenhouwer, H.; Mijs, W.; Jannes, G.; De Rijk, P.; Portaels, F. Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob. Agents Chemother. 1997, 41, 2093–2098. [Google Scholar] [CrossRef]
- Crudu, V.; Stratan, E.; Romancenco, E.; Allerheiligen, V.; Hillemann, A.; Moraru, N. First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances. J. Clin. Microbiol. 2012, 50, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Jing, W.; Zhang, Y.; Duan, H.; Huang, H.; Chu, N. Performance of the MTBDRsl Line probe assay for rapid detection of resistance to second-line anti-tuberculosis drugs and ethambutol in China. Diagn. Microbiol. Infect. Dis. 2017, 89, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Ke, Z.; Shi, X.; Liu, S.; Tang, B.; Wang, J.; Huang, H. Diagnosis of Drug Resistance to Fluoroquinolones, Amikacin, Capreomycin, Kanamycin and Ethambutol with Genotype MTBDRsl Assay: A Meta-Analysis. Ann. Clin. Lab. Sci. 2015, 45, 533–544. [Google Scholar] [PubMed]
- Nikam, C.; Jagannath, M.; Narayanan, M.M.; Ramanabhiraman, V.; Kazi, M.; Shetty, A.; Rodrigues, C. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: A near-care approach. PLoS ONE 2013, 8, e51121. [Google Scholar] [CrossRef] [PubMed]
- Georghiou, S.B.; Gomathi, N.S.; Rajendran, P.; Nagalakshmi, V.; Prabakaran, L.; Prem Kumar, M.M.; Macé, A.; Tripathy, S.; Ruhwald, M.; Schumacher, S.G.; et al. Accuracy of the Truenat MTB-RIF Dx assay for detection of rifampicin resistance-associated mutations. Tuberculosis 2021, 127, 102064. [Google Scholar] [CrossRef]
- MacLean, E.; Kohli, M.; Weber, S.F.; Suresh, A.; Schumacher, S.G.; Denkinger, C.M.; Pai, M. Advances in Molecular Diagnosis of Tuberculosis. J. Clin. Microbiol. 2020, 58, e01582-19. [Google Scholar] [CrossRef]
- Steingart, K.R.; Flores, L.L.; Dendukuri, N.; Schiller, I.; Laal, S.; Ramsay, A.; Hopewell, P.C.; Pai, M. Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: An updated systematic review and meta-analysis. PLoS Med. 2011, 8, e1001062. [Google Scholar] [CrossRef]
- Strohmeier, G.R.; Fenton, M.J. Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect. 1999, 1, 709–717. [Google Scholar] [CrossRef]
- Li, Z.; Tong, X.; Liu, S.; Yue, J.; Fan, H. The Value of FujiLAM in the Diagnosis of Tuberculosis: A Systematic Review and Meta-Analysis. Front. Public Health 2021, 9, 757133. [Google Scholar] [CrossRef]
- Scheynius, A.; Klareskog, L.; Forsum, U. In situ identification of T lymphocyte subsets and HLA-DR expressing cells in the human skin tuberculin reaction. Clin. Exp. Immunol. 1982, 49, 325–330. [Google Scholar]
- Kowalewicz-Kulbat, M.; Szpakowski, P.; Locht, C.; Biet, F.; Kaplonek, P.; Krawczyk, K.T.; Pestel, J.; Rudnicka, W. Tuberculin skin test reaction is related to memory, but not naive CD4(+) T cell responses to mycobacterial stimuli in BCG-vaccinated young adults. Vaccine 2018, 36, 4566–4577. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.; Drobniewski, F.; Southern, J.; Sitch, A.J.; Jackson, C.; Lipman, M.; Deeks, J.J.; Griffiths, C.; Bothamley, G.; Lynn, W.; et al. Prognostic value of interferon-γ release assays and tuberculin skin test in predicting the development of active tuberculosis (UK PREDICT TB): A prospective cohort study. Lancet Infect. Dis. 2018, 18, 1077–1087. [Google Scholar] [CrossRef]
- Farhat, M.; Greenaway, C.; Pai, M.; Menzies, D. False-positive tuberculin skin tests: What is the absolute effect of BCG and non-tuberculous mycobacteria? Int. J. Tuberc. Lung Dis. 2006, 10, 1192–1204. [Google Scholar] [PubMed]
- Gao, L.; Jin, Q. Differences in BCG vaccination and tuberculin skin-test positivity—Authors’ reply. Lancet Infect. Dis. 2015, 15, 1003–1005. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lim, J.E.; Lee, H.J.; Kim, Y.M.; Cho, S.N.; Kim, S.K.; Chang, J.; Kang, Y.A. Questionable role of interferon-γ assays for smear-negative pulmonary TB in immunocompromised patients. J. Infect. 2012, 64, 188–196. [Google Scholar] [CrossRef]
- Ferguson, T.W.; Tangri, N.; Macdonald, K.; Hiebert, B.; Rigatto, C.; Sood, M.M.; Shaw, S.; Lerner, B.; Xu, Y.; Mahmud, S.; et al. The diagnostic accuracy of tests for latent tuberculosis infection in hemodialysis patients: A systematic review and meta-analysis. Transplantation 2015, 99, 1084–1091. [Google Scholar] [CrossRef]
- Pennington, K.M.; Kennedy, C.C.; Chandra, S.; Lauzardo, M.; Brito, M.O.; Griffith, D.E.; Seaworth, B.J.; Escalante, P. Management and diagnosis of tuberculosis in solid organ transplant candidates and recipients: Expert survey and updated review. J. Clin. Tuberc. Other Mycobact. Dis. 2018, 11, 37–46. [Google Scholar] [CrossRef]
- Menzies, D.; Pai, M.; Comstock, G. Meta-analysis: New tests for the diagnosis of latent tuberculosis infection: Areas of uncertainty and recommendations for research. Ann. Intern. Med. 2007, 146, 340–354. [Google Scholar] [CrossRef]
- Metcalfe, J.Z.; Everett, C.K.; Steingart, K.R.; Cattamanchi, A.; Huang, L.; Hopewell, P.C.; Pai, M. Interferon-γ release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: Systematic review and meta-analysis. J. Infect. Dis. 2011, 204 (Suppl. 4), S1120–S1129. [Google Scholar] [CrossRef]
- Ling, D.I.; Pai, M.; Davids, V.; Brunet, L.; Lenders, L.; Meldau, R.; Calligaro, G.; Allwood, B.; van Zyl-Smit, R.; Peter, J.; et al. Are interferon-γ release assays useful for diagnosing active tuberculosis in a high-burden setting? Eur. Respir. J. 2011, 38, 649–656. [Google Scholar] [CrossRef]
- Sollai, S.; Galli, L.; de Martino, M.; Chiappini, E. Systematic review and meta-analysis on the utility of Interferon-gamma release assays for the diagnosis of Mycobacterium tuberculosis infection in children: A 2013 update. BMC Infect. Dis. 2014, 14 (Suppl. 1), S6. [Google Scholar] [CrossRef] [PubMed]
- Detjen, A.K.; Keil, T.; Roll, S.; Hauer, B.; Mauch, H.; Wahn, U.; Magdorf, K. Interferon-gamma release assays improve the diagnosis of tuberculosis and nontuberculous mycobacterial disease in children in a country with a low incidence of tuberculosis. Clin. Infect. Dis. 2007, 45, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, D.; Carrara, S.; Butera, O.; Bizzoni, F.; Casetti, R.; Girardi, E.; Goletti, D. Response to region of difference 1 (RD1) epitopes in human immunodeficiency virus (HIV)-infected individuals enrolled with suspected active tuberculosis: A pilot study. Clin. Exp. Immunol. 2007, 150, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Campainha, S.; Gomes, T.; Carvalho, A.; Duarte, R. Negative predictive value of TST and IGRA in anti-TNF treated patients. Eur. Respir. J. 2012, 40, 790–791. [Google Scholar] [CrossRef] [PubMed]
- Brodie, D.; Lederer, D.J.; Gallardo, J.S.; Trivedi, S.H.; Burzynski, J.N.; Schluger, N.W. Use of an interferon-gamma release assay to diagnose latent tuberculosis infection in foreign-born patients. Chest 2008, 133, 869–874. [Google Scholar] [CrossRef]
- Dorman, S.E.; Belknap, R.; Graviss, E.A.; Reves, R.; Schluger, N.; Weinfurter, P.; Wang, Y.; Cronin, W.; Hirsch-Moverman, Y.; Teeter, L.D.; et al. Interferon-γ release assays and tuberculin skin testing for diagnosis of latent tuberculosis infection in healthcare workers in the United States. Am. J. Respir. Crit. Care Med. 2014, 189, 77–87. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, S.J.; Kim, H.B.; Kim, N.J.; Oh, M.D.; Choe, K.W. Diagnostic usefulness of a T-cell based assay for extrapulmonary tuberculosis. Arch. Intern. Med. 2007, 167, 2255–2259. [Google Scholar] [CrossRef]
- Dheda, K.; van Zyl Smit, R.; Badri, M.; Pai, M. T-cell interferon-gamma release assays for the rapid immunodiagnosis of tuberculosis: Clinical utility in high-burden vs. low-burden settings. Curr. Opin. Pulm. Med. 2009, 15, 188–200. [Google Scholar] [CrossRef]
- Janssens, J.P.; Roux-Lombard, P.; Perneger, T.; Metzger, M.; Vivien, R.; Rochat, T. Quantitative scoring of an interferon-gamma assay for differentiating active from latent tuberculosis. Eur. Respir. J. 2007, 30, 722–728. [Google Scholar] [CrossRef]
- Ling, D.I.; Nicol, M.P.; Pai, M.; Pienaar, S.; Dendukuri, N.; Zar, H.J. Incremental value of T-SPOT.TB for diagnosis of active pulmonary tuberculosis in children in a high-burden setting: A multivariable analysis. Thorax 2013, 68, 860–866. [Google Scholar] [CrossRef]
- Pinto, L.M.; Grenier, J.; Schumacher, S.G.; Denkinger, C.M.; Steingart, K.R.; Pai, M. Immunodiagnosis of tuberculosis: State of the art. Med. Princ. Pract. 2012, 21, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hou, H.Y.; Wu, S.J.; Zhu, Q.; Huang, M.; Yin, B.; Huang, J.; Pan, Y.Y.; Mao, L.; Sun, Z.Y. Using the TBAg/PHA ratio in the T-SPOT(®).TB assay to distinguish TB disease from LTBI in an endemic area. Int. J. Tuberc. Lung Dis. 2016, 20, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hou, H.; Zhou, H.; Wu, S.; Mao, L.; Huang, M.; Yin, B.; Huang, J.; Sun, Z. Use of TBAg/PHA ratio in distinguishing tuberculoma from cancer in solitary pulmonary nodule or mass. Clin. Respir. J. 2018, 12, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yu, J.; Zhou, Y.; Luo, Y.; Wu, S.; Huang, M.; Yin, B.; Huang, J.; Mao, L.; Sun, Z. The Use of TB-Specific Antigen/Phytohemagglutinin Ratio for Diagnosis and Treatment Monitoring of Extrapulmonary Tuberculosis. Front. Immunol. 2018, 9, 1047. [Google Scholar] [CrossRef] [PubMed]
- Bosco, M.J.; Hou, H.; Mao, L.; Wu, X.; Ramroop, K.D.; Lu, Y.; Mao, L.; Zhou, Y.; Sun, Z.; Wang, F. The performance of the TBAg/PHA ratio in the diagnosis of active TB disease in immunocompromised patients. Int. J. Infect. Dis. 2017, 59, 55–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Du, J.; Hou, H.Y.; Lu, Y.F.; Yu, J.; Mao, L.Y.; Wang, F.; Sun, Z.Y. Application of ImmunoScore Model for the Differentiation between Active Tuberculosis and Latent Tuberculosis Infection as Well as Monitoring Anti-tuberculosis Therapy. Front. Cell. Infect. Microbiol. 2017, 7, 457. [Google Scholar] [CrossRef]
- Wu, X.; Huang, H.; Hou, H.; Shen, G.; Yu, J.; Zhou, Y.; Bosco, M.J.; Mao, L.; Wang, F.; Sun, Z. Diagnostic Performance of a 5-Marker Predictive Model for Differential Diagnosis Between Intestinal Tuberculosis and Crohn’s Disease. Inflamm. Bowel Dis. 2018, 24, 2452–2460. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Liu, G.; Wu, X.; Wan, R.; Hou, H.; Wu, S.; Sun, Z.; Kuang, H.; Wang, F. Using TBAg/PHA Ratio for Monitoring TB Treatment: A Prospective Multicenter Study. J. Clin. Med. 2022, 11, 3780. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, G.; Lin, Q.; Mao, L.; Xue, Y.; Yuan, X.; Ouyang, R.; Wu, S.; Yu, J.; Zhou, Y.; et al. Combination of mean spot sizes of ESAT-6 spot-forming cells and modified tuberculosis-specific antigen/phytohemagglutinin ratio of T-SPOT.TB assay in distinguishing between active tuberculosis and latent tuberculosis infection. J. Infect. 2020, 81, 81–89. [Google Scholar] [CrossRef]
- Luo, Y.; Tan, Y.; Yu, J.; Lin, Q.; Hou, H.; Mao, L.; Liu, W.; Wang, F.; Sun, Z. The Performance of Pleural Fluid T-SPOT.TB Assay for Diagnosing Tuberculous Pleurisy in China: A Two-Center Prospective Cohort Study. Front. Cell. Infect. Microbiol. 2019, 9, 10. [Google Scholar] [CrossRef]
- Luo, Y.; Xue, Y.; Guo, X.; Lin, Q.; Tang, G.; Yu, J.; Mao, L.; Wang, F.; Sun, Z. Diagnostic value of pleural fluid T-SPOT for tuberculous pleurisy: An updated meta-analysis. Tuberculosis 2020, 122, 101941. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xue, Y.; Mao, L.; Lin, Q.; Tang, G.; Song, H.; Wang, F.; Sun, Z. Diagnostic Value of T-SPOT.TB Assay for Tuberculous Peritonitis: A Meta-Analysis. Front. Med. 2020, 7, 585180. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xue, Y.; Guo, X.; Lin, Q.; Mao, L.; Tang, G.; Song, H.; Wang, F.; Sun, Z. Diagnostic Accuracy of T-SPOT.TB Assay for Tuberculous Meningitis: An Updated Meta-Analysis. Front. Neurol. 2020, 11, 866. [Google Scholar] [CrossRef] [PubMed]
- Lalvani, A.; Pareek, M. Interferon gamma release assays: Principles and practice. Enferm. Infecc. Microbiol. Clin. 2010, 28, 245–252. [Google Scholar] [CrossRef]
- Shafeque, A.; Bigio, J.; Hogan, C.A.; Pai, M.; Banaei, N. Fourth-Generation QuantiFERON-TB Gold Plus: What Is the Evidence? J. Clin. Microbiol. 2020, 58, e01950-19. [Google Scholar] [CrossRef]
- Venkatappa, T.K.; Punnoose, R.; Katz, D.J.; Higgins, M.P.; Banaei, N.; Graviss, E.A.; Belknap, R.W.; Ho, C.S. Comparing QuantiFERON-TB Gold Plus with Other Tests To Diagnose Mycobacterium tuberculosis Infection. J. Clin. Microbiol. 2019, 57, e00985-19. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.W.; Gaur, R.L.; Tien, S.S.; Spangler, M.; Pai, M.; Banaei, N. Evaluation of QuantiFERON-TB Gold-Plus in Health Care Workers in a Low-Incidence Setting. J. Clin. Microbiol. 2017, 55, 1650–1657. [Google Scholar] [CrossRef]
- Theel, E.S.; Hilgart, H.; Breen-Lyles, M.; McCoy, K.; Flury, R.; Breeher, L.E.; Wilson, J.; Sia, I.G.; Whitaker, J.A.; Clain, J.; et al. Comparison of the QuantiFERON-TB Gold Plus and QuantiFERON-TB Gold In-Tube Interferon Gamma Release Assays in Patients at Risk for Tuberculosis and in Health Care Workers. J. Clin. Microbiol. 2018, 56, e00614-18. [Google Scholar] [CrossRef]
- Wang, F.; Liu, K.; Peng, J.; Luo, Y.; Tang, G.; Lin, Q.; Hou, H.; Liu, W.; Wang, J.; Fang, Z.; et al. Combination of Xpert MTB/RIF and TBAg/PHA Ratio for Prompt Diagnosis of Active Tuberculosis: A Two-Center Prospective Cohort Study. Front. Med. 2020, 7, 119. [Google Scholar] [CrossRef]
- Lee, R.S.; Pai, M. Real-Time Sequencing of Mycobacterium tuberculosis: Are We There Yet? J. Clin. Microbiol. 2017, 55, 1249–1254. [Google Scholar] [CrossRef]
- Walker, T.M.; Kohl, T.A.; Omar, S.V.; Hedge, J.; Del Ojo Elias, C.; Bradley, P.; Iqbal, Z.; Feuerriegel, S.; Niehaus, K.E.; Wilson, D.J.; et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. Lancet Infect. Dis. 2015, 15, 1193–1202. [Google Scholar] [CrossRef]
- World Health Organization. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium tuberculosis Complex: Technical Guide. Available online: https://apps.who.int/iris/bitstream/handle/10665/274443/WHO-CDS-TB-2018.19-eng.pdf?sequence=1&isAllowed=y (accessed on 23 August 2022).
- Meehan, C.J.; Goig, G.A.; Kohl, T.A.; Verboven, L.; Dippenaar, A.; Ezewudo, M.; Farhat, M.R.; Guthrie, J.L.; Laukens, K.; Miotto, P.; et al. Whole genome sequencing of Mycobacterium tuberculosis: Current standards and open issues. Nat. Rev. Microbiol. 2019, 17, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.; Halse, T.A.; Lapierre, P.; Shudt, M.; Kohlerschmidt, D.; Van Roey, P.; Limberger, R.; Taylor, J.; Escuyer, V.; Musser, K.A. Comprehensive Whole-Genome Sequencing and Reporting of Drug Resistance Profiles on Clinical Cases of Mycobacterium tuberculosis in New York State. J. Clin. Microbiol. 2017, 55, 1871–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, G.L.; MacCannell, D.R.; Taylor, J.; Carleton, H.A.; Neuhaus, E.B.; Bradbury, R.S.; Posey, J.E.; Gwinn, M. Pathogen Genomics in Public Health. N. Engl. J. Med. 2019, 381, 2569–2580. [Google Scholar] [CrossRef]
- Balada-Llasat, J.M.; Kamboj, K.; Pancholi, P. Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J. Clin. Microbiol. 2013, 51, 2875–2879. [Google Scholar] [CrossRef]
- Alcolea-Medina, A.; Fernandez, M.T.C.; Montiel, N.; García, M.P.L.; Sevilla, C.D.; North, N.; Lirola, M.J.M.; Wilks, M. An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (Matrix-Assisted Laser Desorption- Ionization mass spectrometry). Sci. Rep. 2019, 9, 20216. [Google Scholar] [CrossRef]
- Shitikov, E.; Ilina, E.; Chernousova, L.; Borovskaya, A.; Rukin, I.; Afanas’ev, M.; Smirnova, T.; Vorobyeva, A.; Larionova, E.; Andreevskaya, S.; et al. Mass spectrometry based methods for the discrimination and typing of mycobacteria. Infect. Genet. Evol. 2012, 12, 838–845. [Google Scholar] [CrossRef]
- Tudó, G.; Monté, M.R.; Vergara, A.; López, A.; Hurtado, J.C.; Ferrer-Navarro, M.; Vila, J.; Gonzalez-Martin, J. Implementation of MALDI-TOF MS technology for the identification of clinical isolates of Mycobacterium spp. in mycobacterial diagnosis. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1527–1532. [Google Scholar] [CrossRef]
- Zingue, D.; Flaudrops, C.; Drancourt, M. Direct matrix-assisted laser desorption ionisation time-of-flight mass spectrometry identification of mycobacteria from colonies. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1983–1987. [Google Scholar] [CrossRef]
- Gonzalo, X.; Broda, A.; Drobniewski, F.; Larrouy-Maumus, G. Performance of lipid fingerprint-based MALDI-ToF for the diagnosis of mycobacterial infections. Clin. Microbiol. Infect. 2021, 27, 912.e1–912.e5. [Google Scholar] [CrossRef]
- Mao, L.; LaCourse, S.M.; Kim, S.; Liu, C.; Ning, B.; Bao, D.; Fan, J.; Lyon, C.J.; Sun, Z.; Nachman, S.; et al. Evaluation of a serum-based antigen test for tuberculosis in HIV-exposed infants: A diagnostic accuracy study. BMC Med. 2021, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jia, X.; Lei, H.; Wen, X.; Hao, Y.; Ma, Y.; Ye, J.; Wang, C.; Gao, J. Screening and identification of serum biomarkers of osteoarticular tuberculosis based on mass spectrometry. J. Clin. Lab. Anal. 2020, 34, e23297. [Google Scholar] [CrossRef] [PubMed]
- Lopes, U.K.; Valiati, J.F. Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput. Biol. Med. 2017, 89, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, F.S.; Torres, R.C.; Pinto, J.V.; Kritski, A.L.; Seixas, J.M.; Mello, F.C. Development of two artificial neural network models to support the diagnosis of pulmonary tuberculosis in hospitalized patients in Rio de Janeiro, Brazil. Med. Biol. Eng. Comput. 2016, 54, 1751–1759. [Google Scholar] [CrossRef]
- Jaeger, S.; Juarez-Espinosa, O.H.; Candemir, S.; Poostchi, M.; Yang, F.; Kim, L.; Ding, M.; Folio, L.R.; Antani, S.; Gabrielian, A.; et al. Detecting drug-resistant tuberculosis in chest radiographs. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1915–1925. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, R.; Shahzad, S.; Anbreen, N.; Bilal, M.; Khan, A. Analysis of tuberculosis disease through Raman spectroscopy and machine learning. Photodiagnosis Photodyn. Ther. 2018, 24, 286–291. [Google Scholar] [CrossRef]
- Mohamed, E.I.; Mohamed, M.A.; Moustafa, M.H.; Abdel-Mageed, S.M.; Moro, A.M.; Baess, A.I.; El-Kholy, S.M. Qualitative analysis of biological tuberculosis samples by an electronic nose-based artificial neural network. Int. J. Tuberc. Lung Dis. 2017, 21, 810–817. [Google Scholar] [CrossRef]
- Kuok, C.P.; Horng, M.H.; Liao, Y.M.; Chow, N.H.; Sun, Y.N. An effective and accurate identification system of Mycobacterium tuberculosis using convolution neural networks. Microsc. Res. Tech. 2019, 82, 709–719. [Google Scholar] [CrossRef]
- Elveren, E.; Yumuşak, N. Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med. Syst. 2011, 35, 329–332. [Google Scholar] [CrossRef]
- Osamor, V.C.; Azeta, A.A.; Ajulo, O.O. Tuberculosis-Diagnostic Expert System: An architecture for translating patients information from the web for use in tuberculosis diagnosis. Health Inform. J. 2014, 20, 275–287. [Google Scholar] [CrossRef]
- Luo, Y.; Xue, Y.; Song, H.; Tang, G.; Liu, W.; Bai, H.; Yuan, X.; Tong, S.; Wang, F.; Cai, Y.; et al. Machine learning based on routine laboratory indicators promoting the discrimination between active tuberculosis and latent tuberculosis infection. J. Infect. 2022, 84, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Hussain, O.A.; Junejo, K.N. Predicting treatment outcome of drug-susceptible tuberculosis patients using machine-learning models. Inform. Health Soc. Care 2019, 44, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H. EFIS lecture. Immune response to tuberculosis: How to control the most successful pathogen on earth. Immunol. Lett. 2016, 175, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Microscopy | Xpert MTB/RIF | Culture | T-SPOT.TB | |
---|---|---|---|---|
Price | Low | High | Medium | High |
Procedure complexity | Low | Low | High | High |
Sensitivity | Low (for bacterial-positive TB) | High (for bacterial-positive TB) | High (for bacterial-positive TB) | Relatively high (for both bacterial-positive and bacterial-negative TB) |
Specificity | High (in regions with a low incidence of NTM) | High | High | High (for diagnosis of Mtb infection), medium (for diagnosis of active TB in TB-endemic areas) |
Advantages | Fast, simple, inexpensive | Fast, simple, low biosafety risk, detecting one drug resistance | Detecting all drug resistances | Detecting bacterial-negative TB, detecting latent TB infection |
Shortcomings | Low sensitivity, cannot differentiate between live and dead bacilli | Expensive, cannot differentiate between live and dead bacilli | High complexity, long turnaround time, high biosafety risk | Expensive, high complexity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Ai, L.; Wang, X.; Sun, Z.; Wang, F. Review and Updates on the Diagnosis of Tuberculosis. J. Clin. Med. 2022, 11, 5826. https://doi.org/10.3390/jcm11195826
Huang Y, Ai L, Wang X, Sun Z, Wang F. Review and Updates on the Diagnosis of Tuberculosis. Journal of Clinical Medicine. 2022; 11(19):5826. https://doi.org/10.3390/jcm11195826
Chicago/Turabian StyleHuang, Yi, Lin Ai, Xiaochen Wang, Ziyong Sun, and Feng Wang. 2022. "Review and Updates on the Diagnosis of Tuberculosis" Journal of Clinical Medicine 11, no. 19: 5826. https://doi.org/10.3390/jcm11195826
APA StyleHuang, Y., Ai, L., Wang, X., Sun, Z., & Wang, F. (2022). Review and Updates on the Diagnosis of Tuberculosis. Journal of Clinical Medicine, 11(19), 5826. https://doi.org/10.3390/jcm11195826