COVID-19 CPR—Impact of Personal Protective Equipment during a Simulated Cardiac Arrest in Times of the COVID-19 Pandemic: A Prospective Comparative Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Study Design
2.3. Simulator and Scenario
2.4. Personal Protective Equipment (PPE)
2.5. NASA Task Load Index
2.6. Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Participants
3.2. Primary Outcome
3.3. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kundra, P.; Vinayagam, S. COVID-19 cardiopulmonary resuscitation: Guidelines and modifications. J. Anaesthesiol. Clin. Pharm. 2020, 36, S39–S44. [Google Scholar] [CrossRef]
- Nolan, J.P.; Monsieurs, K.G.; Bossaert, L.; Bottiger, B.W.; Greif, R.; Lott, C.; Madar, J.; Olasveengen, T.M.; Roehr, C.C.; Semeraro, F.; et al. European Resuscitation Council COVID-19 guidelines executive summary. Resuscitation 2020, 153, 45–55. [Google Scholar] [CrossRef]
- World Health Organization. Rational Use of Personal Protective Equipment for Coronavirus Disease (COVID-19) and Considerations during Severe Shortages: Interim Guidance, 6 April 2020; WHO/2019-nCov/IPC_PPE_use/2020.3; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Couper, K.; Taylor-Phillips, S.; Grove, A.; Freeman, K.; Osokogu, O.; Court, R.; Mehrabian, A.; Morley, P.T.; Nolan, J.P.; Soar, J.; et al. COVID-19 in cardiac arrest and infection risk to rescuers: A systematic review. Resuscitation 2020, 151, 59–66. [Google Scholar] [CrossRef]
- Lim, Z.J.; Ponnapa Reddy, M.; Afroz, A.; Billah, B.; Shekar, K.; Subramaniam, A. Incidence and outcome of out-of-hospital cardiac arrests in the COVID-19 era: A systematic review and meta-analysis. Resuscitation 2020, 157, 248–258. [Google Scholar] [CrossRef]
- Thapa, S.B.; Kakar, T.S.; Mayer, C.; Khanal, D. Clinical Outcomes of In-Hospital Cardiac Arrest in COVID-19. JAMA Intern. Med. 2021, 181, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Hayek, S.S.; Brenner, S.K.; Azam, T.U.; Shadid, H.R.; Anderson, E.; Berlin, H.; Pan, M.; Meloche, C.; Feroz, R.; OGÇÖHayer, P.; et al. In-hospital cardiac arrest in critically ill patients with COVID-19: Multicenter cohort study. BMJ 2020, 371, m3513. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lu, K.Z.; Yi, B.; Chen, Y. Chest Compression With Personal Protective Equipment During Cardiopulmonary Resuscitation: A Randomized Crossover Simulation Study. Medicine (Baltimore) 2016, 95, e3262. [Google Scholar] [CrossRef]
- Malysz, M.; Smereka, J.; Jaguszewski, M.; Dabrowski, M.; Nadolny, K.; Ruetzler, K.; Ladny, J.; Sterlinski, M.; Filipiak, K.; Szarpak, L. An optimal chest compression technique using personal protective equipment during resuscitation in the COVID-19 pandemic: A randomized crossover simulation study. Kardiol. Pol. (Pol. Heart J.) 2020, 78, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Malysz, M.; Dabrowski, M.; Böttiger, B.W.; Smereka, J.; Kulak, K.; Szarpak, A.; Jaguszewski, M.; Filipiak, K.J.; Ladny, J.R.; Ruetzler, K.; et al. Resuscitation of the patient with suspected/confirmed COVID-19 when wearing personal protective equipment: A randomized multicenter crossover simulation trial. Cardiol. J. 2020, 27, 497–506. [Google Scholar]
- Mormando, G.; Paganini, M.; Alexopoulos, C.; Savino, S.; Bortoli, N.; Pomiato, D.; Graziano, A.; Navalesi, P.; Fabris, F. Life-Saving Procedures Performed While Wearing CBRNe Personal Protective Equipment: A Mannequin Randomized Trial. Simul. Healthc. 2021, 16, e200–e205. [Google Scholar] [CrossRef]
- Rauch, S.; van Veelen, M.J.; Oberhammer, R.; Dal Cappello, T.; Roveri, G.; Gruber, E.; Strapazzon, G. Effect of Wearing Personal Protective Equipment (PPE) on CPR Quality in Times of the COVID-19 Pandemic-A Simulation, Randomised Crossover Trial. J. Clin. Med. 2021, 10, 1728. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, C.H.; Shin, S.D.; Haam, S. Influence of personal protective equipment on the performance of life-saving interventions by emergency medical service personnel. Simulation 2016, 92, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.M.; Kim, S.Y.; Shin, S.D.; Kim, C.H.; Kim, T.H.; Kim, K.Y.; Kim, J.H.; Hong, E.J. Effect of wearing personal protective equipment on cardiopulmonary resuscitation: Focusing on 119 emergency medical technicians. Korean J. Emerg. Med. Serv. 2015, 19, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Tu, X.; Zhou, X.; Yu, J.; Luo, S.; Ma, L.; Liu, C.; Zhao, Y.; Jin, X. Wearing a N95 mask increases rescuer’s fatigue and decreases chest compression quality in simulated cardiopulmonary resuscitation. Am. J. Emerg. Med. 2021, 44, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Suresh, S.; Mathew, R.; Aggarwal, P.; Nayer, J. Impact of personal protective equipment on the effectiveness of chest compression—A systematic review and meta-analysis. Am. J. Emerg. Med. 2021, 39, 190–196. [Google Scholar] [CrossRef]
- Doukas, D.; Arquilla, B.; Halpern, P.; Silverberg, M.; Sinert, R. The Impact of Personal Protection Equipment on Intubation Times. Prehosp. Disaster Med. 2021, 36, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Hunziker, S.; Semmer, N.K.; Tschan, F.; Schuetz, P.; Mueller, B.; Marsch, S. Dynamics and association of different acute stress markers with performance during a simulated resuscitation. Resuscitation 2012, 83, 572–578. [Google Scholar] [CrossRef]
- Cooper, S.; Wakelam, A. Leadership of resuscitation teams: “Lighthouse Leadership”. Resuscitation 1999, 42, 27–45. [Google Scholar] [CrossRef]
- Hunziker, S.; Johansson, A.C.; Tschan, F.; Semmer, N.K.; Rock, L.; Howell, M.D.; Marsch, S. Teamwork and leadership in cardiopulmonary resuscitation. J. Am. Coll. Cardiol. 2011, 57, 2381–2388. [Google Scholar] [CrossRef] [Green Version]
- Arriaga, A.F.; Bader, A.M.; Wong, J.M.; Lipsitz, S.R.; Berry, W.R.; Ziewacz, J.E.; Hepner, D.L.; Boorman, D.J.; Pozner, C.N.; Smink, D.S.; et al. Simulation-Based Trial of Surgical-Crisis Checklists. N. Engl. J. Med. 2013, 368, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.; Kessler, D.; Mackinnon, R.; Chang, T.P.; Nadkarni, V.M.; Hunt, E.A.; Duval-Arnould, J.; Lin, Y.; Cook, D.A.; Pusic, M.; et al. Reporting Guidelines for Health Care Simulation Research: Extensions to the CONSORT and STROBE Statements. Simul. Healthc. 2016, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sellmann, T.; Oendorf, A.; Wetzchewald, D.; Schwager, H.; Thal, S.C.; Marsch, S. The Impact of Withdrawn vs. Agitated Relatives during Resuscitation on Team Workload: A Single-Center Randomised Simulation-Based Study. J. Clin. Med. 2022, 11, 3163. [Google Scholar] [CrossRef] [PubMed]
- Willmes, M.; Sellmann, T.; Semmer, N.; Tschan, F.; Wetzchewald, D.; Schwager, H.; Russo, S.G.; Marsch, S. Impact of family presence during cardiopulmonary resuscitation on team performance and perceived task load: A prospective randomised simulator-based trial. BMJ Open 2022, 12, e056798. [Google Scholar] [CrossRef] [PubMed]
- Zöllner, K.; Sellmann, T.; Wetzchewald, D.; Schwager, H.; Cleff, C.; Thal, S.C.; Marsch, S. U SO CARE—The Impact of Cardiac Ultrasound during Cardiopulmonary Resuscitation: A Prospective Randomized Simulator-Based Trial. J. Clin. Med. 2021, 10, 5218. [Google Scholar] [CrossRef]
- Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Colligan, L.; Potts, H.W.W.; Finn, C.T.; Sinkin, R.A. Cognitive workload changes for nurses transitioning from a legacy system with paper documentation to a commercial electronic health record. Int. J. Med. Inform. 2015, 84, 469–476. [Google Scholar] [CrossRef]
- Kienbacher, C.L.; Grafeneder, J.; Tscherny, K.; Krammel, M.; Fuhrmann, V.; Niederer, M.; Neudorfsky, S.; Herbich, K.; Schreiber, W.; Herkner, H.; et al. The use of personal protection equipment does not impair the quality of cardiopulmonary resuscitation: A prospective triple-cross over randomised controlled non-inferiority trial. Resuscitation 2021, 160, 79–83. [Google Scholar] [CrossRef]
- Kienbacher, C.L.; Grafeneder, J.; Tscherny, K.; Krammel, M.; Fuhrmann, V.; Niederer, M.; Neudorfsky, S.; Herbich, K.; Schreiber, W.; Herkner, H.; et al. The use of personal protection equipment does not negatively affect paramedics’ attention and dexterity: A prospective triple-cross over randomized controlled non-inferiority trial. Scand. J. Trauma Resusc. Emerg. Med. 2022, 30, 2. [Google Scholar] [CrossRef]
- Crowley, C.P.; Salciccioli, J.D.; Kim, E.Y. The association between ACLS guideline deviations and outcomes from in-hospital cardiac arrest. Resuscitation 2020, 153, 65–70. [Google Scholar] [CrossRef]
- Honarmand, K.; Mepham, C.; Ainsworth, C.; Khalid, Z. Adherence to advanced cardiovascular life support (ACLS) guidelines during in-hospital cardiac arrest is associated with improved outcomes. Resuscitation 2018, 129, 76–81. [Google Scholar] [CrossRef]
Control Group (n = 423) | PPE Group (n = 198) | Difference (95% CI) | p | |
---|---|---|---|---|
Start cardiac massage (s) | 12 (8–16) | 12 (8–16) | 0 (−1–1) | 0.49 |
Chest compression rate (strokes/min) | 118 (108–127) | 119 (112–124) | 1(−3–1) | 0.46 |
Change-overs per 2 min (n) | 1.3 (1.3–1.7) | 0.4 (0.3–0.6) | 0.9 (0.9–1.0) | 0.0001 |
AAM completed (CPR cycle) | 2 (1–2) | 2 (2–2) | 0 (0–0) | 0.30 |
Ventilatory rate (breaths/min) | 20 (13–28) | 18 (12–25) | 2 (0–4) | 0.28 |
Time to 1st defibrillation (s) | 67 (48–102) | 86 (67–119) | 19(13–25) | 0.001 |
Time to epinephrine administration (s) | 268 (190–312) | 319 (282–371) | 66 (48–86) | 0.001 |
Time to amiodarone administration (s) | 302 (270–340) | 423 (388–465) | 121 (109–131) | 0.0001 |
No Designated Leadership | Designated Leadership by Team | Designated Leadership by Tutor | p | ||
---|---|---|---|---|---|
Hands-on time (%) | Control | 90 (86–93) | 90 (87–92) | 90 (87–92) | 0.77 |
PPE | 87 (82–91) | 87 (84–89) | 85 (82–89) | ||
Start cardiac massage (s) | Control | 13 (7–16) | 12 (7–16) | 12 (9–16) | 0.84 |
PPE | 12 (8–16) | 12 (9–16) | 11 (7–14) | ||
Chest compression rate (strokes/min) | Control | 118 (108–129) | 118 (106–126) | 117 (110–129) | 0.38 |
PPE | 121 (115–121) | 119 (112–125) | 116 (111–122) | ||
Change-overs per 2 min (n) | Control | 1.3 (1.3–1.7) | 1.4 (1.2–1.7) | 1.3 (1.3–1.7) | 0.31 |
PPE | 0.5 (0.3–0.6) | 0.4 (0.3–0.6) | 0.4 (0.3–0.6) | ||
AAM completed (CPR cycle) | Control | 2 (2–2) | 2 (1–2) | 2 (2–3) | 0.14 |
PPE | 2 (1–2) | 2 (2–2) | 2 (2–2) | ||
Ventilatory rate (breaths/min) | Control | 19 (13–29) | 20 (12–29) | 20 (15–27) | 0.88 |
PPE | 20 (12–29) | 19 (13–27) | 17 (9–21) | ||
Time to 1st defibrillation (s) | Control | 66 (50–101) | 68 (48–99) | 67 (47–107) | 0.16 |
PPE | 86 (65–119) | 80 (67–116) | 96 (74–121) | ||
Time to epinephrine administration (s) | Control | 264 (201–312) | 263 (185–307) | 276 (190–317) | 0.82 |
PPE | 324 (283–348) | 326 (277–392) | 299 (284–373) | ||
Time to amiodarone administration (s) | Control | 298 (262–339) | 301 (276–324) | 306 (276–359) | 0.42 |
PPE | 418 (380–448) | 430 (392–476) | 419 (385–465) | ||
Total task load | Control | 56 (46–70) | 58 (45–69) | 58 (46–68) | 0.63 |
PPE | 63 (56–71) | 62 (51–72) | 63 (52–69) | ||
Mental demand | Control | 75 (60–85) | 70 (55–85) | 70 (55–80) | 0.30 |
PPE | 73 (55–85) | 70 (50–85) | 70 (55–85) | ||
Physical demand | Control | 60 (40–75) | 55 (35–75) | 60 (35–75) | 0.55 |
PPE | 60 (35–85) | 65 (45–75) | 60 (30–75) | ||
Temporal demand | Control | 70 (55–85) | 70 (50–85) | 70 (50–80) | 0.41 |
PPE | 75 (55–85) | 70 (50–85) | 75 (55–85) | ||
Performance | Control | 60 (35–75) | 55 (35–75) | 60 (40–80) | 0.35 |
PPE | 68 (45–85) | 65 (45–75) | 65 (45–75) | ||
Effort | Control | 65 (50–80) | 65 (50–80) | 65 (50–80) | 0.64 |
PPE | 70 (55–80) | 70 (50–80) | 65 (50–75) | ||
Frustration | Control | 55 (30–75) | 55 (35–75) | 55 (30–70) | 0.53 |
PPE | 48 (25–70) | 50 (25–70) | 50 (35–70) |
Control Group (n = 1451) | PPE Group (n = 689) | Difference (95% CI) | p | |
---|---|---|---|---|
Total task load | 57 (44–67) | 63 (53–71) | 6 (5–8) | 0.0001 |
Mental demand | 70 (50–80) | 70 (55–85) | 0 (0–5) | 0.073 |
Physical demand | 55 (35–75) | 60 (35–80) | 5 (0–5) | 0.005 |
Temporal demand | 65 (50–80) | 70 (50–85) | 5 (5–10) | 0.001 |
Performance | 60 (35–75) | 65 (45–80) | 5 (5–10) | 0.001 |
Effort | 60 (50–75) | 65 (50–80) | 5 (0–5) | 0.001 |
Frustration | 50 (30–70) | 50 (25–70) | 0 (0–5) | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellmann, T.; Nur, M.; Wetzchewald, D.; Schwager, H.; Cleff, C.; Thal, S.C.; Marsch, S. COVID-19 CPR—Impact of Personal Protective Equipment during a Simulated Cardiac Arrest in Times of the COVID-19 Pandemic: A Prospective Comparative Trial. J. Clin. Med. 2022, 11, 5881. https://doi.org/10.3390/jcm11195881
Sellmann T, Nur M, Wetzchewald D, Schwager H, Cleff C, Thal SC, Marsch S. COVID-19 CPR—Impact of Personal Protective Equipment during a Simulated Cardiac Arrest in Times of the COVID-19 Pandemic: A Prospective Comparative Trial. Journal of Clinical Medicine. 2022; 11(19):5881. https://doi.org/10.3390/jcm11195881
Chicago/Turabian StyleSellmann, Timur, Maria Nur, Dietmar Wetzchewald, Heidrun Schwager, Corvin Cleff, Serge C. Thal, and Stephan Marsch. 2022. "COVID-19 CPR—Impact of Personal Protective Equipment during a Simulated Cardiac Arrest in Times of the COVID-19 Pandemic: A Prospective Comparative Trial" Journal of Clinical Medicine 11, no. 19: 5881. https://doi.org/10.3390/jcm11195881
APA StyleSellmann, T., Nur, M., Wetzchewald, D., Schwager, H., Cleff, C., Thal, S. C., & Marsch, S. (2022). COVID-19 CPR—Impact of Personal Protective Equipment during a Simulated Cardiac Arrest in Times of the COVID-19 Pandemic: A Prospective Comparative Trial. Journal of Clinical Medicine, 11(19), 5881. https://doi.org/10.3390/jcm11195881