Age- and Severity-Associated Humoral Immunity Response in COVID-19 Patients: A Cohort Study from Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hospitalized COVID-19 Patients
2.2. SARS-CoV-2 Proteome Microarray Construction
2.3. SARS-CoV-2-Specific Antibody Response Analysis
2.4. SARS-CoV-2 Proteome Microarray Data Analysis
2.5. The Collection of Clinical Parameters
2.6. Quantification and Statistical Analysis
3. Results
3.1. Characteristics of the COVID-19 Patients in the Cohort
3.2. Severity-Associated SARS-CoV-2-Specific Antibody Responses in Different Age Groups
3.3. Antibody Responses for S1-113 IgM and NSP7 IgM Are Protective Factors for Severe COVID-19 Patients
3.4. The Severity-Associated Clinical Parameters in Different Age Groups
3.5. The Clinical Parameters Have Different Diagnostic Abilities in Different Age Groups
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Rokni, M.; Ghasemi, V.; Tavakoli, Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev. Med. Virol. 2020, 30, e2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahern, D.J.; Ai, Z.; Ainsworth, M.; Allan, C.; Allcock, A.; Angus, B.; Ansari, M.A.; Arancibia-Cárcamo, C.V.; Aschenbrenner, D.; Attar, M.; et al. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 2022, 185, 916–938.e58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S.; et al. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020, 583, 437–440. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, B.; Liang, S.; Yang, J.W.; Lu, H.W.; Chai, Y.H.; Wang, L.; Zhang, L.; Li, Q.H.; Zhao, L.; et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur. Respir. J. 2020, 55, 2001112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahase, E. COVID-19: Death rate is 0.66% and increases with age, study estimates. BMJ 2020, 369, m1327. [Google Scholar] [CrossRef] [Green Version]
- Bonanad, C.; Garcia-Blas, S.; Tarazona-Santabalbina, F.; Sanchis, J.; Bertomeu-Gonzalez, V.; Facila, L.; Ariza, A.; Nunez, J.; Cordero, A. The Effect of Age on Mortality in Patients with COVID-19: A Meta-Analysis with 611,583 Subjects. J. Am. Med. Dir. Assoc. 2020, 21, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Romero Starke, K.; Reissig, D.; Petereit-Haack, G.; Schmauder, S.; Nienhaus, A.; Seidler, A. The isolated effect of age on the risk of COVID-19 severe outcomes: A systematic review with meta-analysis. BMJ Glob. Health 2021, 6, e006434. [Google Scholar] [CrossRef]
- Biswas, M.; Rahaman, S.; Biswas, T.K.; Haque, Z.; Ibrahim, B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology 2020, 64, 36–47. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Why Does the Severity of COVID-19 Differ with Age?: Understanding the Mechanisms Underlying the Age Gradient in Outcome Following SARS-CoV-2 Infection. Pediatr. Infect. Dis. J. 2022, 41, e36–e45. [Google Scholar] [CrossRef]
- Zheng, J.; Deng, Y.; Zhao, Z.; Mao, B.; Lu, M.; Lin, Y.; Huang, A. Characterization of SARS-CoV-2-specific humoral immunity and its potential applications and therapeutic prospects. Cell Mol. Immunol. 2022, 19, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Ma, M.L.; Shi, D.W.; Li, Y.; Hong, W.; Lai, D.Y.; Xue, J.B.; Jiang, H.W.; Zhang, H.N.; Qi, H.; Meng, Q.F.; et al. Systematic profiling of SARS-CoV-2-specific IgG responses elicited by an inactivated virus vaccine identifies peptides and proteins for predicting vaccination efficacy. Cell Discov. 2021, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Z.; Lei, Q.; Lai, D.Y.; Hou, H.; Jiang, H.W.; Zheng, Y.X.; Wang, X.N.; Wu, J.; Ma, M.L.; et al. Antibody landscape against SARS-CoV-2 reveals significant differences between non-structural/accessory and structural proteins. Cell Rep. 2021, 36, 109391. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Yu, C.Z.; Li, Y.; Hou, H.Y.; Xu, Z.W.; Yao, Z.J.; Zhang, Y.D.; Lai, D.Y.; Ndzouboukou, J.B.; Zhang, B.; et al. Anti-SARS-CoV-2 IgG responses are powerful predicting signatures for the outcome of COVID-19 patients. J. Adv. Res. 2022, 36, 133–145. [Google Scholar] [CrossRef]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Shi, J.; Zhou, M.; Wu, B.; Yang, Z.; et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020, 146, 110–118. [Google Scholar] [CrossRef]
- Santa Cruz, A.; Mendes-Frias, A.; Oliveira, A.I.; Dias, L.; Matos, A.R.; Carvalho, A.; Capela, C.; Pedrosa, J.; Castro, A.G.; Silvestre, R. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front. Immunol. 2021, 12, 613422. [Google Scholar] [CrossRef]
- Investigators, R.-C.; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Jiang, H.W.; Li, Y.; Zhang, H.N.; Wang, W.; Yang, X.; Qi, H.; Li, H.; Men, D.; Zhou, J.; Tao, S.C. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat. Commun. 2020, 11, 3581. [Google Scholar] [CrossRef]
- Li, Y.; Lai, D.Y.; Lei, Q.; Xu, Z.W.; Wang, F.; Hou, H.; Chen, L.; Wu, J.; Ren, Y.; Ma, M.L.; et al. Systematic evaluation of IgG responses to SARS-CoV-2 spike protein-derived peptides for monitoring COVID-19 patients. Cell Mol. Immunol. 2021, 18, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.Q.; Guo, S.J.; Guo, W.; Jiang, H.W.; Li, H.C.; Tao, S.C. Longitudinal serum autoantibody repertoire profiling identifies surgery-associated biomarkers in lung adenocarcinoma. EBioMedicine 2020, 53, 102674. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020, 20, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Cao, Y.Y.; Tan, G.; Dong, X.; Wang, B.C.; Lin, J.; Yan, Y.Q.; Liu, G.H.; Akdis, M.; Akdis, C.A.; et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy 2021, 76, 533–550. [Google Scholar] [CrossRef]
- Li, Y.; Lai, D.Y.; Zhang, H.N.; Jiang, H.W.; Tian, X.; Ma, M.L.; Qi, H.; Meng, Q.F.; Guo, S.J.; Wu, Y.; et al. Linear epitopes of SARS-CoV-2 spike protein elicit neutralizing antibodies in COVID-19 patients. Cell Mol. Immunol. 2020, 17, 1095–1097. [Google Scholar] [CrossRef]
- Li, Y.; Ma, M.-l.; Lei, Q.; Wang, F.; Hong, W.; Lai, D.-y.; Hou, H.; Xu, Z.-w.; Zhang, B.; Chen, H.; et al. Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1051 COVID-19 patients. Cell Rep. 2021, 34, 108915. [Google Scholar] [CrossRef]
- Siu, K.L.; Yuen, K.S.; Castano-Rodriguez, C.; Ye, Z.W.; Yeung, M.L.; Fung, S.Y.; Yuan, S.; Chan, C.P.; Yuen, K.Y.; Enjuanes, L.; et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 2019, 33, 8865–8877. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020, 368, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Zhang, B.; Huang, H.; Luo, Y.; Wu, S.; Tang, G.; Liu, W.; Mao, L.; Mao, L.; Wang, F.; et al. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin. Exp. Immunol. 2020, 201, 76–84. [Google Scholar] [CrossRef]
- Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect. 2020, 9, 1123–1130. [Google Scholar] [CrossRef]
- Chen, C.; Chen, C.; Yan, J.T.; Zhou, N.; Zhao, J.P.; Wang, D.W. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua Xin Xue Guan Bing Za Zhi 2020, 48, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Danwang, C.; Endomba, F.T.; Nkeck, J.R.; Wouna, D.L.A.; Robert, A.; Noubiap, J.J. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark. Res. 2020, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Coskun, M.E.; Alidris, A.; Temel, M.T.; Akbayram, S.; Hizli, S. Plateletcrit: A possible biomarker of inflammation in hepatitis A infection. Niger. J. Clin. Pract. 2019, 22, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Nugent, J.; Aklilu, A.; Yamamoto, Y.; Simonov, M.; Li, F.; Biswas, A.; Ghazi, L.; Greenberg, J.; Mansour, S.; Moledina, D.; et al. Assessment of Acute Kidney Injury and Longitudinal Kidney Function After Hospital Discharge Among Patients With and Without COVID-19. JAMA Netw. Open 2021, 4, e211095. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Shi, S.; Xiao, J. Association between IL-6 and severe disease and mortality in COVID-19 disease: A systematic review and meta-analysis. Postgrad. Med. J. 2021. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef]
- Legros, V.; Denolly, S.; Vogrig, M.; Boson, B.; Siret, E.; Rigaill, J.; Pillet, S.; Grattard, F.; Gonzalo, S.; Verhoeven, P.; et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell. Mol. Immunol. 2021, 18, 318–327. [Google Scholar] [CrossRef]
- Roltgen, K.; Powell, A.E.; Wirz, O.F.; Stevens, B.A.; Hogan, C.A.; Najeeb, J.; Hunter, M.; Wang, H.; Sahoo, M.K.; Huang, C.; et al. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci. Immunol. 2020, 5, abe0240. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- Spini, A.; Giudice, V.; Brancaleone, V.; Morgese, M.G.; De Francia, S.; Filippelli, A.; Ruggieri, A.; Ziche, M.; Ortona, E.; Cignarella, A.; et al. Sex-tailored pharmacology and COVID-19: Next steps towards appropriateness and health equity. Pharmacol. Res. 2021, 173, 105848. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Lei, Q.; Huang, L.; Lai, D.Y.; Guo, S.J.; Jiang, H.W.; Hou, H.; Zheng, Y.X.; Wang, X.N.; et al. COVID-ONE-hi: The One-stop Database for COVID-19 Specific Humoral Immunity and Clinical Parameters. Genom. Proteom. Bioinform. 2021, 19, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Huang, L.; Zhang, H.; Li, Y.; Guo, S.; Wang, N.; Wang, S.H.; Chen, Z.; Wang, J.; Tao, S.C. PMD: A Resource for Archiving and Analyzing Protein Microarray data. Sci. Rep. 2016, 6, 19956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.I.; Hasan, S.M.T.; Ahmed, T. Obesity is a potential risk factor for COVID-19 associated morbidity and mortality in urban Bangladesh. BMJ 2020, 370, m2811. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Huling, J.D.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Cohen, K.; Puskarich, M.A.; Belani, H.K.; Proper, J.L.; et al. Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for COVID-19. N. Engl. J. Med. 2022, 387, 599–610. [Google Scholar] [CrossRef]
- McCarthy, C.; O’Donnell, C.P.; Kelly, N.E.W.; O’Shea, D.; Hogan, A.E. COVID-19 severity and obesity: Are MAIT cells a factor? Lancet Respir. Med. 2021, 9, 445–447. [Google Scholar] [CrossRef]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef]
- Rodgers, G.P.; Gibbons, G.H. Obesity and Hypertension in the Time of COVID-19. JAMA 2020, 324, 1163–1165. [Google Scholar] [CrossRef]
Group | COVID-19 Case (n) | |
---|---|---|
Patients (n) | 783 | |
Serum samples (n) | 2360 | |
Age (year) | 61.4 ± 14.5 | |
Gender | Male | 377 |
Female | 379 | |
Severity/outcome | Non-severe | 369 |
Severe | 414 | |
Survivor | 723 | |
Non-survivor | 60 | |
Source | Tongji Hospital, Wuhan |
Symptom | Outcome | Patients (n) | Serum Samples (n) | Onset Time (d) | Gender | ||||
---|---|---|---|---|---|---|---|---|---|
Mild | Severe | Cured | Death | Female | Male | ||||
<41 | 68 | 18 | 86 | 0 | 86 | 163 | 41 ± 17 | 37 | 49 |
41–50 | 56 | 34 | 88 | 2 | 90 | 249 | 52 ± 21 | 43 | 47 |
51–60 | 71 | 83 | 142 | 12 | 154 | 444 | 51 ± 18 | 79 | 75 |
61–70 | 106 | 133 | 223 | 16 | 239 | 713 | 52 ± 19 | 124 | 115 |
71–80 | 50 | 108 | 140 | 18 | 158 | 571 | 51 ± 18 | 83 | 75 |
>80 | 18 | 38 | 44 | 12 | 56 | 219 | 47 ± 19 | 30 | 26 |
Severity | Clinical Outcome | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude Model | Gender-Adjusted Model | Crude Model | Gender-Adjusted Model | |||||||||||||||||
Age | β | S.E. | Wald c2 | OR (95% CI) | p | β | S.E. | Wald c2 | OR (95% CI) | p | β | S.E. | Wald c2 | OR (95% CI) | p | β | S.E. | Wald c2 | OR (95% CI) | p |
≤40 | −2.01 | 0.34 | 34.84 | 0.13 (0.07, 0.26) | 0.00 | −2.10 | 0.35 | 36.76 | 0.12 (0.06, 0.24) | 0.00 | −2.68 | 0.77 | 12.04 | 0.07 (0.02, 0.31) | 0.00 | −2.71 | 0.77 | 12.26 | 0.07 (0.02, 0.30) | 0.00 |
41–50 | −1.24 | 0.32 | 15.33 | 0.29 (0.16, 0.54) | 0.00 | −1.31 | 0.32 | 16.65 | 0.27 (0.14, 0.51) | 0.00 | −2.36 | 0.66 | 12.94 | 0.09 (0.03, 0.34) | 0.00 | −2.39 | 0.66 | 13.24 | 0.09 (0.03, 0.33) | 0.00 |
51–60 | −0.86 | 0.29 | 8.69 | 0.42 (0.24, 0.75) | 0.00 | −0.86 | 0.3 | 8.44 | 0.42 (0.24, 0.76) | 0.00 | −1.17 | 0.4 | 8.75 | 0.31 (0.14, 0.67) | 0.00 | −1.16 | 0.4 | 8.56 | 0.31 (0.14, 0.68) | 0.00 |
61–70 | −0.53 | 0.28 | 3.58 | 0.59 (0.34, 1.02) | 0.06 | −0.53 | 0.29 | 3.45 | 0.59 (0.34, 1.03) | 0.06 | −1.19 | 0.37 | 10.38 | 0.30 (0.15, 0.63) | 0.00 | −1.19 | 0.37 | 10.23 | 0.31 (0.15, 0.63) | 0.00 |
71–80 | −0.11 | 0.3 | 0.14 | 0.90 (0.50, 1.61) | 0.71 | −0.09 | 0.3 | 0.09 | 0.91 (0.51, 1.65) | 0.76 | −0.76 | 0.38 | 4.08 | 0.47 (0.22, 0.98) | 0.04 | −0.75 | 0.38 | 3.95 | 0.47 (0.22, 0.99) | 0.05 |
>80 | 1.00 | 1.00 | 1.00 | 1.00 |
Theme | Parameter | <41 | 41–50 | 51–60 | 61–70 | 71–80 | >80 |
---|---|---|---|---|---|---|---|
Protein responses | N-protein IgG | ↑ | |||||
S1 IgG | ↑ | ↑ | ↑ | ↑ | |||
ORF 3a IgG | ↑ | ||||||
NSP7 IgM | ↓ | ||||||
S-protein peptide responses | S1 113 IgM | ↓ | ↓ | ↓ | |||
S2 18 IgG | ↑ | ↓ | ↑ | ||||
S2 97 IgM | ↑ | ↑ | |||||
S2 96 IgM | ↑ | ↑ | |||||
S1 90 IgG | ↓ | ↑ | |||||
S2 11 IgM | ↑ | ↑ | |||||
S2 15 IgM | ↑ | ↑ | |||||
S2 79 IgM | ↓ | ↑ | |||||
S2 58 IgM | ↓ | ||||||
S2 27 IgM | ↓ | ↓ | |||||
Clinical parameters | Interleukin 2 receptor | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ |
Platelet hematocrit | ↑ | ↓ | |||||
Procalcitonin | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
NT-proBNP | ↑ | ↑ | ↑ | ↑ | ↑ | ||
RBC distribution width SD | ↑ | ↑ | ↑ | ↑ | |||
Albumin | ↓ | ↓ | ↓ | ↓ | |||
Creatinine | ↓ | ↓ | ↑ | ||||
Ferritin | ↑ | ↑ | ↑ | ||||
Glucose | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
Phosphorus | ↓ | ↓ | ↓ | ||||
Platelet count | ↓ | ↑ | ↓ | ↓ | |||
TBIL 0.8 | ↑ | ↑ | ↑ | ||||
TNF | ↑ | ||||||
Total Bilirubin | ↑ | ↑ | ↑ | ||||
Glutamyl transpeptidase | ↑ | ↑ | |||||
Number of monocytes | ↑ | ↑ | |||||
Chlorine | ↓ | ↓ | |||||
High density lipoprotein | ↓ | ↓ | |||||
Lymphocyte | ↓ | ↓ | |||||
PLT distribution width | ↑ | ↑ | |||||
White ball ratio | ↓ | ↓ | |||||
eGFR | ↑ | ||||||
Interleukin 6 | ↑ | ↑ | ↑ | ↑ | ↑ | ||
Neutrophil count | ↑ | ||||||
Myoglobin | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | |
CRP | ↑ | ||||||
D-dimer | ↑ |
Severity | Outcome | |||||
---|---|---|---|---|---|---|
Antibody Responses | Fold Enrichments | p Value | Fold Enrichments | p Value | ||
S1 IgG | Non-critical | 0.971 | 0.635 | Survivor | 1.021 | 0.226 |
Critical | 1.025 | 0.365 | Non-survivor | 0.963 | 0.774 | |
S1-113 IgM | Non-critical | 1.639 | 0.002 | Survivor | 1.329 | 0.026 |
Critical | 0.794 | 0.998 | Non-survivor | 0.668 | 0.874 | |
S2-97 IgM | Non-critical | 0.921 | 0.830 | Survivor | 1.013 | 0.355 |
Critical | 1.069 | 0.170 | Non-survivor | 0.858 | 0.645 | |
ORF 3a IgG | Non-critical | 0.870 | 0.941 | Survivor | 0.996 | 0.643 |
Critical | 1.112 | 0.059 | Non-survivor | 1.049 | 0.357 | |
NSP7 IgM | Non-critical | 1.372 | 0.019 | Survivor | 0.987 | 0.766 |
Critical | 0.852 | 0.981 | Non-survivor | 1.144 | 0.234 |
Case (n) | Influenza A Virus IgM Antibody | |||||
---|---|---|---|---|---|---|
Positive | Negative | Fold Enrichments | p Value | |||
<41 | Mild | 20 | 16 | 4 | 1.40 | 0.00 |
Severe | 7 | 3 | 4 | 0.79 | 0.59 | |
41–50 | Mild | 21 | 14 | 7 | 1.16 | 0.11 |
Severe | 16 | 9 | 7 | 1.04 | 0.33 | |
51–60 | Mild | 26 | 15 | 11 | 1.01 | 0.39 |
Severe | 20 | 12 | 8 | 1.11 | 0.21 | |
61–70 | Mild | 27 | 13 | 14 | 0.84 | 0.81 |
Severe | 36 | 22 | 14 | 1.13 | 0.11 | |
71–80 | Mild | 12 | 5 | 7 | 0.73 | 0.80 |
Severe | 21 | 9 | 12 | 0.79 | 0.82 | |
>80 | Mild | 4 | 0 | 4 | 0.00 | 0.79 |
Severe | 7 | 3 | 4 | 0.79 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, A.; Liu, M.; Li, Y.; Lei, Q.; Wu, Q.; Lin, M.; Lai, D.; Lu, L.; Yu, S.; Guo, S.; et al. Age- and Severity-Associated Humoral Immunity Response in COVID-19 Patients: A Cohort Study from Wuhan, China. J. Clin. Med. 2022, 11, 5974. https://doi.org/10.3390/jcm11195974
Zhu A, Liu M, Li Y, Lei Q, Wu Q, Lin M, Lai D, Lu L, Yu S, Guo S, et al. Age- and Severity-Associated Humoral Immunity Response in COVID-19 Patients: A Cohort Study from Wuhan, China. Journal of Clinical Medicine. 2022; 11(19):5974. https://doi.org/10.3390/jcm11195974
Chicago/Turabian StyleZhu, An, Min Liu, Yang Li, Qing Lei, Qiaoyi Wu, Mingxi Lin, Danyun Lai, Linfang Lu, Siqi Yu, Shujuan Guo, and et al. 2022. "Age- and Severity-Associated Humoral Immunity Response in COVID-19 Patients: A Cohort Study from Wuhan, China" Journal of Clinical Medicine 11, no. 19: 5974. https://doi.org/10.3390/jcm11195974
APA StyleZhu, A., Liu, M., Li, Y., Lei, Q., Wu, Q., Lin, M., Lai, D., Lu, L., Yu, S., Guo, S., Jiang, H., Hou, H., Zheng, Y., Wang, X., Ma, M., Zhang, B., Chen, H., Xue, J., Zhang, H., ... Xu, Z. (2022). Age- and Severity-Associated Humoral Immunity Response in COVID-19 Patients: A Cohort Study from Wuhan, China. Journal of Clinical Medicine, 11(19), 5974. https://doi.org/10.3390/jcm11195974