Metabolic Control of the FreeStyle Libre System in the Pediatric Population with Type 1 Diabetes Dependent on Sensor Adherence
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Outcomes Measures
2.3. Statistical Analysis
3. Results
3.1. Change in HbA1c in Relation to Daily Scan Rates with the FreeStyle Libre System
3.2. Relationship between Daily Scanning Rates and Change in Hypoglycemia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, T.; Bode, B.W.; Christiansen, M.P.; Klaff, L.J.; Alva, S. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System. Diabetes Technol. Ther. 2015, 17, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Bolinder, J.; Antuna, R.; Geelhoed-Duijvestijn, P.; Kröger, J.; Weitgasser, R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: A multicentre, non-masked, randomised controlled trial. Lancet 2016, 388, 2254–2263. [Google Scholar] [CrossRef]
- Haak, T.; Hanaire, H.; Ajjan, R.; Hermanns, N.; Riveline, J.P.; Rayman, G. Use of Flash Glucose-Sensing Technology for 12 months as a Replacement for Blood Glucose Monitoring in Insulin-treated Type 2 Diabetes. Diabetes Ther. 2017, 8, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Campbell, F.M.; Murphy, N.P.; Stewart, C.; Biester, T.; Kordonouri, O. Outcomes of using flash glucose monitoring technology by children and young people with type 1 diabetes in a single arm study. Pediatr. Diabetes 2018, 19, 1294–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyndall, V.; Stimson, R.H.; Zammitt, N.N.; Ritchie, S.A.; McKnight, J.A.; Dover, A.R.; Gibb, F.W. Marked improvement in HbA1c following commencement of flash glucose monitoring in people with type 1 diabetes. Diabetologia 2019, 62, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Yaron, M.; Roitman, E.; Aharon-Hananel, G.; Landau, Z.; Ganz, T.; Yanuv, I.; Rozenberg, A.; Karp, M.; Ish-Shalom, M.; Singer, J.; et al. Effect of Flash Glucose Monitoring Technology on Glycemic Control and Treatment Satisfaction in Patients with Type 2 Diabetes. Diabetes Care 2019, 42, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Welsh, Z.; Ells, S.; Seibold, A. The Impact of Flash Glucose Monitoring on Glycaemic Control as Measured by HbA1c: A Meta-analysis of Clinical Trials and Real-World Observational Studies. Diabetes Ther. 2020, 11, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, I.; Rutherford, C.; Makarounas-Kirchmann, K.; Kirchmann, M. Meta-analysis of average change in laboratory-measured HbA1c among people with type 1 diabetes mellitus using the 14 day Flash Glucose Monitoring System. Diabetes Res. Clin. Pract. 2020, 164, 108158. [Google Scholar] [CrossRef] [PubMed]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemnann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, T.C.; Xu, Y.; Hayter, G.; Ajjan, R.A. Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: A European analysis of over 60 million glucose tests. Diabetes Res. Clin. Pract. 2018, 137, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landau, Z.; Abiri, S.; Gruber, N.; Levy-Shraga, Y.; Brener, A.; Lebenthal, Y.; Barash, G.; Pinhas-Hamiel, O.; Rachmiel, M. Use of flash glucose-sensing technology (FreeStyle Libre) in youth with type 1 diabetes: AWeSoMe study group real-life observational experience. Acta Diabetol. 2018, 55, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Messaaoui, A.; Tenoutasse, S.; Crenier, L. Flash Glucose Monitoring Accepted in Daily Life of Children and Adolescents with Type 1 Diabetes and Reduction of Severe Hypoglycemia in Real-Life Use. Diabetes Technol. Ther. 2019, 21, 329–335. [Google Scholar] [CrossRef] [Green Version]
Parameter | n | |
---|---|---|
Age (years) | 11.36 ± 3.06 | 145 |
Duration of diabetes (years) | 5.2 ± 3.2 | 145 |
Mean HbA1c at baseline (%) | 7.11 ± 0.80 | 142 |
Mean HbA1c for subjects <7.5% at baseline | 6.73 ± 0.47 | 102 |
Mean HbA1c for subjects ≥7.5% at baseline | 8.09 ± 0.71 | 40 |
Treatment type | MDI | 119 |
Treatment type | CSII | 26 |
% Time <70 mg/dL (±SE) | ||||
No daily scans | Month 1 | Month 3 | Month 6 | p value * |
0–6 | 4.75 (0.55) | 4.94 (0.37) | 4.83 (0.41) | 0.909 |
7–8 | 6.64 (0.69) | 5.48 (0.51) | 5.26 (0.41) | 0.169 |
9–11 | 7.92 (0.81) | 6.21 (0.47) | 6.52 (0.47) | 0.14 |
>11 | 5.89 (0.81) | 4.53 (0.39) | 3.88 (0.34) | 0.03 |
Number of events <70 mg/dL (±SE) | ||||
No daily scans | Month 1 | Month 3 | Month 6 | p value * |
0–6 | 8.22 (0.96) | 7.74 (0.50) | 5.97 (0.45) | 0.06 |
7–8 | 13.30 (1.15) | 9.81 (0.68) | 11.16 (0.60) | 0.1 |
9–11 | 19.29 (1.66) | 13.27 (0.71) | 12.69 (0.66) | <0.001 |
>11 | 13.57 (1.34) | 12.37 (0.68) | 9.82 (0.55) | 0.01 |
Number of events <54 mg/dL (±SE) | ||||
No daily scans | Month 1 | Month 3 | Month 6 | p value * |
0–6 | 1.93 (0.37) | 2.73 (0.29) | 2.28 (0.28) | 0.455 |
7–8 | 6.22 (0.83) | 3.00 (0.38) | 3.68 (0.34) | 0.01 |
9–11 | 7.50 (1.12) | 4.54 (0.42) | 5.03 (0.42) | 0.04 |
>11 | 3.38 (0.65) | 3.45 (0.35) | 3.28 (0.32) | 0.897 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva-Gea, I.; Martos-Lirio, M.F.; Gómez-Perea, A.; Ariza-Jiménez, A.-B.; Tapia-Ceballos, L.; Jiménez-Hinojosa, J.M.; Lopez-Siguero, J.P. Metabolic Control of the FreeStyle Libre System in the Pediatric Population with Type 1 Diabetes Dependent on Sensor Adherence. J. Clin. Med. 2022, 11, 286. https://doi.org/10.3390/jcm11020286
Leiva-Gea I, Martos-Lirio MF, Gómez-Perea A, Ariza-Jiménez A-B, Tapia-Ceballos L, Jiménez-Hinojosa JM, Lopez-Siguero JP. Metabolic Control of the FreeStyle Libre System in the Pediatric Population with Type 1 Diabetes Dependent on Sensor Adherence. Journal of Clinical Medicine. 2022; 11(2):286. https://doi.org/10.3390/jcm11020286
Chicago/Turabian StyleLeiva-Gea, Isabel, Maria F. Martos-Lirio, Ana Gómez-Perea, Ana-Belen Ariza-Jiménez, Leopoldo Tapia-Ceballos, Jose Manuel Jiménez-Hinojosa, and Juan Pedro Lopez-Siguero. 2022. "Metabolic Control of the FreeStyle Libre System in the Pediatric Population with Type 1 Diabetes Dependent on Sensor Adherence" Journal of Clinical Medicine 11, no. 2: 286. https://doi.org/10.3390/jcm11020286
APA StyleLeiva-Gea, I., Martos-Lirio, M. F., Gómez-Perea, A., Ariza-Jiménez, A. -B., Tapia-Ceballos, L., Jiménez-Hinojosa, J. M., & Lopez-Siguero, J. P. (2022). Metabolic Control of the FreeStyle Libre System in the Pediatric Population with Type 1 Diabetes Dependent on Sensor Adherence. Journal of Clinical Medicine, 11(2), 286. https://doi.org/10.3390/jcm11020286