Optimal Mean Arterial Pressure for Favorable Neurological Outcomes in Survivors after Extracorporeal Cardiopulmonary Resuscitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions and Outcomes
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics and Clinical Outcomes
3.2. The Relationship between Mean Arterial Pressure and Neurologic Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ryu, J.A.; Chung, C.R.; Cho, Y.H.; Sung, K.; Jeon, K.; Suh, G.Y.; Park, T.K.; Lee, J.M.; Song, Y.B.; Hahn, J.Y.; et al. Neurologic Outcomes in Patients Who Undergo Extracorporeal Cardiopulmonary Resuscitation. Ann. Thorac. Surg. 2019, 108, 749–755. [Google Scholar] [CrossRef]
- Sundgreen, C.; Larsen, F.S.; Herzog, T.M.; Knudsen, G.M.; Boesgaard, S.; Aldershvile, J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 2001, 32, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, J.P.; Soar, J.; Cariou, A.; Cronberg, T.; Moulaert, V.R.; Deakin, C.D.; Bottiger, B.W.; Friberg, H.; Sunde, K.; Sandroni, C. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015, 95, 202–222. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.W.; Kilgannon, J.H.; Hunter, B.R.; Puskarich, M.A.; Shea, L.; Donnino, M.; Jones, C.; Fuller, B.M.; Kline, J.A.; Jones, A.E.; et al. Association Between Elevated Mean Arterial Blood Pressure and Neurologic Outcome After Resuscitation From Cardiac Arrest: Results From a Multicenter Prospective Cohort Study. Crit. Care Med. 2019, 47, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, M.S.; Gooderham, P.; Menon, D.K.; Brasher, P.M.A.; Foster, D.; Cardim, D.; Czosnyka, M.; Smielewski, P.; Gupta, A.K.; Ainslie, P.N.; et al. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest. Crit. Care Med. 2019, 47, 960–969. [Google Scholar] [CrossRef]
- Callaway, C.W.; Donnino, M.W.; Fink, E.L.; Geocadin, R.G.; Golan, E.; Kern, K.B.; Leary, M.; Meurer, W.J.; Peberdy, M.A.; Thompson, T.M.; et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S465–S482. [Google Scholar] [CrossRef] [Green Version]
- Panchal, A.R.; Bartos, J.A.; Cabanas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S366–S468. [Google Scholar] [CrossRef] [PubMed]
- Bhate, T.D.; McDonald, B.; Sekhon, M.S.; Griesdale, D.E. Association between blood pressure and outcomes in patients after cardiac arrest: A systematic review. Resuscitation 2015, 97, 1–6. [Google Scholar] [CrossRef]
- Kilgannon, J.H.; Roberts, B.W.; Jones, A.E.; Mittal, N.; Cohen, E.; Mitchell, J.; Chansky, M.E.; Trzeciak, S. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest. Crit. Care Med. 2014, 42, 2083–2091. [Google Scholar] [CrossRef]
- Park, S.B.; Yang, J.H.; Park, T.K.; Cho, Y.H.; Sung, K.; Chung, C.R.; Park, C.M.; Jeon, K.; Song, Y.B.; Hahn, J.Y.; et al. Developing a risk prediction model for survival to discharge in cardiac arrest patients who undergo extracorporeal membrane oxygenation. Int. J. Cardiol. 2014, 177, 1031–1035. [Google Scholar] [CrossRef]
- Gaies, M.G.; Jeffries, H.E.; Niebler, R.A.; Pasquali, S.K.; Donohue, J.E.; Yu, S.; Gall, C.; Rice, T.B.; Thiagarajan, R.R. Vasoactive-inotropic score is associated with outcome after infant cardiac surgery: An analysis from the Pediatric Cardiac Critical Care Consortium and Virtual PICU System Registries. Pediatr. Crit. Care Med. 2014, 15, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, S.J.; Chung, C.R.; Cho, Y.H.; Jeon, K.; Suh, G.Y.; Ahn, J.H.; Carriere, K.C.; Park, T.K.; Lee, G.Y.; Lee, J.M.; et al. Vasoactive Inotropic Score as a Predictor of Mortality in Adult Patients With Cardiogenic Shock: Medical Therapy Versus ECMO. Rev. Esp. Cardiol. (Engl. Ed.) 2019, 72, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Cummins, R.O.; Chamberlain, D.A.; Abramson, N.S.; Allen, M.; Baskett, P.J.; Becker, L.; Bossaert, L.; Delooz, H.H.; Dick, W.F.; Eisenberg, M.S.; et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: The Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation 1991, 84, 960–975. [Google Scholar] [PubMed] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Perperoglou, A.; Sauerbrei, W.; Abrahamowicz, M.; Schmid, M. A review of spline function procedures in R. BMC Med. Res. Methodol. 2019, 19, 46. [Google Scholar] [CrossRef] [Green Version]
- Hifumi, T.; Kuroda, Y.; Kawakita, K.; Sawano, H.; Tahara, Y.; Hase, M.; Nishioka, K.; Shirai, S.; Hazui, H.; Arimoto, H.; et al. Effect of admission Glasgow coma scale motor score on neurological outcome in out-of-hospital cardiac arrest patients receiving therapeutic hypothermia. Circ. J. 2015, 79, 2201–2208. [Google Scholar] [CrossRef] [Green Version]
- Russo, J.J.; James, T.E.; Hibbert, B.; Yousef, A.; Osborne, C.; Wells, G.A.; Froeschl, M.P.; So, D.Y.; Chong, A.Y.; Labinaz, M.; et al. Impact of mean arterial pressure on clinical outcomes in comatose survivors of out-of-hospital cardiac arrest: Insights from the University of Ottawa Heart Institute Regional Cardiac Arrest Registry (CAPITAL-CARe). Resuscitation 2017, 113, 27–32. [Google Scholar] [CrossRef]
- Kaji, A.H.; Hanif, A.M.; Thomas, J.L.; Niemann, J.T. Out-of-hospital cardiac arrest: Early in-hospital hypotension versus out-of-hospital factors in predicting in-hospital mortality among those surviving to hospital admission. Resuscitation 2011, 82, 1314–1317. [Google Scholar] [CrossRef]
- Annoni, F.; Dell’Anna, A.M.; Franchi, F.; Creteur, J.; Scolletta, S.; Vincent, J.L.; Taccone, F.S. The impact of diastolic blood pressure values on the neurological outcome of cardiac arrest patients. Resuscitation 2018, 130, 167–173. [Google Scholar] [CrossRef]
- Sekhon, M.S.; Smielewski, P.; Bhate, T.D.; Brasher, P.M.; Foster, D.; Menon, D.K.; Gupta, A.K.; Czosnyka, M.; Henderson, W.R.; Gin, K.; et al. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study. Resuscitation 2016, 106, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Castilla, L.; Gopinath, S.; Robertson, C.S. Management of intracranial hypertension. Neurol. Clin. 2008, 26, 521–541. [Google Scholar] [CrossRef] [PubMed]
- Laurikkala, J.; Wilkman, E.; Pettila, V.; Kurola, J.; Reinikainen, M.; Hoppu, S.; Ala-Kokko, T.; Tallgren, M.; Tiainen, M.; Vaahersalo, J.; et al. Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest: Associations with one-year neurologic outcome. Resuscitation 2016, 105, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Favorable Neurologic Outcomes (n = 104) | Poor Neurologic Outcomes (n = 149) | p-Value | |
---|---|---|---|
Age (years) | 60.0 (49.8–70.3) | 63.0 (52.0–72.0) | 0.061 |
Old age (age > 65 years) | 33 (31.7) | 68 (45.6) | 0.028 |
Sex, male | 79 (76.0) | 103 (69.1) | 0.295 |
Body surface area (m2) | 1.8 (1.6–1.9) | 1.8 (1.6–1.9) | 0.898 |
Medical history | |||
Diabetes mellitus | 31 (29.8) | 50 (33.6) | 0.623 |
Hypertension | 46 (44.2) | 75 (50.3) | 0.407 |
Malignancy | 13 (12.5) | 32 (21.5) | 0.095 |
Dyslipidemia | 17 (16.3) | 18 (12.1) | 0.434 |
Current smoker | 27 (26.0) | 24 (16.1) | 0.078 |
Chronic kidney disease a | 9 (8.7) | 17 (11.4) | 0.617 |
Previous myocardial infarction | 19 (18.3) | 35 (23.5) | 0.400 |
Previous stroke | 10 (9.6) | 10 (6.7) | 0.545 |
CPR details | |||
Out-of-hospital cardiac arrest | 10 (9.6) | 37 (24.8) | 0.004 |
Home | 4 (3.8) | 18 (12.0) | |
Public places | 5 (4.8) | 9 (6.0) | |
Workplaces | 1 (1.0) | 7 (4.7) | |
Others | 0 (0) | 3 (2.0) | |
In-hospital cardiac arrest | 94 (90.4) | 112 (75.2) | 0.004 |
ICU | 32 (30.8) | 67 (45.0) | |
Emergency department | 26 (25) | 13 (8.7) | |
Cardiac catheterization lab | 34 (32.7) | 11 (7.4) | |
Others (operation room, general wards etc.) | 2 (1.9) | 21 (14.1) | |
Bystander performed CPR | 103 (99.0) | 137 (91.9) | 0.026 |
Initial shockable rhythm, | 40 (38.5) | 40 (26.8) | 0.069 |
CPR duration (min) | 12.5 (5.0–22.3) | 31.0 (20.0–43.0) | <0.001 |
Targeted temperature management | 21 (20.2) | 28 (18.8) | 0.908 |
Glasgow Coma Scale | 3.0 (3.0–9.0) | 3.0 (3.0–3.0) | <0.001 |
SOFA score | 12.0 (11.0–14.0) | 14.0 (12.0–15.0) | <0.001 |
Management in the intensive care unit | |||
Continuous renal replacement therapy | 30 (28.8) | 67 (45.0) | 0.014 |
Vasopressor | 98 (94.2) | 143 (96.0) | 0.733 |
Intra-aortic balloon counterpulsation | 5 (4.8) | 5 (3.4) | 0.798 |
Mechanical ventilator | 82 (78.8) | 120 (80.5) | 0.865 |
ECMO duration (h) | 52.6 (22.8–105.3) | 44.7 (8.7–102.6) | 0.207 |
Maximal ECMO flow index during 6 h b (L/min/m2) | 1.9 (1.6–2.2) | 1.8 (1.1–2.1) | 0.036 |
Maximal vasoactive score during 6 h | 10.0 (0.0–31.8) | 20.0 (0.0–65.0) | 0.003 |
ECMO complications | |||
Limb ischemia | 4 (3.8) | 12 (8.1) | 0.276 |
ECMO site bleeding | 13 (12.5) | 18 (12.1) | 0.276 |
Stroke | 5 (4.8) | 9 (6.0) | 0.887 |
Gastrointestinal bleeding | 1 (1.0) | 9 (6.0) | 0.087 |
Sepsis | 0 (0.0) | 6 (4.0) | 0.099 |
Average MAP | |||
During 6 h | 80.5 (72.8–91.0) | 69.8 (56.7–82.4) | <0.001 |
During 12 h | 81.6 (74.1–88.0) | 70.7 (57.2–84.4) | <0.001 |
During 24 h | 80.7 (75.6–87.2) | 68.7 (58.3–82.6) | <0.001 |
During 48 h | 80.4 (75.7–86.4) | 70.1 (57.7–81.0) | <0.001 |
During 72 h | 81.5 (76.1–86.2) | 69.2 (56.9–80.4) | <0.001 |
During 96 h | 82.6 (76.5–86.3) | 69.5 (56.9–79.7) | <0.001 |
Model | Observation Time | Variables | Odds Ratio (95% CI) | p-Value | R-Square | AIC b | AUC |
---|---|---|---|---|---|---|---|
Model 1 | During 6 h | CPR duration | 1.081 (1.054–1.110) | <0.001 | 0.362 | 237.9 | 0.859 |
GCS on ICU admission | 0.807 (0.725–0.899) | <0.001 | |||||
Old age a | 2.344 (1.175–4.675) | 0.016 | |||||
Average MAP during 6 h | 0.980 (0.962–0.998) | 0.031 | |||||
Model 2 | During 12 h | CPR duration | 1.074 (1.048–1.101) | <0.001 | 0.351 | 241.6 | 0.853 |
GCS on ICU admission | 0.825 (0.742–0.918) | <0.001 | |||||
Old age a | 2.198 (1.122–4.308) | 0.022 | |||||
Average MAP during 12 h | 0.970 (0.948–0.993) | 0.010 | |||||
Model 3 | During 24 h | CPR duration | 1.073 (1.047–1.100) | <0.001 | 0.383 | 231.7 | 0.867 |
GCS on ICU admission | 0.821 (0.739–0.913) | <0.001 | |||||
Old age a | 2.040 (1.034–4.025) | 0.040 | |||||
Average MAP during 24 h | 0.958 (0.932–0.984) | 0.002 | |||||
Model 4 | During 48 h | CPR duration | 1.072 (1.045–1.099) | <0.001 | 0.387 | 229.5 | 0.867 |
GCS on ICU admission | 0.830 (0.747–0.923) | <0.001 | |||||
Old age a | 2.005 (1.007–3.990) | 0.048 | |||||
Average MAP during 48 h | 0.939 (0.910–0.970) | <0.001 | |||||
Model 5 | During 72 h | CPR duration | 1.072 (1.045–1.099) | <0.001 | 0.399 | 225.5 | 0.874 |
GCS on ICU admission | 0.832 (0.748–0.925) | <0.001 | |||||
Old age a | 1.972 (0.985–3.947) | 0.055 | |||||
Average MAP during 72 h | 0.930 (0.899–0.963) | <0.001 | |||||
Model 6 | During 96 h | CPR duration | 1.072 (1.045–1.100) | <0.001 | 0.406 | 223.3 | 0.878 |
GCS on ICU admission | 0.833 (0.749–0.927) | <0.001 | |||||
Old age a | 1.875 (0.932–3.770) | 0.078 | |||||
Average MAP during 96 h | 0.926 (0.894–0.959) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.I.; Ko, R.-E.; Yang, J.H.; Cho, Y.H.; Ahn, J.; Ryu, J.-A. Optimal Mean Arterial Pressure for Favorable Neurological Outcomes in Survivors after Extracorporeal Cardiopulmonary Resuscitation. J. Clin. Med. 2022, 11, 290. https://doi.org/10.3390/jcm11020290
Lee YI, Ko R-E, Yang JH, Cho YH, Ahn J, Ryu J-A. Optimal Mean Arterial Pressure for Favorable Neurological Outcomes in Survivors after Extracorporeal Cardiopulmonary Resuscitation. Journal of Clinical Medicine. 2022; 11(2):290. https://doi.org/10.3390/jcm11020290
Chicago/Turabian StyleLee, Yun Im, Ryoung-Eun Ko, Jeong Hoon Yang, Yang Hyun Cho, Joonghyun Ahn, and Jeong-Am Ryu. 2022. "Optimal Mean Arterial Pressure for Favorable Neurological Outcomes in Survivors after Extracorporeal Cardiopulmonary Resuscitation" Journal of Clinical Medicine 11, no. 2: 290. https://doi.org/10.3390/jcm11020290
APA StyleLee, Y. I., Ko, R. -E., Yang, J. H., Cho, Y. H., Ahn, J., & Ryu, J. -A. (2022). Optimal Mean Arterial Pressure for Favorable Neurological Outcomes in Survivors after Extracorporeal Cardiopulmonary Resuscitation. Journal of Clinical Medicine, 11(2), 290. https://doi.org/10.3390/jcm11020290