A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics
Abstract
:1. Introduction
2. History of Human Perilymph Sampling
2.1. Postmortem Profiling
2.2. Intraoperative Sampling in Humans
3. Animal Models of Sensorineural Hearing Loss and Perilymph Sampling
3.1. Noise-Induced Hearing Loss
3.2. Age-Related Hearing Loss
3.3. Perilymph Expression Patterns across Species
4. Human Perilymph Proteomics
4.1. Perilymph Proteins Specific to Subtypes of SNHL
4.2. Inflammatory Pathways
4.3. Neurotrophin Pathway
4.4. Heat Shock Proteins
5. Human Perilymph Metabolome and Transcriptome
5.1. Perilymph Metabolome
5.2. MicroRNAs as Biomarkers for SNHL
6. Applications of Human Perilymph Sampling
6.1. Cochlear Implantation
6.2. Stapedectomy and Cochleosacculotomy
6.3. Proposed Method of RWM “Tap”
6.4. Progress in the Design of Sampling Devices
6.5. Safety and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Global Costs of Unaddressed Hearing Loss and Cost-Effectiveness of Interventions. Health Report. 2017. Available online: https://apps.who.int/iris/handle/10665/254659 (accessed on 11 February 2019).
- Wong, A.C.; Ryan, A.F. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front. Aging Neurosci. 2015, 7, 58. [Google Scholar] [CrossRef]
- Kunelskaya, N.L.; Levina, Y.V.; Garov, E.V.; Dzuina, A.V.; Ogorodnikov, D.S.; Nosulya, E.V.; Luchsheva, Y.V. Presbyacusis. Vestnik Otorinolaringol. 2019, 84, 67–71. [Google Scholar] [CrossRef]
- Ouda, L.; Profant, O.; Syka, J. Age-related changes in the central auditory system. Cell Tissue Res. 2015, 361, 337–358. [Google Scholar] [CrossRef] [PubMed]
- Kemp, D.T. Otoacoustic emissions, their origin in cochlear function, and use. Br. Med. Bull. 2002, 63, 223–241. [Google Scholar] [CrossRef]
- Rask-Andersen, H.; Liu, W.; Erixon, E.; Kinnefors, A.; Pfaller, K.; Schrott-Fischer, A.; Glueckert, R. Human Cochlea: Anatomical Characteristics and their Relevance for Cochlear Implantation. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1791–1811. [Google Scholar] [CrossRef] [PubMed]
- Arriaga, M. Schuknecht’s Pathology of the Ear, Third Edition. Otol. Neurotol. 2002, 32, 1039. [Google Scholar] [CrossRef]
- Prentiss, S.; Sykes, K.; Staecker, H. Partial Deafness Cochlear Implantation at the University of Kansas: Techniques and Outcomes. J. Am. Acad. Audiol. 2010, 21, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Gantz, B.J.; Turner, C.; Gfeller, K.E.; Lowder, M.W. Preservation of Hearing in Cochlear Implant Surgery: Advantages of Combined Electrical and Acoustical Speech Processing. Laryngoscope 2005, 115, 796–802. [Google Scholar] [CrossRef] [Green Version]
- Chirtes, A.V.; Mures, T.; Mitrică, M. Normal pressure hydrocephalus–Diagnosis and therapeutic challenges. Rom. J. 2020, 123, 354. [Google Scholar]
- Waltner, J.G.; Raymond, S. On the chemical composition of the human perilymph and endolymph. Laryngoscope 1950, 60, 912–918. [Google Scholar] [CrossRef]
- Warnecke, A.; Prenzler, N.K.; Schmitt, H.; Daemen, K.; Keil, J.; Dursin, M.; Lenarz, T.; Falk, C.S. Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea. Front. Neurol. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, H.A.; Pich, A.; Schröder, A.; Scheper, V.; Lilli, G.; Reuter, G.; Lenarz, T. Proteome Analysis of Human Perilymph Using an Intraoperative Sampling Method. J. Proteome Res. 2017, 16, 1911–1923. [Google Scholar] [CrossRef]
- Palva, T.; Tikanmäki, P. Sodium and Potassium Concentrations in Post-Mortem Human Labyrinthine Fluids. J. Laryngol. Otol. 1969, 83, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Gamov, V.P.; Vel’Tishchev, I.E. Potassium and sodium content in the perilymph and endolymph of man (a postmortem study). Zh. Ushn. Nos. Gorl. Bolezn. 1973, 33, 21–24. [Google Scholar] [PubMed]
- Silverstein, H.; Naufal, P.; Belal, A. Causes of elevated perilymph protein concentrations. Laryngoscope 1973, 83, 476–487. [Google Scholar] [CrossRef]
- Palva, T.; Raunio, V.; Forsén, R. Esterases in Post-Mortem Inner Ear Fluids. Acta Oto-Laryngol. 1971, 71, 140–146. [Google Scholar] [CrossRef]
- Schindler, K.; Schnieder, E.A.; Wullstein, H.L. Vergleichende Bestimmung Einiger Elektrolyte und Organischer Substanzen in Der Perilymphe Otosklerosekranker Patienten. Acta Oto-Laryngol. 1965, 59, 309–319. [Google Scholar] [CrossRef]
- Arrer, E.; Oberascher, G.; Gibitz, H.-J. Protein distribution in the human perilymph:A Comparative Study between Perilymph (Post Mortem), CSF and Blood Serum. Acta Oto-Laryngol. 1988, 106, 117–123. [Google Scholar] [CrossRef]
- Rohde, M.; Sinicina, I.; Horn, A.; Eichner, N.; Meister, G.; Strupp, M.; Himmelein, S. MicroRNA profile of human endo-/perilymph. J. Neurol. 2018, 265, 26–28. [Google Scholar] [CrossRef]
- Nadol, J.B., Jr.; Burgess, B. A study of postmortem autolysis in the human organ of corti. J. Comp. Neurol. 1985, 237, 333–342. [Google Scholar] [CrossRef]
- Niedermeyer, H.P.; Zahneisen, G.; Luppa, P.; Busch, R.; Arnold, W. Cortisol Levels in the Human Perilymph after Intravenous Administration of Prednisolone. Audiol. Neurotol. 2003, 8, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Bird, P.A.; Begg, E.J.; Zhang, M.; Keast, A.T.; Murray, D.P.; Balkany, T.J. Intratympanic Versus Intravenous Delivery of Methylprednisolone to Cochlear Perilymph. Otol. Neurotol. 2007, 28, 1124–1130. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.J.; Chung, J.W. Pathophysiology of Noise Induced Hearing Loss. Audiol. Speech Res. 2016, 12, S14–S16. [Google Scholar] [CrossRef]
- Ohlemiller, K.K.; Wright, J.S.; Dugan, L.L. Early Elevation of Cochlear Reactive Oxygen Species following Noise Exposure. Audiol. Neurotol. 1999, 4, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Pirttilä, K.; Pierre, P.V.; Haglöf, J.; Engskog, M.; Hedeland, M.; Laurell, G.; Arvidsson, T.; Pettersson, C. An LCMS-based untargeted metabolomics protocol for cochlear perilymph: Highlighting metabolic effects of hydrogen gas on the inner ear of noise exposed Guinea pigs. Metabolomics 2019, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fetoni, A.R.; Picciotti, P.M.; Paludetti, G.; Troiani, D. Pathogenesis of presbycusis in animal models: A review. Exp. Gerontol. 2011, 46, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Harman, D. Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.-C.; Ren, Y.; Lysaght, A.C.; Kao, S.-Y.; Stankovic, K.M. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS ONE 2019, 14, e0218292. [Google Scholar] [CrossRef] [PubMed]
- Lysaght, A.C.; Kao, S.-Y.; Paulo, J.A.; Merchant, S.N.; Steen, H.; Stankovic, K.M. Proteome of Human Perilymph. J. Proteome Res. 2011, 10, 3845–3851. [Google Scholar] [CrossRef] [Green Version]
- Ms, E.E.L.S.; Peppi, M.; Chen, Z.; Ba, K.M.G.; Evans, J.E.; McKenna, M.J.; Mescher, M.J.; Kujawa, S.G.; Sewell, W.F. Proteomics analysis of perilymph and cerebrospinal fluid in mouse. Laryngoscope 2009, 119, 953–958. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.; Lord, M.S.; Pinyon, J.L.; Wise, A.K.; Lovell, N.H.; Carter, P.; Enke, Y.L.; Housley, G.D.; Green, R.A. Understanding the cochlear implant environment by mapping perilymph proteomes from different species. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5237–5240. [Google Scholar] [CrossRef]
- Rasmussen, J.E.; Laurell, G.; Rask-Andersen, H.; Bergquist, J.; Eriksson, P.O. The proteome of perilymph in patients with vestibular schwannoma. A possibility to identify biomarkers for tumor associated hearing loss? PLoS ONE 2018, 13, e0198442. [Google Scholar] [CrossRef]
- Tornabene, S.V.; Sato, K.; Pham, L.; Billings, P.; Keithley, E.M. Immune cell recruitment following acoustic trauma. Hear. Res. 2006, 222, 115–124. [Google Scholar] [CrossRef]
- Lee, K.Y.; Nakagawa, T.; Okano, T.; Hori, R.; Ono, K.; Tabata, Y.; Lee, S.H.; Ito, J. Novel therapy for hearing loss: Delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel. Otol. Neurotol. 2007, 28, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Yamamoto, N.; Nakagawa, T.; Ito, J. Insulin-like growth factor 1 induces the transcription of Gap43 and Ntn1 during hair cell protection in the neonatal murine cochlea. Neurosci. Lett. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kumakawa, K.; Usami, S.-I.; Hato, N.; Tabuchi, K.; Takahashi, M.; Fujiwara, K.; Sasaki, A.; Komune, S.; Sakamoto, T.; et al. A randomized controlled clinical trial of topical insulin-like growth factor-1 therapy for sudden deafness refractory to systemic corticosteroid treatment. BMC Med. 2014, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rejali, D.; Lee, V.A.; Abrashkin, K.A.; Humayun, N.; Swiderski, D.L.; Raphael, Y. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear. Res. 2007, 228, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, N.; Schulze, J.; Warwas, D.P.; Ehlert, N.; Lenarz, T.; Warnecke, A.; Behrens, P. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro. PLoS ONE 2018, 13, e0194778. [Google Scholar] [CrossRef]
- Mou, K.; Husberger, C.; Cleary, J.; Davis, R.L. Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons. J. Comp. Neurol. 1997, 386, 529–539. [Google Scholar] [CrossRef]
- De Vries, I.; Schmitt, H.; Lenarz, T.; Prenzler, N.; Alvi, S.; Staecker, H.; Durisin, M.; Warnecke, A. Detection of BDNF-Related Proteins in Human Perilymph in Patients with Hearing Loss. Front. Neurosci. 2019, 13, 214. [Google Scholar] [CrossRef]
- Park, S.-N.; Yeo, S.W.; Park, K.-H. Serum Heat Shock Protein 70 and its Correlation with Clinical Characteristics in Patients with Sudden Sensorineural Hearing Loss. Laryngoscope 2006, 116, 121–125. [Google Scholar] [CrossRef]
- Rauch, S.D.; San Martin, J.E.; Moscicki, R.A.; Bloch, K.J. Serum antibodies against heat shock protein 70 in Menière’s disease. Am. J. Otol. 1995, 16, 648–652. [Google Scholar]
- Schmitt, H.; Roemer, A.; Zeilinger, C.; Salcher, R.; Durisin, M.; Staecker, H.; Lenarz, T.; Warnecke, A. Heat Shock Proteins in Human Perilymph: Implications for Cochlear Implantation. Otol. Neurotol. 2018, 39, 37–44. [Google Scholar] [CrossRef]
- Trinh, T.-T.; Blasco, H.; Emond, P.; Andres, C.; Lefevre, A.; Lescanne, E.; Bakhos, D. Relationship between Metabolomics Profile of Perilymph in Cochlear-Implanted Patients and Duration of Hearing Loss. Metabolites 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Niparko, J.K. Spoken Language Development in Children Following Cochlear Implantation. JAMA 2010, 303, 1498–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciorba, A.; Gasparini, P.; Chicca, M.; Pinamonti, S.; Martini, A. Reactive oxygen species in human inner ear perilymph. Acta Oto-Laryngol. 2010, 130, 240–246. [Google Scholar] [CrossRef]
- Geekiyanage, H.; Jicha, G.A.; Nelson, P.T.; Chan, C. Blood serum miRNA: Non-invasive biomarkers for Alzheimer’s disease. Exp. Neurol. 2012, 235, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Ricci, C.; Marzocchi, C.; Battistini, S. MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis. Cells 2018, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Staff, T.P.O. Correction: Profiles of Extracellular miRNA in Cerebrospinal Fluid and Serum from Patients with Alzheimer’s and Parkinson’s Diseases Correlate with Disease Status and Features of Pathology. PLoS ONE 2014, 9, e106174. [Google Scholar] [CrossRef]
- Wichova, H.; Shew, M.; Staecker, H. Utility of Perilymph microRNA Sampling for Identification of Active Gene Expression Pathways in Otosclerosis. Otol. Neurotol. 2019, 40, 710–719. [Google Scholar] [CrossRef]
- Shew, M.; Wichova, H.; Bur, A.; Koestler, D.C.; Peter, M.S.; Warnecke, A.; Staecker, H. MicroRNA Profiling as a Methodology to Diagnose Ménière’s Disease: Potential Application of Machine Learning. Otolaryngol. Neck Surg. 2020, 164, 399–406. [Google Scholar] [CrossRef]
- Shew, M.; Wichova, H.; Warnecke, A.; Lenarz, T.; Staecker, H. Evaluating Neurotrophin Signaling Using MicroRNA Perilymph Profiling in Cochlear Implant Patients with and Without Residual Hearing. Otol. Neurotol. 2021, 42, e1125–e1133. [Google Scholar] [CrossRef]
- Pillsbury, H.C.; Dillon, M.T.; Buchman, C.A.; Staecker, H.; Prentiss, S.M.; Ruckenstein, M.J.; Bigelow, D.C.; Telischi, F.F.; Martinez, D.M.; Runge, C.; et al. Multicenter US Clinical Trial with an Electric-Acoustic Stimulation (EAS) System in Adults: Final Outcomes. Otol. Neurotol. 2018, 39, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Schilder, A.G.; Su, M.P.; Mandavia, R.; Anderson, C.R.; Landry, E.; Ferdous, T.; Blackshaw, H. Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear. Res. 2019, 380, 175–186. [Google Scholar] [CrossRef]
- Snels, C.; IntHout, J.; Mylanus, E.; Huinck, W.; Dhooge, I. Hearing Preservation in Cochlear Implant Surgery: A Meta-Analysis. Otol. Neurotol. 2019, 40, 145–153. [Google Scholar] [CrossRef]
- Smulders, Y.E.; Hendriks, T.; Eikelboom, R.; Stegeman, I.; Maria, P.L.S.; Atlas, M.D.; Friedland, P.L. Predicting Sequential Cochlear Implantation Performance: A Systematic Review. Audiol. Neurotol. 2017, 22, 356–363. [Google Scholar] [CrossRef]
- Moteki, H.; Nishio, S.-Y.; Miyagawa, M.; Tsukada, K.; Iwasaki, S.; Usami, S.-I. Long-term results of hearing preservation cochlear implant surgery in patients with residual low frequency hearing. Acta Oto-Laryngol. 2016, 137, 516–521. [Google Scholar] [CrossRef]
- Astolfi, L.; Simoni, E.; Giarbini, N.; Giordano, P.; Pannella, M.; Hatzopoulos, S.; Martini, A. Cochlear implant and inflammation reaction: Safety study of a new steroid-eluting electrode. Hear. Res. 2016, 336, 44–52. [Google Scholar] [CrossRef]
- Pfingst, B.E.; Colesa, D.J.; Swiderski, D.L.; Hughes, A.P.; Strahl, S.B.; Sinan, M.; Raphael, Y. Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-term Effects on Nerve Survival and Functional Measures. J. Assoc. Res. Otolaryngol. 2017, 18, 731–750. [Google Scholar] [CrossRef]
- Sargsyan, G.; Kanaan, N.; Lenarz, T.; Lesinski-Schiedat, A. Comparison of speech recognition in cochlear implant patients with and without residual hearing: A review of indications. Cochlea-Implant. Int. 2021, 1–8. [Google Scholar] [CrossRef]
- Alzhrani, F.; Mokhatrish, M.M.; Al-Momani, M.O.; AlShehri, H.; Hagr, A.; Garadat, S.N. Effectiveness of stapedotomy in improving hearing sensitivity for 53 otosclerotic patients: Retrospective review. Ann. Saudi Med. 2017, 37, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Persson, P.; And, H.H.; Magnuson, B. Hearing Results in Otosclerosis Surgery after Partial Stapedectomy, Total Stapedectomy and Stapedotomy. Acta Oto-Laryngol. 1997, 117, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Levenson, M.J.; Desloge, R.B.; Parisier, S.C. Beta-2 Transferrin: Limitations of use as a clinical marker for perilymph. Laryngoscope 1996, 106, 159–161. [Google Scholar] [CrossRef]
- Rauch, S.D. Transferrin Microheterogeneity in Human Perilymph. Laryngoscope 2000, 110, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, G.; Viccaro, M.; Covelli, E.; De Seta, E.; Minni, A.; Pizzoli, F.; Filipo, R. Cyclo-oxygenase enzyme in the perilymph of human inner ear. Acta Oto- Laryngol. 2010, 131, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Ribári, O.; Sziklai, I. Cathepsin D Activity in Otosclerotic Bone and Perilymph. Acta Oto-Laryngol. 1988, 105, 549–552. [Google Scholar] [CrossRef]
- Causse, J.R.; Uriel, J.; Berges, J.; Shambaugh, G.E.; Bretlau, P.; Causse, J.B. The enzymatic mechanism of the otospon-giotic disease and NaF action on the enzymatic balance. Am. J. Otol. 1982, 3, 297–314. [Google Scholar]
- Fritsch, J.H.; Jolliff, C.R. XC Protein Components of Human Perilymph. Ann. Otol. Rhinol. Laryngol. 1966, 75, 1070–1076. [Google Scholar] [CrossRef]
- Hladk, R.; Brada, Z.; Kočent, A. Versuch Einer Biochemischen Biopsie Der Perilymphe Bei Operierten Kranken. Acta Oto- Laryngol. 1960, 51, 424–428. [Google Scholar] [CrossRef]
- Jacob, M.; Causse, J.; Gaudy, D.; Duru, C.; Causse, J.B.; Puech, A. Antibacterial therapy in surgery of the inner and middle ear. A study of co-trimoxazole penetration into the perilymph (author’s transl). Nouv. Presse Med. 1982, 11, 2205–2209. [Google Scholar]
- Rüedi, L.; Sanz, M.C.; Fisch, U. Untersuchung Der Perilymphe Nach Stapedktomie in Otosklerosefàallen. Acta Oto-Laryngol. 1965, 59, 289–308. [Google Scholar] [CrossRef]
- Altmann, F.; Kornfeld, M.; Shea, J.J. I Inner Ear Changes in Otosclerosis: Histopathological Studies. Ann. Otol. Rhinol. Laryngol. 1966, 75, 5–32. [Google Scholar] [CrossRef] [PubMed]
- Chevance, L.-G.; Causse, J.R. 1-Antitrypsin Activity of Perilymph: Occurrence During Progression of Otospongiosis. Arch. Otolaryngol. Head Neck Surg. 1976, 102, 363–364. [Google Scholar] [CrossRef]
- Shew, M.; Warnecke, A.; Lenarz, T.; Schmitt, H.; Gunewardena, S.; Staecker, H. Feasibility of microRNA profiling in human inner ear perilymph. NeuroReport 2018, 29, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Kinney, W.C.; Nalepa, N.; Hughes, G.B.; Kinney, S.E. Cochleosacculotomy for the treatment of meniere’s disease in the elderly patient. Laryngoscope 1995, 105, 934–937. [Google Scholar] [CrossRef]
- Fujita, T.; Shin, J.E.; Cunnane, M.; Fujita, K.; Henein, S.; Psaltis, D.; Stankovic, K.M. Surgical anatomy of the human round window region: Implication for cochlear endoscopy through the external auditory canal. Otol. Neurotol. 2016, 37, 1189–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plontke, S.K.; Hartsock, J.J.; Gill, R.M.; Salt, A.N. Intracochlear Drug Injections through the Round Window Membrane: Measures to Improve Drug Retention. Audiol. Neurotol. 2016, 21, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Aksit, A.; Arteaga, D.N.; Arriaga, M.; Wang, X.; Watanabe, H.; Kasza, K.; Lalwani, A.K.; Kysar, J.W. In-vitro perforation of the round window membrane via direct 3-D printed microneedles. Biomed. Microdevices 2018, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.; Yu, M.; Aksit, A.; Wang, W.; Stern-Shavit, S.; Kysar, J.W.; Lalwani, A.K. 3D-Printed Microneedles Create Precise Perforations in Human Round Window Membrane in Situ. Otol. Neurotol. 2020, 41, 277–284. [Google Scholar] [CrossRef]
- Watanabe, H.; Cardoso, L.; Lalwani, A.K.; Kysar, J.W. A dual wedge microneedle for sampling of perilymph solution via round window membrane. Biomed. Microdevices 2016, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Szeto, B.; Aksit, A.; Valentini, C.; Yu, M.; Werth, E.G.; Goeta, S.; Tang, C.; Brown, L.M.; Olson, E.S.; Kysar, J.W.; et al. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear. Res. 2020, 400, 108141. [Google Scholar] [CrossRef]
- Early, S.; Moon, I.S.; Bommakanti, K.; Hunter, I.; Stankovic, K.M. A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear. Hear. Res. 2019, 381, 107761. [Google Scholar] [CrossRef] [PubMed]
- Lippy, W.H.; Berenholz, L.P. Revision Stapedectomy. Ear Nose Throat J. 2009, 88, 1260. [Google Scholar] [CrossRef] [Green Version]
- Gstoettner, W.; Helbig, S.; Settevendemie, C.; Baumann, U.; Wagenblast, J.; Arnoldner, C.; Gstoettner, W.; Helbig, S.; Settevendemie, C.; Baumann, U.; et al. A new electrode for residual hearing preservation in cochlear implantation: First clinical results. Acta Oto- Laryngol. 2009, 129, 372–379. [Google Scholar] [CrossRef]
- Adunka, O.F.; Mlot, S.; Suberman, T.A.; Campbell, A.P.; Surowitz, J.; Buchman, C.A.; Fitzpatrick, D.C. Intracochlear Recordings of Electrophysiological Parameters Indicating Cochlear Damage. Otol. Neurotol. 2010, 31, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Salt, A.N.; Kellner, C.; Hale, S. Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hear. Res. 2003, 182, 24–33. [Google Scholar] [CrossRef]
- Bianchin, G.; Polizzi, V.; Formigoni, P.; Russo, C.; Tribi, L. Cerebrospinal Fluid Leak in Cochlear Implantation: Enlarged Cochlear versus Enlarged Vestibular Aqueduct (Common Cavity Excluded). Int. J. Otolaryngol. 2016, 2016, 6591684. [Google Scholar] [CrossRef] [Green Version]
- Hongjian, L.; Guangke, W.; Song, M.; Xiaoli, D.; Daoxing, Z. The prediction of CSF gusher in cochlear implants with inner ear abnormality. Acta Oto- Laryngol. 2012, 132, 1271–1274. [Google Scholar] [CrossRef]
- Yi, H.J.; Guo, W.; Wu, N.; Li, J.N.; Liu, H.Z.; Ren, L.L.; Liu, P.N.; Yang, S.M. The temporal bone microdissection of miniature pigs as a useful large animal model for otologic research. Acta Oto-Laryngol. 2013, 134, 26–33. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, M.S.; Warnecke, A.; Staecker, H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. J. Clin. Med. 2022, 11, 316. https://doi.org/10.3390/jcm11020316
Peter MS, Warnecke A, Staecker H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. Journal of Clinical Medicine. 2022; 11(2):316. https://doi.org/10.3390/jcm11020316
Chicago/Turabian StylePeter, Madeleine St., Athanasia Warnecke, and Hinrich Staecker. 2022. "A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics" Journal of Clinical Medicine 11, no. 2: 316. https://doi.org/10.3390/jcm11020316
APA StylePeter, M. S., Warnecke, A., & Staecker, H. (2022). A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. Journal of Clinical Medicine, 11(2), 316. https://doi.org/10.3390/jcm11020316