Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohorts
2.2. Image Acquisition and Data Processing
2.3. Neuropsychology
2.4. Data and Statistical Analysis
2.4.1. General White Matter Changes/Damages
2.4.2. Focal White Matter Changes/Damages
2.4.3. Neuropsychological Test
3. Results
3.1. Participants
3.2. General White Matter Changes/Injuries
3.3. Focal White Matter Changes/Injuries
3.4. Neuropsychology
4. Discussion
4.1. Functional Correlates of Regional White Matter Injuries
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, Regional, and National Burden of Traumatic Brain Injury and Spinal Cord Injury, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18, 56–87. [Google Scholar] [CrossRef] [Green Version]
- Dikmen, S.S.; Corrigan, J.D.; Levin, H.S.; Machamer, J.; Stiers, W.; Weisskopf, M.G. Cognitive Outcome Following Traumatic Brain Injury. J. Head Trauma Rehabil. 2009, 24, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Sariaslan, A.; Sharp, D.J.; D’Onofrio, B.M.; Larsson, H.; Fazel, S. Long-Term Outcomes Associated with Traumatic Brain Injury in Childhood and Adolescence: A Nationwide Swedish Cohort Study of a Wide Range of Medical and Social Outcomes. PLoS Med. 2016, 13, e1002103. [Google Scholar] [CrossRef] [Green Version]
- Filley, C.M.; Kelly, J.P. White Matter and Cognition in Traumatic Brain Injury. JAD 2018, 65, 345–362. [Google Scholar] [CrossRef]
- Marklund, N.; Bellander, B.-M.; Godbolt, A.K.; Levin, H.; McCrory, P.; Thelin, E.P. Treatments and Rehabilitation in the Acute and Chronic State of Traumatic Brain Injury. J. Intern. Med. 2019, 285, 608–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef] [Green Version]
- McKeithan, L.; Hibshman, N.; Yengo-Kahn, A.M.; Solomon, G.S.; Zuckerman, S.L. Sport-Related Concussion: Evaluation, Treatment, and Future Directions. Med. Sci. 2019, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.F.; Susmaras, T.; Caughlin, B.P.; Walker, C.J.; Sweeney, J.A.; Little, D.M. White Matter Integrity and Cognition in Chronic Traumatic Brain Injury: A Diffusion Tensor Imaging Study. Brain 2007, 130, 2508–2519. [Google Scholar] [CrossRef]
- Pavlovic, D.; Pekic, S.; Stojanovic, M.; Popovic, V. Traumatic Brain Injury: Neuropathological, Neurocognitive and Neurobehavioral Sequelae. Pituitary 2019, 22, 270–282. [Google Scholar] [CrossRef]
- Knight, S.; Takagi, M.; Fisher, E.; Anderson, V.; Lannin, N.A.; Tavender, E.; Scheinberg, A. A Systematic Critical Appraisal of Evidence-Based Clinical Practice Guidelines for the Rehabilitation of Children With Moderate or Severe Acquired Brain Injury. Arch. Phys. Med. Rehabil. 2019, 100, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Wortzel, H.S.; Arciniegas, D.B. The DSM-5 Approach to the Evaluation of Traumatic Brain Injury and Its Neuropsychiatric Sequelae. NeuroRehabilitation 2014, 34, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, B.; Katz, D.I. Postconcussion Syndrome. Handb. Clin. Neurol. 2018, 158, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Arenth, P.M.; Russell, K.C.; Scanlon, J.M.; Kessler, L.J.; Ricker, J.H. Corpus Callosum Integrity and Neuropsychological Performance after Traumatic Brain Injury: A Diffusion Tensor Imaging Study. J. Head Trauma Rehabil. 2014, 29, E1–E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raskin, S.A.; Williams, J.; Aiken, E.M. A Review of Prospective Memory in Individuals with Acquired Brain Injury. Clin. Neuropsychol. 2018, 32, 891–921. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, V.; Chatfield, D.; Outtrim, J.; Vowler, S.; Manktelow, A.; Cross, J.; Scoffings, D.; Coleman, M.; Hutchinson, P.; Coles, J.; et al. Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome. PLoS ONE 2011, 6, e19214. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, M.A.; Meier, T.B.; Olson, D.V.; McCrea, M.A.; Nelson, L.D.; Muftuler, L.T. Chronic Differences in White Matter Integrity Following Sport-Related Concussion as Measured by Diffusion MRI: 6-Month Follow-Up. Hum. Brain Mapp. 2018, 39, 4276–4289. [Google Scholar] [CrossRef] [Green Version]
- Mohammadian, M.; Roine, T.; Hirvonen, J.; Kurki, T.; Posti, J.P.; Katila, A.J.; Takala, R.S.K.; Tallus, J.; Maanpää, H.-R.; Frantzén, J.; et al. Alterations in Microstructure and Local Fiber Orientation of White Matter Are Associated with Outcome after Mild Traumatic Brain Injury. J. Neurotrauma 2020, 37, 2616–2623. [Google Scholar] [CrossRef] [PubMed]
- Hulkower, M.B.; Poliak, D.B.; Rosenbaum, S.B.; Zimmerman, M.E.; Lipton, M.L. A Decade of DTI in Traumatic Brain Injury: 10 Years and 100 Articles Later. Am. J. Neuroradiol. 2013, 34, 2064–2074. [Google Scholar] [CrossRef] [Green Version]
- Shenton, M.E.; Hamoda, H.M.; Schneiderman, J.S.; Bouix, S.; Pasternak, O.; Rathi, Y.; Vu, M.-A.; Purohit, M.P.; Helmer, K.; Koerte, I.; et al. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury. Brain Imaging Behav. 2012, 6, 137–192. [Google Scholar] [CrossRef]
- Veeramuthu, V.; Narayanan, V.; Kuo, T.L.; Delano-Wood, L.; Chinna, K.; Bondi, M.W.; Waran, V.; Ganesan, D.; Ramli, N. Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study. J. Neurotrauma 2015, 32, 1497–1509. [Google Scholar] [CrossRef]
- Aoki, Y.; Inokuchi, R.; Gunshin, M.; Yahagi, N.; Suwa, H. Diffusion Tensor Imaging Studies of Mild Traumatic Brain Injury: A Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, R.-L.; Peng, G.-P.; Zhou, J.-J.; Wu, M.; He, F.-P.; Pan, G.; Gao, J.; Luo, B.-Y. Correlations between Diffusion Tensor Imaging and Levels of Consciousness in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Sci. Rep. 2017, 7, 2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Tian, L.; Zhang, L.; Cheng, R.; Wei, R.; He, F.; Li, J.; Luo, B.; Ye, X. Relationship between White Matter Integrity and Post-Traumatic Cognitive Deficits: A Systematic Review and Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 98–107. [Google Scholar] [CrossRef] [PubMed]
- de la Plata, C.D.M.; Yang, F.G.; Wang, J.Y.; Krishnan, K.; Bakhadirov, K.; Paliotta, C.; Aslan, S.; Devous, M.D.; Moore, C.; Harper, C.; et al. Diffusion Tensor Imaging Biomarkers for Traumatic Axonal Injury: Analysis of Three Analytic Methods. J. Int. Neuropsychol. Soc. 2011, 17, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moen, K.G.; Vik, A.; Olsen, A.; Skandsen, T.; Håberg, A.K.; Evensen, K.A.I.; Eikenes, L. Traumatic Axonal Injury: Relationships between Lesions in the Early Phase and Diffusion Tensor Imaging Parameters in the Chronic Phase of Traumatic Brain Injury: Traumatic Axonal Injury Lesions in Chronic TBI. J. Neurosci. Res. 2016, 94, 623–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashim, E.; Caverzasi, E.; Papinutto, N.; Lewis, C.E.; Jing, R.; Charles, O.; Zhang, S.; Lin, A.; Graham, S.J.; Schweizer, T.A.; et al. Investigating Microstructural Abnormalities and Neurocognition in Sub-Acute and Chronic Traumatic Brain Injury Patients with Normal-Appearing White Matter: A Preliminary Diffusion Tensor Imaging Study. Front. Neurol. 2017, 8, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maller, J.J.; Thomson, R.H.S.; Lewis, P.M.; Rose, S.E.; Pannek, K.; Fitzgerald, P.B. Traumatic Brain Injury, Major Depression, and Diffusion Tensor Imaging: Making Connections. Brain Res. Rev. 2010, 64, 213–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zappalà, G.; de Schotten, M.T.; Eslinger, P.J. Traumatic Brain Injury and the Frontal Lobes: What Can We Gain with Diffusion Tensor Imaging? Cortex 2012, 48, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Asken, B.M.; DeKosky, S.T.; Clugston, J.R.; Jaffee, M.S.; Bauer, R.M. Diffusion Tensor Imaging (DTI) Findings in Adult Civilian, Military, and Sport-Related Mild Traumatic Brain Injury (MTBI): A Systematic Critical Review. Brain Imaging Behav. 2018, 12, 585–612. [Google Scholar] [CrossRef]
- Castaño Leon, A.M.; Cicuendez, M.; Navarro, B.; Munarriz, P.M.; Cepeda, S.; Paredes, I.; Hilario, A.; Ramos, A.; Gómez, P.A.; Lagares, A. What Can Be Learned from Diffusion Tensor Imaging from a Large Traumatic Brain Injury Cohort?: White Matter Integrity and Its Relationship with Outcome. J. Neurotrauma 2018, 35, 2365–2376. [Google Scholar] [CrossRef]
- Makdissi, M.; Schneider, K.J.; Feddermann-Demont, N.; Guskiewicz, K.M.; Hinds, S.; Leddy, J.J.; McCrea, M.; Turner, M.; Johnston, K.M. Approach to Investigation and Treatment of Persistent Symptoms Following Sport-Related Concussion: A Systematic Review. Br. J. Sports Med. 2017, 51, 958–968. [Google Scholar] [CrossRef]
- Ware, J.B.; Hart, T.; Whyte, J.; Rabinowitz, A.; Detre, J.A.; Kim, J. Inter-Subject Variability of Axonal Injury in Diffuse Traumatic Brain Injury. J. Neurotrauma 2017, 34, 2243–2253. [Google Scholar] [CrossRef]
- Ingebrigtsen, T.; Romner, B.; Kock-Jensen, C. Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries. The Scandinavian Neurotrauma Committee. J. Trauma 2000, 48, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Guze, S.B. Diagnostic and Statistical Manual of Mental Disorders, 4th Ed. (DSM-IV). AJP 1995, 152, 1228. [Google Scholar] [CrossRef]
- McIntyre, M.; Amiri, M.; Kumbhare, D. Postconcussion Syndrome: A Diagnosis of Past Diagnostic and Statistical Manual of Mental Disorders. Am. J. Phys. Med. Rehabil. 2021, 100, 193–195. [Google Scholar] [CrossRef]
- Andersson, J.L.R.; Sotiropoulos, S.N. An Integrated Approach to Correction for Off-Resonance Effects and Subject Movement in Diffusion MR Imaging. Neuroimage 2016, 125, 1063–1078. [Google Scholar] [CrossRef] [Green Version]
- Yeh, F.-C.; Tseng, W.-Y.I. NTU-90: A High Angular Resolution Brain Atlas Constructed by q-Space Diffeomorphic Reconstruction. Neuroimage 2011, 58, 91–99. [Google Scholar] [CrossRef]
- Latini, F.; Fahlström, M.; Berntsson, S.G.; Larsson, E.-M.; Smits, A.; Ryttlefors, M. A Novel Radiological Classification System for Cerebral Gliomas: The Brain-Grid. PLoS ONE 2019, 14, e0211243. [Google Scholar] [CrossRef] [Green Version]
- McKay, C.; Casey, J.E.; Wertheimer, J.; Fichtenberg, N.L. Reliability and Validity of the RBANS in a Traumatic Brain Injured Sample. Arch. Clin. Neuropsychol. 2007, 22, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yengo-Kahn, A.M.; Hale, A.T.; Zalneraitis, B.H.; Zuckerman, S.L.; Sills, A.K.; Solomon, G.S. The Sport Concussion Assessment Tool: A Systematic Review. Neurosurg. Focus 2016, 40, E6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iverson, G.L. Network Analysis and Precision Rehabilitation for the Post-Concussion Syndrome. Front. Neurol. 2019, 10, 489. [Google Scholar] [CrossRef] [Green Version]
- Bazarian, J.J.; Zhong, J.; Blyth, B.; Zhu, T.; Kavcic, V.; Peterson, D. Diffusion Tensor Imaging Detects Clinically Important Axonal Damage after Mild Traumatic Brain Injury: A Pilot Study. J. Neurotrauma 2007, 24, 1447–1459. [Google Scholar] [CrossRef]
- Winklewski, P.J.; Sabisz, A.; Naumczyk, P.; Jodzio, K.; Szurowska, E.; Szarmach, A. Understanding the Physiopathology Behind Axial and Radial Diffusivity Changes—What Do We Know? Front. Neurol. 2018, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Houri, J.; Karunamuni, R.; Connor, M.; Pettersson, N.; McDonald, C.; Farid, N.; White, N.; Dale, A.; Hattangadi-Gluth, J.A.; Moiseenko, V. Analyses of Regional Radiosensitivity of White Matter Structures along Tract Axes Using Novel White Matter Segmentation and Diffusion Imaging Biomarkers. Phys. Imaging Radiat. Oncol. 2018, 6, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Latini, F.; Fahlström, M.; Marklund, N.; Feresiadou, A. White Matter Abnormalities in a Patient with Visual Snow Syndrome: New Evidence from a Diffusion Tensor Imaging Study. Eur. J. Neurol. 2021, 28, 2789–2793. [Google Scholar] [CrossRef] [PubMed]
- Chamard, E.; Lefebvre, G.; Lassonde, M.; Theoret, H. Long-Term Abnormalities in the Corpus Callosum of Female Concussed Athletes. J. Neurotrauma 2016, 33, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.C.; Tremblay, J.; Tremblay, S.; Lee, A.; Brun, C.; Lepore, N.; Theoret, H.; Ellemberg, D.; Lassonde, M. Acute and Chronic Changes in Diffusivity Measures after Sports Concussion. J. Neurotrauma 2011, 28, 2049–2059. [Google Scholar] [CrossRef]
- Meier, T.B.; Bergamino, M.; Bellgowan, P.S.F.; Teague, T.K.; Ling, J.M.; Jeromin, A.; Mayer, A.R. Longitudinal Assessment of White Matter Abnormalities Following Sports-Related Concussion. Hum. Brain Mapp. 2016, 37, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Wheeler-Kingshott, C.A.M.; Cercignani, M. About “Axial” and “Radial” Diffusivities. Magn. Reson. Med. 2009, 61, 1255–1260. [Google Scholar] [CrossRef]
- Song, S.-K.; Yoshino, J.; Le, T.Q.; Lin, S.-J.; Sun, S.-W.; Cross, A.H.; Armstrong, R.C. Demyelination Increases Radial Diffusivity in Corpus Callosum of Mouse Brain. Neuroimage 2005, 26, 132–140. [Google Scholar] [CrossRef]
- Singleton, R.H.; Zhu, J.; Stone, J.R.; Povlishock, J.T. Traumatically Induced Axotomy Adjacent to the Soma Does Not Result in Acute Neuronal Death. J. Neurosci. 2002, 22, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, S.; Tournier, J.-D.; Calamante, F.; Fabinyi, G.; Schneider-Kolsky, M.; Jackson, G.D.; Connelly, A. White Matter Fiber Tractography: Why We Need to Move beyond DTI. J. Neurosurg. 2013, 118, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Vos, S.B.; Jones, D.K.; Viergever, M.A.; Leemans, A. Partial Volume Effect as a Hidden Covariate in DTI Analyses. Neuroimage 2011, 55, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Kay-Lambkin, F.; Stanwell, P.; Donnelly, J.; Williams, W.H.; Hiles, A.; Schofield, P.; Levi, C.; Jones, D.K. A Systematic Review of Diffusion Tensor Imaging Findings in Sports-Related Concussion. J. Neurotrauma 2012, 29, 2521–2538. [Google Scholar] [CrossRef] [Green Version]
- Feigl, G.C.; Hiergeist, W.; Fellner, C.; Schebesch, K.-M.M.; Doenitz, C.; Finkenzeller, T.; Brawanski, A.; Schlaier, J. Magnetic Resonance Imaging Diffusion Tensor Tractography: Evaluation of Anatomic Accuracy of Different Fiber Tracking Software Packages. World Neurosurg. 2014, 81, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.; Gardner, A.J.; Schneider, K.J.; Guskiewicz, K.M.; Bailes, J.; Cantu, R.C.; Castellani, R.J.; Turner, M.; Jordan, B.D.; Randolph, C.; et al. A Systematic Review of Potential Long-Term Effects of Sport-Related Concussion. Br. J. Sports Med. 2017, 51, 969–977. [Google Scholar] [CrossRef]
- Rees, L.; Marshall, S.; Hartridge, C.; Mackie, D.; Weiser, M. Erabi Group Cognitive Interventions Post Acquired Brain Injury. Brain Inj. 2007, 21, 161–200. [Google Scholar] [CrossRef]
- Willer, B.; Leddy, J.J. Management of Concussion and Post-Concussion Syndrome. Curr. Treat Options Neurol. 2006, 8, 415–426. [Google Scholar] [CrossRef]
- Leddy, J.J.; Sandhu, H.; Sodhi, V.; Baker, J.G.; Willer, B. Rehabilitation of Concussion and Post-Concussion Syndrome. Sports Health 2012, 4, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rickards, T.A.; Cranston, C.C.; McWhorter, J. Persistent Post-Concussive Symptoms: A Model of Predisposing, Precipitating, and Perpetuating Factors. Appl. Neuropsychol. Adult 2020, 1–11. [Google Scholar] [CrossRef]
- Mittenberg, W.; Canyock, E.M.; Condit, D.; Patton, C. Treatment of Post-Concussion Syndrome Following Mild Head Injury. J. Clin. Exp. Neuropsychol. 2001, 23, 829–836. [Google Scholar] [CrossRef]
- Al Sayegh, A.; Sandford, D.; Carson, A.J. Psychological Approaches to Treatment of Postconcussion Syndrome: A Systematic Review. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1128–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leddy, J.J.; Kozlowski, K.; Donnelly, J.P.; Pendergast, D.R.; Epstein, L.H.; Willer, B. A Preliminary Study of Subsymptom Threshold Exercise Training for Refractory Post-Concussion Syndrome. Clin. J. Sport Med. 2010, 20, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergquist, T.; Gehl, C.; Mandrekar, J.; Lepore, S.; Hanna, S.; Osten, A.; Beaulieu, W. The Effect of Internet-Based Cognitive Rehabilitation in Persons with Memory Impairments after Severe Traumatic Brain Injury. Brain Inj. 2009, 23, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Thomas, J.D.; Glueckauf, R.L.; Bracy, O.L. The Effectiveness of Computer-Assisted Cognitive Rehabilitation for Persons with Traumatic Brain Injury. Brain Inj. 1997, 11, 197–209. [Google Scholar] [CrossRef]
- Tam, S.-F.; Man, W.-K. Evaluating Computer-Assisted Memory Retraining Programmes for People with Post-Head Injury Amnesia. Brain Inj. 2004, 18, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino, M.A.; Bhatnagar, S.; Zafonte, R. Rehabilitation after Traumatic Brain Injury. Handb. Clin. Neurol. 2015, 127, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Barman, A.; Chatterjee, A.; Bhide, R. Cognitive Impairment and Rehabilitation Strategies After Traumatic Brain Injury. Indian J. Psychol. Med. 2016, 38, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.S.; Garic, D.; Graziano, P.; Tremblay, P. The Frontal Aslant Tract (FAT) and Its Role in Speech, Language and Executive Function. Cortex 2019, 111, 148–163. [Google Scholar] [CrossRef]
- Vergani, F.; Lacerda, L.; Martino, J.; Attems, J.; Morris, C.; Mitchell, P.; de Schotten, M.T.; Dell’Acqua, F. White Matter Connections of the Supplementary Motor Area in Humans. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1377–1385. [Google Scholar] [CrossRef]
- La Corte, E.; Eldahaby, D.; Greco, E.; Aquino, D.; Bertolini, G.; Levi, V.; Ottenhausen, M.; Demichelis, G.; Romito, L.M.; Acerbi, F.; et al. The Frontal Aslant Tract: A Systematic Review for Neurosurgical Applications. Front. Neurol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Baker, C.M.; Burks, J.D.; Briggs, R.G.; Smitherman, A.D.; Glenn, C.A.; Conner, A.K.; Wu, D.H.; Sughrue, M.E. The Crossed Frontal Aslant Tract: A Possible Pathway Involved in the Recovery of Supplementary Motor Area Syndrome. Brain Behav. 2018, 8, e00926. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, J.; Rowe, R.K.; Griffiths, D.R.; Evilsizor, M.N.; Thomas, T.C.; Adelson, P.D.; McIntosh, T.K. Clinical Relevance of Midline Fluid Percussion Brain Injury: Acute Deficits, Chronic Morbidities, and the Utility of Biomarkers. Brain Inj. 2016, 30, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Aggleton, J.P.; Brown, M.W. Episodic Memory, Amnesia, and the Hippocampal-Anterior Thalamic Axis. Behav. Brain Sci. 1999, 22, 425–444; discussion 444–489. [Google Scholar] [CrossRef]
- Sweeney-Reed, C.M.; Zaehle, T.; Voges, J.; Schmitt, F.C.; Buentjen, L.; Kopitzki, K.; Esslinger, C.; Hinrichs, H.; Heinze, H.-J.; Knight, R.T.; et al. Corticothalamic Phase Synchrony and Cross-Frequency Coupling Predict Human Memory Formation. Elife 2014, 3, e05352. [Google Scholar] [CrossRef]
- Sweeney-Reed, C.M.; Zaehle, T.; Voges, J.; Schmitt, F.C.; Buentjen, L.; Kopitzki, K.; Hinrichs, H.; Heinze, H.-J.; Rugg, M.D.; Knight, R.T.; et al. Thalamic Theta Phase Alignment Predicts Human Memory Formation and Anterior Thalamic Cross-Frequency Coupling. Elife 2015, 4, e07578. [Google Scholar] [CrossRef] [PubMed]
- de Bourbon-Teles, J.; Bentley, P.; Koshino, S.; Shah, K.; Dutta, A.; Malhotra, P.; Egner, T.; Husain, M.; Soto, D. Thalamic Control of Human Attention Driven by Memory and Learning. Curr. Biol. 2014, 24, 993–999. [Google Scholar] [CrossRef] [Green Version]
- Carrera, E.; Bogousslavsky, J. The Thalamus and Behavior: Effects of Anatomically Distinct Strokes. Neurology 2006, 66, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Nishio, Y.; Hashimoto, M.; Ishii, K.; Ito, D.; Mugikura, S.; Takahashi, S.; Mori, E. Multiple Thalamo-Cortical Disconnections in Anterior Thalamic Infarction: Implications for Thalamic Mechanisms of Memory and Language. Neuropsychologia 2014, 53, 264–273. [Google Scholar] [CrossRef]
- Bigler, E.D. The Lesion(s) in Traumatic Brain Injury: Implications for Clinical Neuropsychology. Arch. Clin. Neuropsychol. 2001, 16, 95–131. [Google Scholar] [CrossRef] [Green Version]
- Ok, B.S.; Lyong, K.O.; Ho, K.S.; Soo, K.M.; Min, S.S.; Woo, C.Y.; Mok, B.W.; Ho, J.S. Relation between Cingulum Injury and Cognition in Chronic Patients with Traumatic Brain Injury; Diffusion Tensor Tractography Study. NeuroRehabilitation 2013, 33, 465–471. [Google Scholar] [CrossRef]
- Gazzaniga, M.S. Cerebral Specialization and Interhemispheric CommunicationDoes the Corpus Callosum Enable the Human Condition? Brain 2000, 123, 1293–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glickstein, M.; Berlucchi, G. Classical Disconnection Studies of the Corpus Callosum. Cortex 2008, 44, 914–927. [Google Scholar] [CrossRef] [PubMed]
- Schulte, T.; Müller-Oehring, E.M. Contribution of Callosal Connections to the Interhemispheric Integration of Visuomotor and Cognitive Processes. Neuropsychol. Rev. 2010, 20, 174–190. [Google Scholar] [CrossRef] [Green Version]
- Yaldizli, Ö.; Penner, I.-K.; Frontzek, K.; Naegelin, Y.; Amann, M.; Papadopoulou, A.; Sprenger, T.; Kuhle, J.; Calabrese, P.; Radü, E.W.; et al. The Relationship between Total and Regional Corpus Callosum Atrophy, Cognitive Impairment and Fatigue in Multiple Sclerosis Patients. Mult. Scler. 2014, 20, 356–364. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.; Rushby, J.A.; Dalton, K.I.; Allen, S.K.; Parks, N. The Role of Abnormalities in the Corpus Callosum in Social Cognition Deficits after Traumatic Brain Injury. Soc. Neurosci. 2018, 13, 471–479. [Google Scholar] [CrossRef]
- van der Knaap, L.J.; van der Ham, I.J.M. How Does the Corpus Callosum Mediate Interhemispheric Transfer? A Review. Behav. Brain Res. 2011, 223, 211–221. [Google Scholar] [CrossRef]
- Marklund, N.; Vedung, F.; Lubberink, M.; Tegner, Y.; Johansson, J.; Blennow, K.; Zetterberg, H.; Fahlström, M.; Haller, S.; Stenson, S.; et al. Tau Aggregation and Increased Neuroinflammation in Athletes after Sports-Related Concussions and in Traumatic Brain Injury Patients—A PET/MR Study. Neuroimage Clin. 2021, 30, 102665. [Google Scholar] [CrossRef]
- Mohamed, A.Z.; Cumming, P.; Nasrallah, F.A. White Matter Alterations Are Associated With Cognitive Dysfunction Decades After Moderate-to-Severe Traumatic Brain Injury and/or Posttraumatic Stress Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 1100–1109. [Google Scholar] [CrossRef]
- Andreasen, S.; Andersen, K.; Conde, V.; Dyrby, T.; Puonti, O.; Kammersgaard, L.; Madsen, C.; Madsen, K.; Poulsen, I.; Siebner, H. Limited Colocalization of Microbleeds and Microstructural Changes After Severe Traumatic Brain Injury. Available online: https://pubmed.ncbi.nlm.nih.gov/31588844/?from_single_result=limited+colocalization%2C+Andreasen+S&expanded_search_query=limited+colocalization%2C+Andreasen+S (accessed on 23 May 2020).
- Haller, S.; Vernooij, M.W.; Kuijer, J.P.A.; Larsson, E.-M.; Jäger, H.R.; Barkhof, F. Cerebral Microbleeds: Imaging and Clinical Significance. Radiology 2018, 287, 11–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostowsky, K.A.; Maher, A.S.; Irimia, A. Macroscale White Matter Alterations Due to Traumatic Cerebral Microhemorrhages Are Revealed by Diffusion Tensor Imaging. Front. Neurol. 2018, 9, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical/Radiological Factors | Groups | ||
---|---|---|---|
TBI | SRC | HC | |
Number of patients | 6 | 12 | 10 |
Age-mean (SD) | 27 (7) | 26 (7) | 26 (5) |
Gender-M/F | 4/2 | 6/6 | 5/5 |
Concussions-no (range) | - | 6 (3–10) | - |
Contusions-no | 4 | - | - |
DAI-no | 2 | - | - |
Time since last TBI or SRC (months) | 19 (8) | 23 (6–132) | - |
Length of Hospital stay (days) | 17 (9) | - | - |
Injury Mechanisms | |||
Fall | 3 | - | - |
Motor vehicle accident | 3 | - | - |
Sports-related | - | 12 | - |
Neurologic status | |||
GCS at admission (range) | 12 (5–14) | - | - |
GCS at discharge (range) | 14 (8–15) | - | - |
GOS at the time of MRI (n of pts) | 5 (4), 4(2) | - | - |
Symptoms (SCAT) | |||
SSS (range) | - | 48.5 (3–91) | - |
NOS (range) | - | 18 (2–22) | - |
White Matter Structure | AD | FA | RD | Injured | ||||
---|---|---|---|---|---|---|---|---|
TBI vs. HC | SRC vs. HC | TBI vs. HC | SRC vs. HC | TBI vs. HC | SRC vs. HC | TBI | SRC | |
AC | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | Y | N |
AF L | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.4062 | <0.0001 | N | N |
AF R | 0.0006 | >0.9999 | 0.0603 | 0.6801 | 0.0002 | 0.3323 | Y | N |
Internal capsule Anterior L | <0.0001 | 0.8410 | <0.0001 | 0.0226 | <0.0001 | 0.5070 | Y | N |
Internal capsule Anterior R | <0.0001 | 0.2387 | 0.0416 | <0.0001 | <0.0001 | >0.9999 | Y | N |
FAT L | 0.0007 | >0.9999 | 0.0125 | >0.9999 | <0.0001 | >0.9999 | Y | N |
FAT R | 0.0178 | >0.9999 | 0.0149 | 0.6267 | 0.0006 | 0.2962 | Y | N |
ATR L | <0.0001 | 0.1121 | <0.0001 | 0.0588 | <0.0001 | 0.5310 | Y | N |
ATR R | <0.0001 | >0.9999 | <0.0001 | 0.6583 | <0.0001 | 0.2591 | Y | N |
Ci L | 0.1709 | 0.0003 | <0.0001 | 0.2943 | <0.0001 | 0.0295 | N | N |
Ci R | <0.0001 | <0.0001 | 0.0006 | 0.0026 | <0.0001 | 0.0017 | Y | N |
CS L | <0.0001 | 0.1422 | 0.0006 | >0.9999 | <0.0001 | >0.9999 | Y | N |
CS R | <0.0001 | >0.9999 | 0.0322 | 0.8871 | <0.0001 | >0.9999 | Y | N |
External capsule L | <0.0001 | 0.8449 | 0.0374 | 0.0980 | <0.0001 | 0.5370 | Y | N |
External capsule R | <0.0001 | >0.9999 | 0.0410 | >0.9999 | <0.0001 | 0.6081 | Y | N |
FM | <0.0001 | 0.4771 | 0.0006 | 0.0028 | <0.0001 | <0.0001 | Y | N |
Fo L | <0.0001 | <0.0001 | <0.0001 | 0.0011 | <0.0001 | 0.0001 | Y | N |
Fo R | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | Y | N |
Genu CC | 0.0019 | >0.9999 | <0.0001 | 0.3754 | <0.0001 | 0.0060 | Y | N |
hSLF L | <0.0001 | 0.5733 | 0.0002 | 0.8185 | <0.0001 | 0.8285 | Y | N |
hSLF R | <0.0001 | >0.9999 | 0.0005 | 0.7111 | <0.0001 | >0.9999 | Y | N |
IFOF L | <0.0001 | 0.3086 | 0.0036 | 0.0009 | <0.0001 | 0.1810 | Y | N |
IFOF R | <0.0001 | >0.9999 | 0.2301 | >0.9999 | <0.0001 | 0.7752 | Y | N |
ILF L | 0.0116 | 0.3316 | 0.0157 | >0.9999 | <0.0001 | >0.9999 | Y | N |
ILF R | <0.0001 | >0.9999 | 0.0140 | >0.9999 | <0.0001 | 0.6816 | Y | N |
MLF L | 0.1890 | 0.0226 | 0.2841 | 0.0774 | <0.0001 | 0.3796 | N | N |
MLF R | 0.5220 | >0.9999 | 0.0011 | 0.0105 | <0.0001 | <0.0001 | N | N |
OR L | <0.0001 | 0.6411 | 0.0207 | 0.5038 | <0.0001 | >0.9999 | Y | N |
OR R | <0.0001 | >0.9999 | >0.9999 | >0.9999 | <0.0001 | 0.8799 | N | N |
Internal capsule posterior L | <0.0001 | 0.0622 | <0.0001 | >0.9999 | <0.0001 | >0.9999 | Y | N |
Internal capsule posterior R | <0.0001 | >0.9999 | 0.0144 | 0.8507 | <0.0001 | >0.9999 | Y | N |
UF L | <0.0001 | 0.3353 | 0.1033 | 0.0110 | <0.0001 | 0.0007 | Y | N |
UF R | 0.1262 | 0.4169 | 0.0729 | 0.7228 | 0.0022 | 0.0070 | N | N |
VO L | 0.5318 | >0.9999 | 0.0022 | >0.9999 | <0.0001 | >0.9999 | N | N |
VO R | 0.4149 | 0.1643 | 0.1207 | 0.0106 | 0.0240 | 0.3355 | N | N |
vSLF L | 0.0027 | 0.0081 | 0.2355 | >0.9999 | 0.0249 | >0.9999 | Y | N |
vSLF R | <0.0001 | 0.0105 | 0.0012 | 0.5643 | <0.0001 | 0.5110 | Y | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latini, F.; Fahlström, M.; Vedung, F.; Stensson, S.; Larsson, E.-M.; Lubberink, M.; Tegner, Y.; Haller, S.; Johansson, J.; Wall, A.; et al. Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? J. Clin. Med. 2022, 11, 358. https://doi.org/10.3390/jcm11020358
Latini F, Fahlström M, Vedung F, Stensson S, Larsson E-M, Lubberink M, Tegner Y, Haller S, Johansson J, Wall A, et al. Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? Journal of Clinical Medicine. 2022; 11(2):358. https://doi.org/10.3390/jcm11020358
Chicago/Turabian StyleLatini, Francesco, Markus Fahlström, Fredrik Vedung, Staffan Stensson, Elna-Marie Larsson, Mark Lubberink, Yelverton Tegner, Sven Haller, Jakob Johansson, Anders Wall, and et al. 2022. "Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches?" Journal of Clinical Medicine 11, no. 2: 358. https://doi.org/10.3390/jcm11020358
APA StyleLatini, F., Fahlström, M., Vedung, F., Stensson, S., Larsson, E. -M., Lubberink, M., Tegner, Y., Haller, S., Johansson, J., Wall, A., Antoni, G., & Marklund, N. (2022). Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? Journal of Clinical Medicine, 11(2), 358. https://doi.org/10.3390/jcm11020358