Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. PBMC Isolation from Whole Blood
2.3. Transmigration Assay
2.4. Spectral Flow Cytometry
2.5. Gating Strategy
2.6. Statistical Analysis
3. Results
3.1. CD4+ TEM and CD8+ TCM Cells Have Inhibited Transmigration across the BBB in Cladribine-Treated MS Patients
3.2. CD38 Expression Increased on Migrated CD4+ TEM Cells Whilst CD28 Expression Decreased on Migrated CD4+ TEM and CD8+ TCM Cells in Cladribine-Treated MS Patients
3.3. Cladribine Depletes Circulating CD4+ TEM and CD8+ TCM Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, D.; Herrod, S.S.; Alvarez-Gonzalez, C.; Zalewski, L.; Albor, C.; Schmierer, K. Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e360. [Google Scholar] [CrossRef] [Green Version]
- Beutler, E. Cladribine (2-chlorodeoxyadenosine). Lancet 1992, 340, 952–956. [Google Scholar] [CrossRef]
- Giovannoni, G.; Soelberg Sorensen, P.; Cook, S.; Rammohan, K.; Rieckmann, P.; Comi, G.; Dangond, F.; Adeniji, A.K.; Vermersch, P. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study. Mult. Scler. 2018, 24, 1594–1604. [Google Scholar] [CrossRef] [Green Version]
- Wiendl, H. Cladribine—An old newcomer for pulsed immune reconstitution in MS. Nat. Rev. Neurol. 2017, 13, 573–574. [Google Scholar] [CrossRef]
- Jacobs, B.; Ammoscato, F.; Giovannoni, G.; Baker, D.; Schmierer, K. Cladribine: Mechanisms and mysteries in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 1266–1271. [Google Scholar] [CrossRef]
- Korsen, M.; Alonso, S.B.; Peix, L.; Bröker, B.M.; Dressel, A. Cladribine Exposure Results in a Sustained Modulation of the Cytokine Response in Human Peripheral Blood Mononuclear Cells. PLoS ONE 2015, 10, e0129182. [Google Scholar] [CrossRef] [PubMed]
- Laugel, B.; Borlat, F.; Galibert, L.; Vicari, A.; Weissert, R.; Chvatchko, Y.; Bruniquel, D. Cladribine inhibits cytokine secretion by T cells independently of deoxycytidine kinase activity. J. Neuroimmunol. 2011, 240–241, 52–57. [Google Scholar] [CrossRef]
- Prat, A.; Biernacki, K.; Lavoie, J.F.; Poirier, J.; Duquette, P.; Antel, J.P. Migration of multiple sclerosis lymphocytes through brain endothelium. Arch. Neurol. 2002, 59, 391–397. [Google Scholar] [CrossRef]
- Yednock, T.A.; Cannon, C.; Fritz, L.C.; Sanchez-Madrid, F.; Steinman, L.; Karin, N. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992, 356, 63–66. [Google Scholar] [CrossRef]
- Kopadze, T.; Dobert, M.; Leussink, V.I.; Dehmel, T.; Kieseier, B.C. Cladribine impedes in vitro migration of mononuclear cells: A possible implication for treating multiple sclerosis. Eur. J. Neurol. 2009, 16, 409–412. [Google Scholar] [CrossRef]
- Hawke, S.; Zinger, A.; Juillard, P.G.; Holdaway, K.; Byrne, S.N.; Grau, G.E. Selective modulation of trans-endothelial migration of lymphocyte subsets in multiple sclerosis patients under fingolimod treatment. J. Neuroimmunol. 2020, 349, 577392. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Torres, I.; González-García, C.; Marconi, M.; García-Grande, A.; Rodríguez-Esparragoza, L.; Elvira, V.; Ramil, E.; Campos-Ruíz, L.; García-Hernández, R.; Al-Shahrour, F.; et al. Immunophenotype and Transcriptome Profile of Patients with Multiple Sclerosis Treated with Fingolimod: Setting up a Model for Prediction of Response in a 2-Year Translational Study. Front. Immunol. 2018, 9, 1693. [Google Scholar] [CrossRef] [Green Version]
- Ngai, P.; McCormick, S.; Small, C.; Zhang, X.; Zganiacz, A.; Aoki, N.; Xing, Z. Gamma Interferon Responses of CD4 and CD8 T-Cell Subsets Are Quantitatively Different and Independent of Each Other during Pulmonary Mycobacterium bovis BCG Infection. Infect Immun. 2007, 75, 2244–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepper, M.; Jenkins, M.K. Origins of CD4+ effector and central memory T cells. Nat. Immunol. 2011, 12, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Sonar, S.A.; Shaikh, S.; Joshi, N.; Atre, A.N.; Lal, G. IFN-γ promotes transendothelial migration of CD4+ T cells across the blood-brain barrier. Immunol. Cell Biol. 2017, 95, 843–853. [Google Scholar] [CrossRef]
- Kraus, S.H.; Luessi, F.; Trinschek, B.; Lerch, S.; Hubo, M.; Poisa-Beiro, L.; Paterka, M.; Jonuleit, H.; Zipp, F.; Jolivel, V. Cladribine exerts an immunomodulatory effect on human and murine dendritic cells. Int. Immunopharmacol. 2014, 18, 347–357. [Google Scholar] [CrossRef]
- Trautmann, A.; Rückert, B.; Schmid-Grendelmeier, P.; Niederer, E.; Bröcker, E.B.; Blaser, K.; Akdis, C.A. Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector subpopulation. Immunology 2003, 108, 305–312. [Google Scholar] [CrossRef]
- De Jager, P.L.; Rossin, E.; Pyne, S.; Tamayo, P.; Ottoboni, L.; Viglietta, V.; Weiner, M.; Soler, D.; Izmailova, E.; Faron-Yowe, L.; et al. Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells. Brain 2008, 131, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Mohebiany, A.N.; Ifergan, I.; Beauseigle, D.; Duquette, P.; Prat, A.; Arbour, N. B cell-derived IL-15 enhances CD8 T cell cytotoxicity and is increased in multiple sclerosis patients. J. Immunol. 2011, 187, 4119–4128. [Google Scholar] [CrossRef] [Green Version]
- Weninger, W.; Crowley, M.A.; Manjunath, N.; von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 2001, 194, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Vajkoczy, P.; Laschinger, M.; Engelhardt, B. α4-integrin-VCAM-1 binding mediates G protein–independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 2001, 108, 557–565. [Google Scholar] [CrossRef]
- Moser, T.; Hoepner, L.; Schwenker, K.; Seiberl, M.; Feige, J.; Akgün, K.; Haschke-Becher, E.; Ziemssen, T.; Sellner, J. Cladribine Alters Immune Cell Surface Molecules for Adhesion and Costimulation: Further Insights to the Mode of Action in Multiple Sclerosis. Cells 2021, 10, 3116. [Google Scholar] [CrossRef]
- Ousman, S.S.; Kubes, P. Immune surveillance in the central nervous system. Nat. Neurosci. 2012, 15, 1096–1101. [Google Scholar] [CrossRef]
- Deaglio, S.; Morra, M.; Mallone, R.; Ausiello, C.M.; Prager, E.; Garbarino, G.; Dianzani, U.; Stockinger, H.; Malavasi, F. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 1998, 160, 395–402. [Google Scholar]
- Funaro, A.; Spagnoli, G.C.; Ausiello, C.M.; Alessio, M.; Roggero, S.; Delia, D.; Zaccolo, M.; Malavasi, F. Involvement of the multilineage CD38 molecule in a unique pathway of cell activation and proliferation. J. Immunol. 1990, 145, 2390–2396. [Google Scholar]
- Partida-Sánchez, S.; Randall, T.D.; Lund, F.E. Innate immunity is regulated by CD38, an ecto-enzyme with ADP-ribosyl cyclase activity. Microbes Infect 2003, 5, 49–58. [Google Scholar] [CrossRef]
- Petri, B.; Bixel, M.G. Molecular events during leukocyte diapedesis. FEBS J. 2006, 273, 4399–4407. [Google Scholar] [CrossRef]
- Herrmann, M.M.; Barth, S.; Greve, B.; Schumann, K.M.; Bartels, A.; Weissert, R. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Dis. Model Mech. 2016, 9, 1211–1220. [Google Scholar]
- Piedra-Quintero, Z.L.; Wilson, Z.; Nava, P.; Guerau-de-Arellano, M. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity. Front Immunol. 2020, 11, 597959. [Google Scholar] [CrossRef]
- Roboon, J.; Hattori, T.; Ishii, H.; Takarada-Iemata, M.; Le, T.M.; Shiraishi, Y.; Ozaki, N.; Yamamoto, Y.; Sugawara, A.; Okamoto, H.; et al. Deletion of CD38 Suppresses Glial Activation and Neuroinflammation in a Mouse Model of Demyelination. Front. Cell Neurosci. 2019, 13, 258. [Google Scholar] [CrossRef]
- Choe, C.U.; Lardong, K.; Gelderblom, M.; Ludewig, P.; Leypoldt, F.; Koch-Nolte, F.; Gerloff, C.; Magnus, T. CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS ONE 2011, 6, e19046. [Google Scholar] [CrossRef]
- Comi, G.; Cook, S.; Giovannoni, G.; Rieckmann, P.; Sorensen, P.S.; Vermersch, P.; Galazka, A.; Nolting, A.; Hicking, C.; Dangond, F. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 29, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bromley, S.K.; Iaboni, A.; Davis, S.J.; Whitty, A.; Green, J.M.; Shaw, A.S.; Weiss, A.; Dustin, M.L. The immunological synapse and CD28-CD80 interactions. Nat. Immunol. 2001, 2, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Kunkl, M.; Sambucci, M.; Ruggieri, S.; Amormino, C.; Tortorella, C.; Gasperini, C.; Battistini, L.; Tuosto, L. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells 2019, 8, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, P.J.; June, C.H.; Maldonado, J.H.; Ratts, R.B.; Racke, M.K. Blockade of CD28 during in vitro activation of encephalitogenic T cells or after disease onset ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 1999, 163, 1704–1710. [Google Scholar]
- Larochelle, C.; Alvarez, J.I.; Prat, A. How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett. 2011, 585, 3770–3780. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, G.; Comi, G.; Cook, S.; Rammohan, K.; Rieckmann, P.; Soelberg Sorensen, P.; Vermersch, P.; Chang, P.; Hamlett, A.; Musch, B.; et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Liliemark, J. The clinical pharmacokinetics of cladribine. Clin. Pharm. 1997, 32, 120–131. [Google Scholar] [CrossRef]
- Nakagawa, S.; Deli, M.A.; Kawaguchi, H.; Shimizudani, T.; Shimono, T.; Kittel, A.; Tanaka, K.; Niwa, M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 2009, 54, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, S.; Deli, M.A.; Nakao, S.; Honda, M.; Hayashi, K.; Nakaoke, R.; Kataoka, Y.; Niwa, M. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol. Neurobiol. 2007, 27, 687–694. [Google Scholar] [CrossRef]
MS Patient ID | Sex (71% Female) | Age * (Median = 41) | Time since MS Diagnosis * (Years) | Time of Blood Sampling since First Cladribine Dose (Months) | Previous Treatment | Months Since Last Treatment Prior to Cladribine | ||
---|---|---|---|---|---|---|---|---|
MS01 | F | 26 | 3.5 | 0 | 4 | - | - | - |
MS02 | F | 62 | 22.0 | 0 | - | - | - | - |
MS03 | F | 53 | 13.0 | 0 | - | - | - | - |
MS04 | F | 30 | 0.1 | 0 | - | - | - | - |
MS05 | F | 39 | 6.4 | 0 | - | - | - | - |
MS06 | F | 69 | 37.0 | 0 | - | - | - | - |
MS07 | M | 31 | 0.0 | 0 | - | - | - | - |
MS08 | M | 47 | 0.0 | 0 | - | - | - | - |
MS09 | M | 37 | 4.5 | 0 | - | - | - | - |
MS10 | F | 39 | 10.2 | - | 4 | 24 | - | - |
MS11 | F | 41 | 6.2 | - | 4 | 24 | Fingolimod | 2 |
MS12 | F | 48 | 3.5 | - | 4 | - | - | - |
MS13 | M | 35 | 4.2 | - | 4 | - | - | - |
MS14 | F | 41 | 1.8 | - | 4 | - | Fingolimod | 3 |
MS15 | F | 48 | 21.0 | - | 4 | 24 | Fingolimod | 15 |
MS16 | F | 52 | 18.5 | - | 4 | - | Fingolimod | 2 |
MS17 | F | 43 | 8.0 | - | - | 24 | Fingolimod | 15 |
MS18 | M | 40 | 4.2 | - | - | 24 | - | - |
MS19 | F | 41 | 21.0 | - | - | 24 | Oral Prednisone | 12 |
MS20 | F | 29 | 4.3 | - | - | 24 | Dimethyl fumarate | 2 |
MS21 | M | 34 | 9.8 | - | - | 24 | - | - |
Healthy Control ID | Sex (67% Female) | Age * (Median = 35) | ||||||
HC01 | F | 42 | ||||||
HC02 | F | 28 | ||||||
HC03 | F | 24 | ||||||
HC04 | F | 56 | ||||||
HC05 | M | 43 | ||||||
HC06 | F | 41 | ||||||
HC07 | M | 43 | ||||||
HC08 | M | 28 | ||||||
HC09 | M | 24 | ||||||
HC10 | F | 41 | ||||||
HC11 | F | 35 | ||||||
HC12 | F | 32 |
Cell Marker | Fluorochrome | Clone | Company |
---|---|---|---|
CD3 | Alexa Fluor 532 | UCHT1 | eBioscience, ThermoFisher Scientific, Waltham, MA, USA |
CD4 | Alexa Fluor 700 | RPA-T4 | Biolegend, San Diego, CA, USA |
CD8 | BV480 | RPA-T8 | BD Biosciences, Franklin Lakes, NJ, USA |
CD16 | FITC | 3G8 | Beckman Coulter, Lane Cove West, NSW, Australia |
CD27 | BV650 | O323 | Biolegend |
CD28 | BV510 | CD28.2 | Biolegend |
CD45RA | PerCP-Cy5.5 | HI100 | Biolegend |
CD49d | PE-Cy5 | 9F10 | Biolegend |
CD56 | BV750 | 5.1H11 | Biolegend |
CD161 | PE-Dazzle 594 | HP-3G10 | Biolegend |
CD14 | Pacific Blue | M5E2 | Biolegend |
CD19 | BV570 | HIB19 | Biolegend |
CD24 | PerCP | ML5 | Biolegend |
CD38 | BV785 | HIT2 | Biolegend |
CD62L | BV711 | DREG-56 | Biolegend |
CD197 | PE | G043H7 | Beckman Coulter |
CD69 | BV421 | FN50 | Biolegend |
CD20 | Super Bright 436 | 2H7 | eBioscience, ThermoFisher Scientific |
CD196 | BV605 | GO34E3 | Biolegend |
CD274 | PECy7 | 29E.2A3 | Biolegend |
GPR56 | APC | 4C3 | Biolegend |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ford, R.K.; Juillard, P.; Hawke, S.; Grau, G.E.; Marsh-Wakefield, F. Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier. J. Clin. Med. 2022, 11, 6006. https://doi.org/10.3390/jcm11206006
Ford RK, Juillard P, Hawke S, Grau GE, Marsh-Wakefield F. Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier. Journal of Clinical Medicine. 2022; 11(20):6006. https://doi.org/10.3390/jcm11206006
Chicago/Turabian StyleFord, Rachel K., Pierre Juillard, Simon Hawke, Georges E. Grau, and Felix Marsh-Wakefield. 2022. "Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier" Journal of Clinical Medicine 11, no. 20: 6006. https://doi.org/10.3390/jcm11206006
APA StyleFord, R. K., Juillard, P., Hawke, S., Grau, G. E., & Marsh-Wakefield, F. (2022). Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier. Journal of Clinical Medicine, 11(20), 6006. https://doi.org/10.3390/jcm11206006