Approach to Knee Arthropathy through 180-Degree Immersive VR Movement Visualization in Adult Patients with Severe Hemophilia: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Recruitment and Selection
2.3. Ethical Considerations
2.4. Measurement Instruments
2.5. Intervention
2.6. Sample Size
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, P.; Paredes, A.C.; Almeida, A. Pain Prevalence, Characteristics, and Impact Among People with Hemophilia: Findings from the First Portuguese Survey and Implications for Pain Management. Pain Med. Malden Mass 2020, 21, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Ucero-Lozano, R.; Pérez-Llanes, R.; López-Pina, J.A.; Cuesta-Barriuso, R. One Session Effects of Knee Motion Visualization Using Immersive Virtual Reality in Patients with Hemophilic Arthropathy. J. Clin. Med. 2021, 10, 4725. [Google Scholar] [CrossRef] [PubMed]
- Soucie, J.M.; Cianfrini, C.; Janco, R.L.; Kulkarni, R.; Hambleton, J.; Evatt, B.; Forsyth, A.; Geraghty, S.; Hoots, K.; Abshire, T.; et al. Joint range-of-motion limitations among young males with hemophilia: Prevalence and risk factors. Blood 2004, 103, 2467–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manco-Johnson, M.J.; Abshire, T.C.; Shapiro, A.D.; Riske, B.; Hacker, M.R.; Kilcoyne, R.; Ingram, J.D.; Manco-Johnson, M.L.; Funk, S.; Jacobson, L.; et al. Prophylaxis versus Episodic Treatment to Prevent Joint Disease in Boys with Severe Hemophilia. N. Engl. J. Med. 2007, 357, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St-Louis, J.; Abad, A.; Funk, S.; Tilak, M.; Classey, S.; Zourikian, N.; McLaughlin, P.; Lobet, S.; Hernandez, G.; Akins, S.; et al. The Hemophilia Joint Health Score version 2.1 Validation in Adult Patients Study: A multicenter international study. Res. Pract. Thromb. Haemost. 2022, 6, e12690. [Google Scholar] [CrossRef]
- Witkop, M.; Neff, A.; Buckner, T.; Wang, M.; Batt, K.; Kessler, C.M.; Quon, D.; Boggio, L.; Recht, M.; Baumann, K.; et al. Self-reported prevalence, description and management of pain in adults with haemophilia: Methods, demographics and results from the Pain, Functional Impairment, and Quality of life (P-FiQ) study. Haemophilia 2017, 23, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Ucero-Lozano, R.; López-Pina, J.A.; Ortiz-Pérez, A.; Cuesta-Barriuso, R. The relationship between chronic pain and psychosocial aspects in patients with haemophilic arthropathy. A cross-sectional study. Haemophilia 2022, 28, 176–182. [Google Scholar] [CrossRef]
- Oldenburg, J. Optimal treatment strategies for hemophilia: Achievements and limitations of current prophylactic regimens. Blood 2015, 125, 2038–2044. [Google Scholar] [CrossRef]
- Mahlangu, J.; Oldenburg, J.; Paz-Priel, I.; Negrier, C.; Niggli, M.; Mancuso, M.E.; Schmitt, C.; Jiménez-Yuste, V.; Kempton, C.; Dhalluin, C.; et al. Emicizumab Prophylaxis in Patients Who Have Hemophilia A without Inhibitors. N. Engl. J. Med. 2018, 379, 811–822. [Google Scholar] [CrossRef]
- Berg, H.M.V.D.; Fischer, K.; van der Bom, J.G. Comparing outcomes of different treatment regimens for severe haemophilia. Haemophilia 2003, 9, 27–31. [Google Scholar] [CrossRef]
- Butler, D.S. Explicando el Dolor; Noigroup Publications: Adelaide, Australia, 2010; ISBN 978-0-9872467-1-4. [Google Scholar]
- Jones, M.; Edwards, I.; Gifford, L. Conceptual models for implementing biopsychosocial theory in clinical practice. Man. Ther. 2002, 7, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apkarian, A.V. Definitions of nociception, pain, and chronic pain with implications regarding science and society. Neurosci. Lett. 2019, 702, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Suso-Martí, L.; León-Hernández, J.V.; La Touche, R.; Paris-Alemany, A.; Cuenca-Martínez, F. Motor Imagery and Action Observation of Specific Neck Therapeutic Exercises Induced Hypoalgesia in Patients with Chronic Neck Pain: A Randomized Single-Blind Placebo Trial. J. Clin. Med. 2019, 8, 1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girbés, E.L.; Meeus, M.; Baert, I.; Nijs, J. Balancing “hands-on” with “hands-off” physical therapy interventions for the treatment of central sensitization pain in osteoarthritis. Man. Ther. 2015, 20, 349–352. [Google Scholar] [CrossRef]
- Méndez-Rebolledo, G.; Gatica-Rojas, V.; Torres-Cueco, R.; Albornoz-Verdugo, M.; Guzmán-Muñoz, E. Update on the effects of graded motor imagery and mirror therapy on complex regional pain syndrome type 1: A systematic review. J. Back Musculoskelet. Rehabil. 2017, 30, 441–449. [Google Scholar] [CrossRef]
- Yoshimura, M.; Kurumadani, H.; Hirata, J.; Osaka, H.; Senoo, K.; Date, S.; Ueda, A.; Ishii, Y.; Kinoshita, S.; Hanayama, K.; et al. Virtual reality-based action observation facilitates the acquisition of body-powered prosthetic control skills. J. Neuroeng. Rehabil. 2020, 17, 113. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, B.H.; Huh, S.; Jo, S. Observing Actions Through Immersive Virtual Reality Enhances Motor Imagery Training. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1614–1622. [Google Scholar] [CrossRef]
- Hilliard, P.; Funk, S.; Zourikian, N.; Bergstrom, B.-M.; Bradley, C.S.; McLimont, M.; Manco-Johnson, M.; Petrini, P.; Berg, M.V.D.; Feldman, B.M. Hemophilia joint health score reliability study. Haemophilia 2006, 12, 518–525. [Google Scholar] [CrossRef]
- Hawksley, H. Pain assessment using a visual analogue scale. Prof. Nurse 2000, 15, 593–597. [Google Scholar]
- Alghadir, A.H.; Anwer, S.; Iqbal, A.; Iqbal, Z.A. Test–retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J. Pain Res. 2018, 11, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Pfister, P.B.; De Bruin, E.D.; Sterkele, I.; Maurer, B.; De Bie, R.A.; Knols, R.H. Manual muscle testing and hand-held dynamometry in people with inflammatory myopathy: An intra- and interrater reliability and validity study. PLoS ONE 2018, 13, e0194531. [Google Scholar] [CrossRef]
- Kelln, B.M.; McKeon, P.; Gontkof, L.M.; Hertel, J. Hand-Held Dynamometry: Reliability of Lower Extremity Muscle Testing in Healthy, Physically Active, Young Adults. J. Sport Rehabil. 2008, 17, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Skou, S.T.; Simonsen, O.; Rasmussen, S. Examination of Muscle Strength and Pressure Pain Thresholds in Knee Osteoarthritis: Test-Retest Reliability and Agreement. J. Geriatr. Phys. Ther. 2015, 38, 141–147. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, R.J.; Fidler, V.; Oosterhuis, H.J. Hand-held myometry: Reference values. J. Neurol. Neurosurg. Psychiatry 1991, 54, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Andrews, A.W.; Thomas, M.W.; Bohannon, R.W. Normative Values for Isometric Muscle Force Measurements Obtained with Hand-held Dynamometers. Phys. Ther. 1996, 76, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Leffler, A.-S.; Kosek, E.; Lerndal, T.; Nordmark, B.; Hansson, P. Somatosensory perception and function of diffuse noxious inhibitory controls (DNIC) in patients suffering from rheumatoid arthritis. Eur. J. Pain 2002, 6, 161–176. [Google Scholar] [CrossRef]
- Gerhardt, J.; Cocchiarella, L.; Lea, R. The Practical Guide to Range of Motion Assessment; American Medical Association: Chicago, IL, USA, 2002. [Google Scholar]
- Rothstein, J.M.; Miller, P.J.; Roettger, R.F. Goniometric Reliability in a Clinical Setting. Elbow and Knee Measurements. Phys. Ther. 1983, 63, 1611–1615. [Google Scholar] [CrossRef]
- Pérez-Llanes, R.; Donoso-Úbeda, E.; Meroño-Gallut, J.; Ucero-Lozano, R.; Cuesta-Barriuso, R. Safety and efficacy of a self-induced myofascial release protocol using a foam roller in patients with haemophilic knee arthropathy. Haemophilia 2022, 28, 326–333. [Google Scholar] [CrossRef]
- Schmitt, J.S.; Di Fabio, R.P. Reliable change and minimum important difference (MID) proportions facilitated group responsiveness comparisons using individual threshold criteria. J. Clin. Epidemiol. 2004, 57, 1008–1018. [Google Scholar] [CrossRef]
- De Vet, H.C.; Terwee, C.B.; Ostelo, R.W.; Beckerman, H.; Knol, D.L.; Bouter, L.M. Minimal changes in health status questionnaires: Distinction between minimally detectable change and minimally important change. Health Qual. Life Outcomes 2006, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Feng, Y.; Ni, Y.; Shan, Z. Virtual Reality Intervention in Postoperative Rehabilitation after Total Knee Arthroplasty: A Prospective and Randomized Controlled Clinical Trial. Int. J. Clin. Exp. Med. 2018, 11, 6119–6124. [Google Scholar]
- Byra, J.; Czernicki, K. The Effectiveness of Virtual Reality Rehabilitation in Patients with Knee and Hip Osteoarthritis. J. Clin. Med. 2020, 9, 2639. [Google Scholar] [CrossRef] [PubMed]
- Myles, P.S.; Myles, D.B.; Galagher, W.; Boyd, D.; Chew, C.; MacDonald, N.; Dennis, A. Measuring acute postoperative pain using the visual analog scale: The minimal clinically important difference and patient acceptable symptom state. Br. J. Anaesth. 2017, 118, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villafañe, J.H.; Isgrò, M.; Borsatti, M.; Berjano, P.; Pirali, C.; Negrini, S. Effects of action observation treatment in recovery after total knee replacement: A prospective clinical trial. Clin. Rehabil. 2017, 31, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Bourdin, P.; Martini, M.; Sanchez-Vives, M.V. Altered visual feedback from an embodied avatar unconsciously influences movement amplitude and muscle activity. Sci. Rep. 2019, 9, 19747. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.-W.; Lee, M.-T.; Lin, Y.-H.; Chuang, L.-L.; Chen, C.-C.; Cheng, C.-H. Motor Cortical Activity During Observing a Video of Real Hand Movements versus Computer Graphic Hand Movements: An MEG Study. Brain Sci. 2020, 11, 6. [Google Scholar] [CrossRef]
- Lee, T.-H.; Liu, C.-H.; Chen, P.-C.; Liou, T.-H.; Escorpizo, R.; Chen, H.-C. Effectiveness of mental simulation practices after total knee arthroplasty in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2022, 17, e0269296. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Gu, L.; Nelson, C. Estimating Muscle Forces and Knee Joint Torque Using Surface Electromyography: A Musculoskeletal Biomechanical Model. J. Mech. Med. Biol. 2017, 17, 1750069. [Google Scholar] [CrossRef]
Variables | Median (IR) | |
---|---|---|
Age (years) | 37 (14.5) | |
Weight (kg) | 82.5 (21.2) | |
Height (cm) | 173.0 (8.00) | |
Body Mass Index (kg/m2) | 26.76 (6.74) | |
n (%) | ||
Type of hemophilia | A | 12 (92.3) |
B | 1 (7.7) |
Variables | T0 | T1 | MD (SE) | 95%CI | Sig. |
---|---|---|---|---|---|
Intensity of joint pain (0–10) | 1.41 (1.54) | 0.75 (1.40) | −0.66 (19.31) | −1.05; −0.26 | 0.000 |
Joint health (0–20) | 10.77 (3.44) | 9.92 (3.07) | −0.84 (18.68) | −1.16; −0.52 | 0.000 |
Flexion (degrees) | 114.42 (18.29) | 115.04 (18.37) | 0.61 (22.79) | −0.41; 1.64 | 0.254 |
Loss of extension (degrees) | 10.31 (13.46) | 9.35 (12.32) | −0.96 (15.85) | −1.94; 0.02 | 0.063 |
Quadriceps strength (N) | 235.02 (77.07) | 245.03 (83.25) | 10.01 (35.00) | 2.53; 17.47 | 0.012 |
Hamstring strength (N) | 218.06 (37.67) | 220.06 (44.32) | 1.99 (35.00) | −7.08; 11.08 | 0.511 |
Variables | ICC | SEM | MDC (MDCp) |
---|---|---|---|
Intensity of joint pain | 0.879 | 0.535 | 2.027 (7.69) |
Joint health | 0.985 | 0.421 | 1.798 (23.07) |
Flexion | 0.995 | 1.293 | 3.151 (19.23) |
Loss of extension | 0.991 | 1.276 | 3.131 (23.07) |
Quadriceps strength | 0.987 | 8.787 | 8.216 (38.46) |
Hamstring strength | 0.919 | 10.721 | 9.075 (26.92) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ucero-Lozano, R.; Pérez-Llanes, R.; López-Pina, J.A.; Cuesta-Barriuso, R. Approach to Knee Arthropathy through 180-Degree Immersive VR Movement Visualization in Adult Patients with Severe Hemophilia: A Pilot Study. J. Clin. Med. 2022, 11, 6216. https://doi.org/10.3390/jcm11206216
Ucero-Lozano R, Pérez-Llanes R, López-Pina JA, Cuesta-Barriuso R. Approach to Knee Arthropathy through 180-Degree Immersive VR Movement Visualization in Adult Patients with Severe Hemophilia: A Pilot Study. Journal of Clinical Medicine. 2022; 11(20):6216. https://doi.org/10.3390/jcm11206216
Chicago/Turabian StyleUcero-Lozano, Roberto, Raúl Pérez-Llanes, José Antonio López-Pina, and Rubén Cuesta-Barriuso. 2022. "Approach to Knee Arthropathy through 180-Degree Immersive VR Movement Visualization in Adult Patients with Severe Hemophilia: A Pilot Study" Journal of Clinical Medicine 11, no. 20: 6216. https://doi.org/10.3390/jcm11206216
APA StyleUcero-Lozano, R., Pérez-Llanes, R., López-Pina, J. A., & Cuesta-Barriuso, R. (2022). Approach to Knee Arthropathy through 180-Degree Immersive VR Movement Visualization in Adult Patients with Severe Hemophilia: A Pilot Study. Journal of Clinical Medicine, 11(20), 6216. https://doi.org/10.3390/jcm11206216