A High Dose, Not Low Dose, of Vitamin D Ameliorates Insulin Resistance in Saudi Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Exclusion Criteria
2.3. Anthropometric Data
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic and Anthropometric Data
3.2. Veil Style and Sun Exposure
3.3. Biochemical Measurements
3.4. Vitamin D, PTH, and Calcium
3.5. Glucose, Insulin, and HOMA-IR
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sizar, O.; Khare, S.; Goyal, A.; Givler, A. Vitamin D Deficiency; StatPearls: Treaure Island, Finland, 2022. [Google Scholar]
- Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Autier, P.; Gandini, S. Vitamin D supplementation and total mortality: A meta-analysis of randomized controlled trials. Arch. Intern. Med. 2007, 167, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Melamed, M.L.; Michos, E.D.; Post, W.; Astor, B. 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch. Intern. Med. 2008, 168, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Diabetes and the vitamin d connection. Curr. Diab. Rep. 2008, 8, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef]
- Eid, A.; Khoja, S.; AlGhamdi, S.; Alsufiani, H.; Alzeben, F.; Alhejaili, N.; Tayeb, H.O.; Tarazi, F.I. Vitamin D supplementation ameliorates severity of generalized anxiety disorder (GAD). Metab. Brain Dis. 2019, 34, 1781–1786. [Google Scholar] [CrossRef]
- Alghamdi, S.; Alsulami, N.; Khoja, S.; Alsufiani, H.; Tayeb, H.O.; Tarazi, F.I. Vitamin D Supplementation Ameliorates Severity of Major Depressive Disorder. J. Mol. Neurosci. 2020, 70, 230–235. [Google Scholar] [CrossRef]
- Alabajos-Cea, A.; Herrero-Manley, L.; Suso-Martí, L.; Viosca-Herrero, E.; Cuenca-Martínez, F.; Varangot-Reille, C.; Blanco-Díaz, M.; Calatayud, J.; Casaña, J. The Role of Vitamin D in Early Knee Osteoarthritis and Its Relationship with Their Physical and Psychological Status. Nutrients 2021, 13, 4035. [Google Scholar] [CrossRef]
- Gedik, O.; Akalin, S. Effects of vitamin D deficiency and repletion on insulin and glucagon secretion in man. Diabetologia 1986, 29, 142–145. [Google Scholar] [CrossRef]
- Wongwiwatthananukit, S.; Sansanayudh, N.; Phetkrajaysang, N.; Krittiyanunt, S. Effects of vitamin D(2) supplementation on insulin sensitivity and metabolic parameters in metabolic syndrome patients. J. Endocrinol. Investig. 2013, 36, 558–563. [Google Scholar] [CrossRef]
- Mason, C.; Xiao, L.; Imayama, I.; Duggan, C.; Wang, C.Y.; Korde, L.; McTiernan, A. Vitamin D3 supplementation during weight loss: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 1015–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Molero, I.; Rojo-Martínez, G.; Morcillo, S.; Gutierrez, C.; Rubio, E.; Pérez-Valero, V.; Esteva, I.; de Adana, M.S.R.; Almaraz, M.C.; Colomo, N.; et al. Hypovitaminosis D and incidence of obesity: A prospective study. Eur. J. Clin. Nutr. 2013, 67, 680–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Need, A.G.; O’Loughlin, P.D.; Horowitz, M.; Nordin, B.E. Relationship between fasting serum glucose, age, body mass index and serum 25 hydroxyvitamin D in postmenopausal women. Clin. Endocrinol. 2005, 62, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Barbarawi, M.; Zayed, Y.; Barbarawi, O.; Bala, A.; Alabdouh, A.; Gakhal, I.; Rizk, F.; Alkasasbeh, M.; Bachuwa, G.; Manson, J.E. Effect of Vitamin D Supplementation on the Incidence of Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2020, 105, dgaa335. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Meigs, J.B.; Pittas, A.G.; McKeown, N.M.; Economos, C.D.; Booth, S.L.; Jacques, P.F. Plasma 25-hydroxyvitamin d is associated with markers of the insulin resistant phenotype in nondiabetic adults. J. Nutr. 2009, 139, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Ajani, U.A.; McGuire, L.C.; Liu, S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care 2005, 28, 1228–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belenchia, A.M.; Tosh, A.K.; Hillman, L.S.; Peterson, C.A. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Bachmann, K.N.; Huang, S.; Su, Y.R.; Dusek, J.; Newton-Cheh, C.; Arora, P.; Wang, T.J. Effects of Vitamin D Supplementation on Cardiovascular and Glycemic Biomarkers. J. Am. Heart Assoc. 2021, 10, e017727. [Google Scholar] [CrossRef]
- Khoja, A.T.; Aljawadi, M.H.; Al-Shammari, S.A.; Mohamed, A.G.; Al-Manaa, H.A.; Morlock, L.; Ahmed, S.; Khoja, T.A.M. The health of Saudi older adults; results from the Saudi National Survey for Elderly Health (SNSEH) 2006-2015. Saudi Pharm. J. 2018, 26, 292–300. [Google Scholar] [CrossRef]
- Al-Hanawi, M.K.; Chirwa, G.C.; Pemba, L.A.; Qattan, A.M.N. Does prolonged television viewing affect Body Mass Index? A case of the Kingdom of Saudi Arabia. PLoS ONE 2020, 15, e0228321. [Google Scholar] [CrossRef]
- Al-Hanawi, M.K.; Chirwa, G.C.; Pulok, M.H. Socio-economic inequalities in diabetes prevalence in the Kingdom of Saudi Arabia. Int. J. Health Plann. Manag. 2020, 35, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardawi, M.S.; Qari, M.H.; Rouzi, A.A.; Maimani, A.A.; Raddadi, R.M. Vitamin D status in relation to obesity, bone mineral density, bone turnover markers and vitamin D receptor genotypes in healthy Saudi pre- and postmenopausal women. Osteoporos. Int. 2011, 22, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Kaddam, I.M.; Al-Shaikh, A.M.; Abaalkhail, B.A.; Asseri, K.S.; Al-Saleh, Y.M.; Al-Qarni, A.A.; Al-Shuaibi, A.M.; Tamimi, W.G.; Mukhtar, A.M. Prevalence of vitamin D deficiency and its associated factors in three regions of Saudi Arabia. Saudi Med. J. 2017, 38, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Salgado, A.L.; Carvalho, L.; Oliveira, A.C.; Santos, V.N.; Vieira, J.G.; Parise, E.R. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq. Gastroenterol. 2010, 47, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Almubark, R.A.; BinDhim, N.F.; Alkhamaali, Z.; Alqahtani, S.A. Obesity in Saudi Arabia in 2020: Prevalence, Distribution, and Its Current Association with Various Health Conditions. Healthcare 2021, 9, 311. [Google Scholar] [CrossRef]
- AlFaris, N.A.; AlKehayez, N.M.; AlMushawah, F.I.; AlNaeem, A.N.; AlAmri, N.D.; AlMudawah, E.S. Vitamin D Deficiency and Associated Risk Factors in Women from Riyadh, Saudi Arabia. Sci. Rep. 2019, 9, 20371. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.N.; Alkhenizan, A.H.; El Shaker, M.; Raef, H.; Gabr, A. Increasing trends and significance of hypovitaminosis D: A population-based study in the Kingdom of Saudi Arabia. Arch. Osteoporos. 2014, 9, 190. [Google Scholar] [CrossRef]
- Alzaheb, R.A. The Prevalence of Hypovitaminosis D and Its Associated Risk Factors Among Women of Reproductive Age in Saudi Arabia: A Systematic Review and Meta-Analysis. Clin. Med. Insights Womens Health 2018, 11, 1179562X18767884. [Google Scholar] [CrossRef]
- Alshahrani, F.M.; Almalki, M.H.; Aljohani, N.; Alzahrani, A.; Alsaleh, Y.; Holick, M.F. Vitamin D: Light side and best time of sunshine in Riyadh, Saudi Arabia. Dermatoendocrinol 2013, 5, 177–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiq, S.; Jeppesen, P.B. Is Hypovitaminosis D Related to Incidence of Type 2 Diabetes and High Fasting Glucose Level in Healthy Subjects: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2018, 10, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cade, C.; Norman, A.W. Rapid normalization/stimulation by 1,25-dihydroxyvitamin D3 of insulin secretion and glucose tolerance in the vitamin D-deficient rat. Endocrinology 1987, 120, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, C.; Van Etten, E.; Gysemans, C.; Decallonne, B.; Kato, S.; Laureys, J.; Depovere, J.; Valckx, D.; Verstuyf, A.; Bouillon, R. In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J. Bone Miner. Res. 2001, 16, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Lee, Y.A.; Hong, H.; Kang, M.J.; Kwon, H.J.; Shin, C.H.; Yang, S.W. Inverse relationship between vitamin D status and insulin resistance and the risk of impaired fasting glucose in Korean children and adolescents: The Korean National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Public Health Nutr. 2014, 17, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Fadda, G.Z.; Akmal, M.; Lipson, L.G.; Massry, S.G. Direct effect of parathyroid hormone on insulin secretion from pancreatic islets. Am. J. Physiol. 1990, 258, E975–E984. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chuang, L.M.; Lee, N.P.; Ryu, J.M.; McGullam, J.L.; Tsai, G.P.; Saad, M.F. Insulin sensitivity is inversely correlated with plasma intact parathyroid hormone level. Metabolism 2000, 49, 1501–1505. [Google Scholar] [CrossRef]
- El Bilbeisi, A.; El Afifi, A.; Farag, H.; Djafarian, K. Effects of vitamin D supplementation along with and without endurance physical activity on calcium and parathyroid hormone levels in metabolic syndrome patients: A randomized controlled trial. e-SPEN Eur. e-J. Clin. Nutr. Metab. 2020, 35, 1–11. [Google Scholar] [CrossRef]
- Ogunkolade, B.-W.; Boucher, B.J.; Prahl, J.M.; Bustin, S.A.; Burrin, J.M.; Noonan, K.; North, B.V.; Mannan, N.; McDermott, M.F.; DeLuca, H.F.; et al. Vitamin D Receptor (VDR) mRNA and VDR Protein Levels in Relation to Vitamin D Status, Insulin Secretory Capacity, and VDR Genotype in Bangladeshi Asians. Diabetes 2002, 51, 2294–2300. [Google Scholar] [CrossRef] [Green Version]
- Schuch, N.J.; Garcia, V.C.; Vívolo, S.R.G.F.; Martini, L.A. Relationship between Vitamin D Receptor gene polymorphisms and the components of metabolic syndrome. Nutr. J. 2013, 12, 96. [Google Scholar] [CrossRef]
- Kato, S. The function of vitamin D receptor in vitamin D action. J. Biochem. 2000, 127, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, J.; Choi, M.; Endo-Umeda, K.; Sakurai, K.; Amano, S.; Makishima, M. Enhanced transcription of pancreatic peptide YY by 1α-hydroxyvitamin D3 administration in streptozotocin-induced diabetic mice. Neuropeptides 2013, 47, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, U.; Weber, K.; Soegiarto, D.W.; Wolf, E.; Balling, R.; Erben, R.G. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. Faseb. J. 2003, 17, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Maestro, B.; Campión, J.; Dávila, N.; Calle, C. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr. J. 2000, 47, 383–391. [Google Scholar] [CrossRef]
LDVD (n = 60) | HDVD (n = 60) | ||
---|---|---|---|
Nationality | Arab (Saudi) 100% | Arab (Saudi) 100% | NS |
Age (years) | 33.20 ± 2.56 (20–54) | 26.18 ± 1.62 (18–49) | NS |
Weight (kg) | 70.68 ± 3.55 | 67.37 ± 2.49 | p < 0.05 |
Height (cm) | 156.7 ± 1.23 | 158.1 ± 1.19 | NS |
BMI | 28.57 ± 1.49 | 26.81 ± 1.45 | NS |
Waist circumference (cm) | 85.66 ± 2.99 | 82.51 ± 2.01 | p < 0.05 |
Body fat percentage (BF%) | 32.66 ± 1.72 (14.60–44.70) | 29.36 ± 1.23 (13.50–39.0) | p < 0.05 |
Systolic blood pressure (SBP) (mmHg) | 119.1 ± 2.47 | 119.3 ± 2.72 | NS |
Diastolic blood pressure (DBP) (mmHg) | 73.04 ± 2.04 | 72.32 ± 2.91 | NS |
Heart rate (HR) | 81.61 ± 3.01 | 84.79 ± 2.39 | NS |
Smoking | 0% | 0% | NS |
LDVD-B | LDVD-A | HDVD-B | HDVD-A | ||
---|---|---|---|---|---|
CA (mmol\L) | 2.164 ± 0.02 | 2.23 ± 0.03 | 2.224 ± 0.013 | 2.181 ± 0.02 | NS |
Albumin (g\L) | 36.0 ± 0.77 | 36.26 ± 0.89 | 38.75 ± 0.58 | 38.74 ± 0.64 | p < 0.05 c |
P (mmol\L) | 1.042 ± 0.03 | 1.03 ± 0.0.32 | 1.03 ± 0.03 | 1.05 ± 0.02 | NS |
PTH (pmol\L) | 4.16 ± 0.40 | 4.15 ± 0.35 | 5.03 ± 0.37 | 5.39 ± 0.55 | NS |
MG (mmol\L) | 0.873 ± 0.02 | 0.875 ± 0.02 | 0.853 ± 0.01 | 0.839 ± 0.01 | NS |
TAG (mmol\L) | 0.933 ± 0.12 | 0.923 ± 0.08 | 0.745 ± 0.06 (0.39–1.18) | 0.7175 ± 0.05 (0.3–1.35) | NS |
HDL (mmol\L) | 1.628 ± 0.07 | 1.741 ± 0.08 | 1.665 ± 0.05 | 1.679 ± 0.05 | NS |
LDL (mmol\L | 2.656 ± 0.17 | 2.671 ± 0.17 | 2.503 ± 0.11 | 2.564 ± 0.12 | NS |
Chol (mmol\L) | 4.713 ± 0.21 | 4.579 ± 0.19 | 4.529 ± 0.13 | 4.429 ± 0.12 | NS |
High-sensitivity CRP (mg\L) | 7.859 ± 0.13 | 5.522 ± 0.65 | 5.852 ± 0.83 (3.39–5.69) | 5.71 ± 0.647 (3.21–4.17) | p < 0.05 a,b |
Creatinine (µmol\L) | 56.26 ± 2.02212 | 56.65 ± 2.07 | 52.93 ± 1.553 | 54.52 ± 1.75 | NS |
LDVD (n = 60) | HDVD (n = 60) | |
---|---|---|
Serum Insulin Pearson correlation (r) Significance | −0.083 NS | −0.236 p < 0.05 |
Serum Glucose Pearson correlation(r) Significance | −0.213 NS | −0.421 NS |
HOMA-IR Pearson correlation(r) Significance | −0.134 NS | −0.341 p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlGhamdi, S.; AlHarthi, H.; Khoja, S.; AlJefri, A.; AlShaibi, H.F. A High Dose, Not Low Dose, of Vitamin D Ameliorates Insulin Resistance in Saudi Women. J. Clin. Med. 2022, 11, 6577. https://doi.org/10.3390/jcm11216577
AlGhamdi S, AlHarthi H, Khoja S, AlJefri A, AlShaibi HF. A High Dose, Not Low Dose, of Vitamin D Ameliorates Insulin Resistance in Saudi Women. Journal of Clinical Medicine. 2022; 11(21):6577. https://doi.org/10.3390/jcm11216577
Chicago/Turabian StyleAlGhamdi, Shareefa, Hanan AlHarthi, Sawsan Khoja, Amin AlJefri, and Huda F. AlShaibi. 2022. "A High Dose, Not Low Dose, of Vitamin D Ameliorates Insulin Resistance in Saudi Women" Journal of Clinical Medicine 11, no. 21: 6577. https://doi.org/10.3390/jcm11216577
APA StyleAlGhamdi, S., AlHarthi, H., Khoja, S., AlJefri, A., & AlShaibi, H. F. (2022). A High Dose, Not Low Dose, of Vitamin D Ameliorates Insulin Resistance in Saudi Women. Journal of Clinical Medicine, 11(21), 6577. https://doi.org/10.3390/jcm11216577