Neuroimaging and Cerebrovascular Changes in Fetuses with Complex Congenital Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
- LSOL (left-sided obstructive lesions): HLHS, aortic stenosis, aortic arch hypoplasia or coarctation.
- RSOL (right-sided obstructive lesions): pulmonary atresia, tetralogy of Fallot, Ebstein’s anomaly, Tricuspid atresia, pulmonary stenosis.
- MTC (mixed type of CHD): double outlet right ventricle without pulmonary stenosis, single ventricle, truncus arteriosus, transposition of great arteries.
- Others (e.g., cardiomyopathy, tumors).
- Fetal echocardiography;
- Ultrasound evaluation;
- MRI of fetal brain;
- Genetic counseling;
- Amniocentesis.
2.1. Fetal Echocardiography
2.2. Ultrasound Evaluation
2.3. Magnetic Resonance Imaging
- T2-weighted HASTE: repetition time (TR) 1500 ms, echo time (TE) 151 ms; slices of 3 mm; FOV 260 × 350 mm; 256 × 256 matrices; time of acquisition (TA) 20 s.
- T1-weighted FLASH 2D: TR 362 ms; TE 4.8 ms; slices 5.5 mm; flip angle 70°; FOV 350 × 300 mm; 256 × 192 matrices; TA 25 to 30 s with and [29] without fat saturation.
- Diffusion weighted imaging: TR 8000 ms; TE 90 ms; inversion time 185 ms; slices of 5 mm; FOV 420 × 300 mm; 192 × 192 matrix; TA 45 s; 3 b-factor per floor: 0.200 and 700 mm2/s.
2.4. Genetic Counseling
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. Cerebroplacental Doppler Data
3.2. Brain Abnormalities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldmuntz, E. The epidemiology and genetics of congenital heart disease. Clin. Perinatol. 2001, 28, 1–10. [Google Scholar] [CrossRef]
- Botto, L.D.; Correa, A.; Erickson, J.D. Racial and temporal variations in the prevalence of heart defects. Pediatrics. 2001, 107, E32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majnemer, A.; Shevell, M.; Law, M.; Poulin, C.; Rosenbaum, P. Reliability in the ratings of quality of life between parents and their children of school age with cerebral palsy. Qual. Life Res. 2008, 17, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Newburger, J.W.; Jonas, R.A.; Wernovsky, G.; Wypij, D.; Hickey, P.R.; Kuban, K.C.; Farrell, D.M.; Holmes, G.L.; Helmers, S.L.; Constantinou, J.; et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N. Engl. J. Med. 1993, 329, 1057–1064. [Google Scholar] [CrossRef]
- O’Hare, B.; Bissonnette, B.; Bohn, D.; Cox, P.; Williams, W. Persistent low cerebral blood flow velocity following profound hypothermic circulatory arrest in infants. Can. J. Anaesth. 1995, 42, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Ferry, P.C. Neurologic sequelae of open-heart surgery in children. An ‘irritating question’. Am. J. Dis. Child. 1990, 144, 369–373. [Google Scholar] [CrossRef]
- Ortinau, C.; Beca, J.; Lambeth, J.; Ferdman, B.; Alexopoulos, D.; Shimony, J.S.; Wallendorf, M.; Neil, J.; Inder, T. Regional alterations in cerebral growth exist preoperatively in infants with congenital heart disease. J. Thorac. Cardiovasc. Surg. 2012, 143, 1264–1270. [Google Scholar] [CrossRef] [Green Version]
- Limperopoulos, C.; Majnemer, A.; Shevell, M.I.; Rosenblatt, B.; Rohlicek, C.; Tchervenkov, C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics 1999, 103, 402–408. [Google Scholar] [CrossRef]
- Limperopoulos, C.; Majnemer, A.; Shevell, M.I.; Rosenblatt, B.; Rohlicek, C.; Tchervenkov, C. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J. Pediatr. 2000, 137, 638–645. [Google Scholar] [CrossRef]
- Beca, J.; Gunn, J.; Coleman, L.; Hope, A.; Whelan, L.-C.; Gentles, T.; Inder, T.; Hunt, R.; Shekerdemian, L. Pre-operative brain injury in newborn infants with transposition of the great arteries occurs at rates similar to other complex congenital heart disease and is not related to balloon atrial septostomy. J. Am. Coll. Cardiol. 2009, 53, 1807–1811. [Google Scholar] [CrossRef]
- Andropoulos, D.B.; Hunter, J.V.; Nelson, D.P.; Stayer, S.A.; Stark, A.R.; McKenzie, E.D.; Jeffrey, S.H.; Daniel, E.G.; Charles, D.F., Jr. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J. Thorac. Cardiovasc. Surg. 2010, 139, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.P.; McQuillen, P.S.; Vigneron, D.B.; Glidden, D.V.; Barkovich, A.J.; Ferriero, D.M.; Harmic, E.G.S.; Azakie, A.; Karl, R.T. Preoperative brain injury in newborns with transposition of the great arteries. Ann. Thorac. Surg. 2004, 77, 1698–1706. [Google Scholar] [CrossRef]
- Owen, M.; Shevell, M.; Majnemer, A.; Limperopoulos, C. Abnormal Brain Structure and Function in Newborns with Complex Congenital Heart Defects Before Open Heart Surgery: A Review of the Evidence. J. Child. Neurol. 2011, 26, 743–755. [Google Scholar] [CrossRef]
- Khalil, A.; Suff, N.; Thilaganathan, B.; Hurrell, A.; Cooper, D.; Carvalho, J.S. Brain abnormalities and neurodevelopmental delay in congenital heart disease: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2014, 43, 14–24. [Google Scholar] [CrossRef]
- Donofrio, M.T.; Bremer, Y.A.; Schieken, R.M.; Gennings, C.; Morton, L.D.; Eidem, B.W.; Cetta, F.; Falkensammer, C.B.; Hihta, J.C.; Kleinman, C.S. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: The brain sparing effect. Pediatr Cardiol. 2003, 24, 436–443. [Google Scholar] [CrossRef]
- Kinnear, C.; Haranal, M.; Shannon, P.; Jaeggi, E.; Chitayat, D.; Mital, S. Abnormal fetal cerebral and vascular development in hypoplastic left heart syndrome. Prenat. Diagn. 2019, 39, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Clouchoux, C.; du Plessis, A.J.; Bouyssi-Kobar, M.; Tworetzky, W.; McElhinney, D.B.; Brown, D.W.; Ghoulipour, A.; Kudelski, D.; Warfield, S.K.; McCarter, R.J.; et al. Delayed cortical development in fetuses with complex congenital heart disease. Cereb. Cortex. 2013, 23, 2932–2943. [Google Scholar] [CrossRef] [Green Version]
- Meise, C.; Germer, U.; Gembruch, U. Arterial Doppler ultrasound in 115 second- and third-trimester fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2001, 17, 398–402. [Google Scholar] [CrossRef]
- Mahle, W.T.; Tavani, F.; Zimmerman, R.A.; Nicolson, S.C.; Galli, K.K.; Gaynor, J.W.; Clancy, R.R.; Montenegro, M.L.; Spray, T.L.; Chiavacci, R.M.; et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002, 106 (Suppl. S1), 109–114. [Google Scholar] [CrossRef]
- Kaltman, J.R.; Di, H.; Tian, Z.; Rychik, J. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet. Gynecol. 2005, 25, 32–36. [Google Scholar] [CrossRef]
- McQuillen, P.S.; Miller, S.P. Congenital heart disease and brain development. Ann. N. Y. Acad. Sci. 2010, 1184, 68–86. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, S.; Lim, J.M.; Marini, D.; Xu, D.; Reddy, V.M.; Barkovich, A.J.; Miller, S.; McQuillen, P.; Seed, M. Fetal brain growth and risk of postnatal white matter injury in critical congenital heart disease. J. Thorac. Cardiovasc. Surg. 2021, 162, 1007–1014.e1. [Google Scholar] [CrossRef] [PubMed]
- International Society of Ultrasound in Obstetrics and Gynecology; Carvalho, J.S.; Allan, D.; Chaoui, R.; Copel, J.; DeVore, G.R.; Hecher, K.; Lee, W.; Munoz, H.; Paladini, D.; et al. ISUOG Practice Guidelines (updated): Sonographic screening examination of the fetal heart. Ultrasound Obstet. Gynecol. 2013, 41, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.P.; Sweet, E.M.; Adam, A.H. The accuracy of radiological estimates of gestational age using early fetal crown-rump length measurements by ultrasound as a basis for comparison. Br. J. Obstet. Gynaecol. 1979, 86, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef]
- Hadlock, F.P.; Harrist, R.B.; Shah, Y.P.; King, D.E.; Park, S.K.; Sharman, R.S. Estimating fetal age using multiple parameters: A prospective evaluation in a racially mixed population. Am. J. Obstet. Gynecol. 1987, 156, 955–957. [Google Scholar] [CrossRef]
- D’Ambrosio, V.; Vena, F.; Boccherini, C.; Di Mascio, D.; Squarcella, A.; Corno, S.; Pajno, C.; Pizzuti, A.; Piccioni, M.G.; Brunelli, R.; et al. Obstetrical and perinatal outcomes in fetuses with early versus late sonographic diagnosis of short femur length: A single-center, prospective, cohort study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 254, 170–174. [Google Scholar] [CrossRef]
- Lees, C.C.; Stampalija, T.; Baschat, A.; da Silva Costa, F.; Ferrazzi, E.; Figueras, F.; Hecher, K.; Kingdom, J.; Poon, L.C.; Unterschider, J. SUOG Practice Guidelines: Diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020, 56, 298–312. [Google Scholar] [CrossRef]
- Wladimiroff, J.W.; Tonge, H.M.; Stewart, P.A. Doppler ultrasound assessment of cerebral blood flow in the human fetus. Br. J. Obstet. Gynaecol. 1986, 93, 471–475. [Google Scholar] [CrossRef]
- Gramellini, D.; Folli, M.C.; Raboni, S.; Vadora, E.; Merialdi, A. Cerebral-umbilical Doppler ratio as a predictor of adverse perinatal outcome. Obstet Gynecol. 1992, 79, 416–420. [Google Scholar] [CrossRef]
- Manganaro, L.; Bernardo, S.; Antonelli, A.; Vinci, V.; Saldari, M.; Catalano, C. Fetal MRI of the central nervous system: State-of-the-art. Eur. J. Radiol. 2017, 93, 273–283. [Google Scholar] [CrossRef]
- The Fetal Medicine Foundation. Available online: https://fetalmedicine.org (accessed on 22 November 2020).
- Guorong, L.; Shaohui, L.; Peng, J.; Huitong, L.; Boyi, L.; Wanhong, X.; Liya, L. Cerebrovascular blood flow dynamic changes in fetuses with congenital heart disease. Fetal Diagn. Ther. 2009, 25, 167–172. [Google Scholar] [CrossRef]
- Habek, D.; Hodek, B.; Herman, R.; Jugović, D.; Cerkez Habek, J.; Salihagić, A. Fetal biophysical profile and cerebro-umbilical ratio in assessment of perinatal outcome in growth-restricted fetuses. Fetal Diagn. Ther. 2003, 18, 12–16. [Google Scholar] [CrossRef]
- Limperopoulos, C.; Tworetzky, W.; McElhinney, D.B.; Newburger, J.W.; Brown, D.W.; Robertson, R.L., Jr.; Guizard, N.; McGrath, E.; Geva, J.; Annese, D.; et al. Brain volume and metabolism in fetuses with congenital heart disease: Evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010, 121, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Paladini, D.; Finarelli, A.; Donarini, G.; Parodi, S.; Lombardo, V.; Tuo, G.; Birnbaum, R. Frontal lobe growth is impaired in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2021, 57, 776–782. [Google Scholar] [CrossRef]
- Masoller, N.; Sanz-Corté, S.M.; Crispi, F.; Gómez, O.; Bennasar, M.; Egaña-Ugrinovic, G.; Bargallo, N.; Martinez, J.M.; Gratacos, E. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth. Ultrasound Obstet. Gynecol. 2016, 47, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Zhou, Q.C.; Zhou, J.W.; Li, M.; Long, C.; Peng, Q.H. Volume of intracranial structures on three-dimensional ultrasound in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2015, 46, 174–181. [Google Scholar] [CrossRef]
- Peyvandi, S.; Kim, H.; Lau, J.; Barkovich, A.J.; Campbell, A.; Miller, S.; Xu, D.; McQuillen, P. The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease. J. Thorac. Cardiovasc. Surg. 2018, 155, 291–300.e3. [Google Scholar] [CrossRef] [Green Version]
- Marino, B.S.; Lipkin, P.H.; Newburger, J.W.; Peacock, G.; Gerdes, M.; Gaynor, J.W.; Mussatto, K.A.; Uzark, K.; Goldberg, C.S.; Johnson, W.H.; et al. American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council. Neurodevelopmental outcomes in children with congenital heart disease: Evaluation and management: A scientific statement from the American Heart Association. Circulation 2012, 126, 1143–1172. [Google Scholar]
- Seed, M. In utero brain development in fetuses with congenital heart disease: Another piece of the jigsaw provided by Blood Oxygen Level-Dependent Magnetic Resonance Imaging. Circ Cardiovasc Imaging 2017, 10, e007181. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Bennet, S.; Thilaganathan, B.; Paladini, D.; Griffiths, P.; Carvalho, J.S. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: A systematic review. Ultrasound Obstet. Gynecol. 2016, 48, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Ng, I.H.X.; Bonthrone, A.F.; Kelly, C.J.; Cordero-Grande, L.; Hughes, E.J.; Price, A.N.; Hutter, J.; Victor, S.; Schuh, A.; Rueckert, D.; et al. Investigating altered brain development in infants with congenital heart disease using tensor-based morphometry. Sci. Rep. 2020, 10, 14909. [Google Scholar] [CrossRef] [PubMed]
- Paladini, D.; Alfirevic, Z.; Carvalho, J.S.; Khalil, A.; Malinger, G.; Martinez, J.M.; Rychik, J.; Ville, Y.; Gardiner, H.; ISUOG Clinical Standards Commite. ISUOG consensus statement on current understanding of the association of neurodevelopmental delay and congenital heart disease: Impact on prenatal counseling. Ultrasound Obstet. Gynecol. 2017, 49, 287–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vena, F.; Donarini, D.; Scala, C.; Tuo, G.; Paladini, D. Redundancy of foramen ovale flap may mimic fetal aortic coarctation. Ultrasound Obstet. Gynecol. 2020, 56, 857–863. [Google Scholar] [CrossRef]
Main Sample’s Characteristics | Mean ± SD |
---|---|
Age (years) | 33.6 (5.3) |
Gestational age at evaluation (weeks) | 31.7 (5.4) |
Type of CHD | n (%) |
LSOL | 11 (17.5) |
RSOL | 6 (9.5) |
MTC | 26 (41.3) |
Others | 20 (31.7) |
US Variables | LSOL Median (IQRSD) | RSOL Median (IQR) m SD | MTC Median (IQR) m SD | OTHERS Median (IQR) m SD | p-Value |
---|---|---|---|---|---|
UA-PI | 0.38 (2.29) | 0.87 (1.88) | −0.28 (2.09) | 0.15 (1.50) | 0.4076 |
MCA-PI | −0.78 (1.88) | 0.93 (1.68) | −0.33 (1.20) | 0.34 (1.24) | 0.036 |
CPR | −1.28 (1.66) | −0.26 (1.42) | −0.43 (1.73) | −0.08 (1.32) | 0.4343 |
HC | −1.36 (0.89) | −0.4 (0.80) | −0.81 (0.45) | −0.96 (1.00) | 0.0182 |
Fetal Brain Abnormalities | LSOL n (%) | RSOL n (%) | MTC n (%) | OTHERS n (%) | TOTAL n (%) |
---|---|---|---|---|---|
Supratentorial diameter | 0 | 1 (11.1) | 5 (55.6) | 3 (33.3) | 9 (14.3) |
Subtentorial diameter | 3 (37.5) | 1 (12.5) | 4 (50) | 0 | 8 (12.7) |
Corpus callosum | 5 (31.3) | 0 | 6 (37.5) | 5 (31.2) | 16 (25.4) |
Subarachnoid spaces | 0 | 1 (12.5) | 4 (50) | 3 (37.5) | 8 (12.7) |
Gyrification abnormalities | 2 (22.2) | 3 (33.4) | 4 (44.4) | 0 | 9 (14.3) |
Ventriculomegaly | 3 (23) | 0 | 6 (46.2) | 4 (30.8) | 13 (20.6) |
US Descriptors | No CNS Abnormalities m (SD) | CNS Abnormalities m (SD) | p-Value |
---|---|---|---|
HC | 307.8 (44) | 264 (49.5) | 0.003 |
UA-PI | 0.9 (0.18) | 1.07 (0.24) | 0.15 |
MCA-PI | 1.78 (0.32) | 1.72 (0.33) | 0.59 |
CPR | 1.88 (0.44) | 1.67 (0.47) | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vena, F.; Manganaro, L.; D’Ambrosio, V.; Masciullo, L.; Ventriglia, F.; Ercolani, G.; Bertolini, C.; Catalano, C.; Di Mascio, D.; D’Alberti, E.; et al. Neuroimaging and Cerebrovascular Changes in Fetuses with Complex Congenital Heart Disease. J. Clin. Med. 2022, 11, 6740. https://doi.org/10.3390/jcm11226740
Vena F, Manganaro L, D’Ambrosio V, Masciullo L, Ventriglia F, Ercolani G, Bertolini C, Catalano C, Di Mascio D, D’Alberti E, et al. Neuroimaging and Cerebrovascular Changes in Fetuses with Complex Congenital Heart Disease. Journal of Clinical Medicine. 2022; 11(22):6740. https://doi.org/10.3390/jcm11226740
Chicago/Turabian StyleVena, Flaminia, Lucia Manganaro, Valentina D’Ambrosio, Luisa Masciullo, Flavia Ventriglia, Giada Ercolani, Camilla Bertolini, Carlo Catalano, Daniele Di Mascio, Elena D’Alberti, and et al. 2022. "Neuroimaging and Cerebrovascular Changes in Fetuses with Complex Congenital Heart Disease" Journal of Clinical Medicine 11, no. 22: 6740. https://doi.org/10.3390/jcm11226740
APA StyleVena, F., Manganaro, L., D’Ambrosio, V., Masciullo, L., Ventriglia, F., Ercolani, G., Bertolini, C., Catalano, C., Di Mascio, D., D’Alberti, E., Signore, F., Pizzuti, A., & Giancotti, A. (2022). Neuroimaging and Cerebrovascular Changes in Fetuses with Complex Congenital Heart Disease. Journal of Clinical Medicine, 11(22), 6740. https://doi.org/10.3390/jcm11226740