The Efficacy and Safety of Direct Oral Anticoagulants versus Standard of Care in Patients without an Indication of Anti-Coagulants after Transcatheter Aortic Valve Replacement: A Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Data Sources & Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection
2.5. Data Extraction
2.6. Risk of Bias and Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Search Results and Study Selection
3.2. Characteristics of Included Studies
3.3. Risk of Bias and Quality of Evidence
3.4. Primary Outcomes
3.4.1. All-Cause Mortality
3.4.2. Mortality Due to Cardiovascular Causes
3.4.3. Mortality Due to Non-Cardiovascular Causes
3.5. Secondary Outcomes
3.5.1. The Composite of Mortality, MI, and Stroke/TIA
3.5.2. RLM
3.5.3. HALT
3.5.4. Major or Life-Threatening Bleeding
4. Discussion
4.1. Limitations
4.2. Implications for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC/AHA | American College of Cardiology/American Heart Association |
AF | Atrial fibrillation |
BMI | Body mass index |
CAD | Coronary artery disease |
CI | Confidence interval, the lower and upper limits of significance |
DAPT | Dual antiplatelet therapy |
DM | Diabetes mellitus |
DOAC | Direct oral anticoagulant |
DVT | Deep vein thrombosis |
HALT | Hypoattenuated leaflet thickening |
HF | Heart failure |
HTN | Hypertension |
ICH | Intracranial hemorrhage |
ID | Identification |
MI | Myocardial infarction |
N | Number |
N/A | Not available |
OAC | Oral anticoagulant |
p | Probability |
PE | Pulmonary embolism |
PICO | Population intervention control outcome |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses [13] |
PROSPERO | Prospective register of systematic reviews |
RCT | Randomized controlled trial |
RLM | Reduced leaflet motion |
RR | Risk ratio |
SAPT | Single antiplatelet therapy |
SD | Standard deviation |
SE | Systemic embolism |
STS | Society of Thoracic Surgery |
TAVR | Transcatheter aortic valve replacement |
TIA | Transient ischemic attack |
WOS | Web of Science |
References
- Greco, A.; Capodanno, D. Anticoagulation after Transcatheter Aortic Valve Implantation: Current Status. Interv. Cardiol. Rev. Res. Resour. 2020, 15, e02. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.N.; Dai, D.; Matsuoka, R.; Harrison, J.K.; Hughes, G.C.; Sherwood, M.W.; Piccini, J.P.; Bhardwaj, B.; Lopes, R.D.; Cohen, D.; et al. Incidence, Management, and Associated Clinical Outcomes of New-Onset Atrial Fibrillation Following Transcatheter Aortic Valve Replacement: An Analysis from the STS/ACC TVT Registry. JACC Cardiovasc. Interv. 2018, 11, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Mousa, T.M.; Mahfouz, A.; Mohammed, N. Antithrombotic Therapy after Transcatheter Aortic Valve Replacement. Hear. Views 2022, 23, 10. [Google Scholar] [CrossRef]
- Piayda, K.; Mohring, A.; Dannenberg, L.; Gafoor, S.; Sievert, H.; Kelm, M.; Zeus, T.; Polzin, A. Aspirin Versus Aspirin Plus Clopidogrel as Antithrombotic Treatment Following Transcatheter Aortic Valve Replacement with a Balloon-Expandable Valve. JACC Cardiovasc. Interv. 2017, 10, 1598–1599. [Google Scholar] [CrossRef] [PubMed]
- Stabile, E.; Pucciarelli, A.; Cota, L.; Sorropago, G.; Tesorio, T.; Salemme, L.; Popusoi, G.; Ambrosini, V.; Cioppa, A.; Agrusta, M.; et al. SAT-TAVI (Single Antiplatelet Therapy for TAVI) Study: A Pilot Randomized Study Comparing Double to Single Antiplatelet Therapy for Transcatheter Aortic Valve Implantation. Int. J. Cardiol. 2014, 174, 624–627. [Google Scholar] [CrossRef]
- Dangas, G.D.; Tijssen, J.G.P.; Wöhrle, J.; Søndergaard, L.; Gilard, M.; Möllmann, H.; Makkar, R.R.; Herrmann, H.C.; Giustino, G.; Baldus, S.; et al. A Controlled Trial of Rivaroxaban after Transcatheter Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 120–129. [Google Scholar] [CrossRef]
- Collet, J.P.; Van Belle, E.; Thiele, H.; Berti, S.; Lhermusier, T.; Manigold, T.; Neumann, F.J.; Gilard, M.; Attias, D.; Beygui, F.; et al. Apixaban vs. Standard of Care after Transcatheter Aortic Valve Implantation: The ATLANTIS Trial. Eur. Heart J. 2022, 43, 2783–2797. [Google Scholar] [CrossRef]
- Noble, S.; Burri, H.; Roffi, M. Surgical or Transcatheter Aortic-Valve Replacement. N. Engl. J. Med. 2017, 377, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Kriegerric, V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, E35–E71. [Google Scholar] [CrossRef]
- Park, D.W.; Ahn, J.M.; Kang, D.Y.; Kim, K.W.; Koo, H.J.; Yang, D.H.; Jung, S.C.; Kim, B.; Wong, Y.T.A.; Lam, C.C.S.; et al. Edoxaban Versus Dual Antiplatelet Therapy for Leaflet Thrombosis and Cerebral Thromboembolism after TAVR: The ADAPT-TAVR Randomized Clinical Trial. Circulation 2022, 146, 466–479. [Google Scholar] [CrossRef]
- Montalescot, G.; Redheuil, A.; Vincent, F.; Desch, S.; De Benedictis, M.; Eltchaninoff, H.; Trenk, D.; Serfaty, J.-M.; Charpentier, E.; Bouazizi, K.; et al. Apixaban and Valve Thrombosis after Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2022, 15, 1794–1804. [Google Scholar] [CrossRef]
- De Backer, O.; Dangas, G.D.; Jilaihawi, H.; Leipsic, J.A.; Terkelsen, C.J.; Makkar, R.; Kini, A.S.; Veien, K.T.; Abdel-Wahab, M.; Kim, W.-K.; et al. Reduced Leaflet Motion after Transcatheter Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 130–139. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration: London, UK, 2019; pp. 1–694. [Google Scholar] [CrossRef]
- Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. 2022. Available online: https://www.covidence.org (accessed on 15 November 2022).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. Rating Quality of Evidence and Strength of Recommendations: GRADE: An Emerging Consensus on Rating Quality of Evidence and Strength of Recommendations. BMJ 2008, 336, 924. [Google Scholar] [CrossRef] [Green Version]
- Capodanno, D.; Collet, J.P.; Dangas, G.; Montalescot, G.; ten Berg, J.M.; Windecker, S.; Angiolillo, D.J. Antithrombotic Therapy After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2021, 14, 1688–1703. [Google Scholar] [CrossRef]
- Mangieri, A.; Montalto, C.; Poletti, E.; Sticchi, A.; Crimi, G.; Giannini, F.; Latib, A.; Capodanno, D.; Colombo, A. Thrombotic Versus Bleeding Risk after Transcatheter Aortic Valve Replacement: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 2088–2101. [Google Scholar] [CrossRef]
- Greco, A.; Capranzano, P.; Barbanti, M.; Tamburino, C.; Capodanno, D. Antithrombotic Pharmacotherapy after Transcatheter Aortic Valve Implantation: An Update. Expert Rev. Cardiovasc. Ther. 2019, 17, 479–496. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Capodanno, D.; Petronio, A.S.; Prendergast, B.; Eltchaninoff, H.; Vahanian, A.; Modine, T.; Lancellotti, P.; Sondergaard, L.; Ludman, P.F.; Tamburino, C.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Thyregod, H.G.H.; Steinbrüchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrøm, T.; Clemmensen, P.; et al. Transcatheter versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef] [Green Version]
- Mercanti, F.; Rosseel, L.; Neylon, A.; Bagur, R.; Sinning, J.-M.; Nickenig, G.; Grube, E.; Hildick-Smith, D.; Tavano, D.; Wolf, A.; et al. Chimney Stenting for Coronary Occlusion during TAVR. JACC Cardiovasc. Interv. 2020, 13, 751–761. [Google Scholar] [CrossRef]
- Komatsu, I.; Burkhard Mackensen, G.; Aldea, G.S.; Reisman, M.; Dvir, D. Bioprosthetic or Native Aortic Scallop Intentional Laceration to Prevent Iatrogenic Coronary Artery Obstruction. Part 1: How to Evaluate Patients for Basilica. EuroIntervention 2019, 15, 47–54. [Google Scholar] [CrossRef]
- Buzzatti, N.; Romano, V.; De Backer, O.; Soendergaard, L.; Rosseel, L.; Maurovich-Horvat, P.; Karady, J.; Merkely, B.; Ruggeri, S.; Prendergast, B.; et al. Coronary Access after Repeated Transcatheter Aortic Valve Implantation: A Glimpse into the Future. JACC Cardiovasc. Imaging 2020, 13, 508–515. [Google Scholar] [CrossRef]
- Søndergaard, L.; De Backer, O. Transcatheter Aortic Valve Implantation: Don’t Forget the Coronary Arteries! EuroIntervention 2018, 14, 147–149. [Google Scholar] [CrossRef]
- Dvir, D.; Khan, J.; Kornowski, R.; Komatsu, I.; Chatriwalla, A.; Mackenson, G.B.; Simonato, M.; Ribeiro, H.; Wood, D.; Leipsic, J.; et al. Novel Strategies in Aortic Valve-in-Valve Therapy Including Bioprosthetic Valve Fracture and BASILICA. EuroIntervention 2018, 14, AB74–AB82. [Google Scholar] [CrossRef]
- Tarantini, G.; Nai Fovino, L.; Scotti, A.; Massussi, M.; Cardaioli, F.; Rodinò, G.; Benedetti, A.; Boiago, M.; Matsuda, Y.; Continisio, S.; et al. Coronary Access after Transcatheter Aortic Valve Replacement with Commissural Alignment: The ALIGN-ACCESS Study. Circ. Cardiovasc. Interv. 2022, 15, e011045. [Google Scholar] [CrossRef]
- Faroux, L.; Guimaraes, L.; Wintzer-Wehekind, J.; Junquera, L.; Ferreira-Neto, A.N.; del Val, D.; Muntané-Carol, G.; Mohammadi, S.; Paradis, J.-M.; Rodés-Cabau, J. Coronary Artery Disease and Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 74, 362–372. [Google Scholar] [CrossRef]
- Faroux, L.; Munoz-Garcia, E.; Serra, V.; Alperi, A.; Nombela-Franco, L.; Fischer, Q.; Veiga, G.; Donaint, P.; Asmarats, L.; Vilalta, V.; et al. Acute Coronary Syndrome Following Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2020, 42, 2265–2269. [Google Scholar] [CrossRef]
- Ten Berg, J.; Sibbing, D.; Rocca, B.; Van Belle, E.; Chevalier, B.; Collet, J.P.; Dudek, D.; Gilard, M.; Gorog, D.A.; Grapsa, J.; et al. Management of Antithrombotic Therapy in Patients Undergoing Transcatheter Aortic Valve Implantation: A Consensus Document of the ESC Working Group on Thrombosis and the European Association of Percutaneous Cardiovascular Interventions (EAPCI), in Collabor. Eur. Heart J. 2021, 42, 2265–2269. [Google Scholar] [CrossRef]
- Søndergaard, L. Subclinical Leaflet Thrombosis—A Concern, but Also an Issue? EuroIntervention 2018, 13, e1738–e1740. [Google Scholar] [CrossRef]
- Giustino, G.; Genereux, P. Subclinical Thrombosis of Bioprosthetic Aortic Valves. J. Am. Coll. Cardiol. 2020, 75, 3016–3019. [Google Scholar] [CrossRef]
- Rashid, H.N.; Gooley, R.P.; Nerlekar, N.; Ihdayhid, A.R.; McCormick, L.M.; Nasis, A.; Cameron, J.D.; Brown, A.J. Bioprosthetic Aortic Valve Leaflet Thrombosis Detected by Multidetector Computed Tomography Is Associated with Adverse Cerebrovascular Events: A Meta-Analysis of Observational Studies. EuroIntervention 2018, 13, e1748–e1755. [Google Scholar] [CrossRef]
- Chakravarty, T.; Søndergaard, L.; Friedman, J.; De Backer, O.; Berman, D.; Kofoed, K.F.; Jilaihawi, H.; Shiota, T.; Abramowitz, Y.; Jørgensen, T.H.; et al. Subclinical Leaflet Thrombosis in Surgical and Transcatheter Bioprosthetic Aortic Valves: An Observational Study. Lancet 2017, 389, 2383–2392. [Google Scholar] [CrossRef]
- Makkar, R.R.; Fontana, G.; Jilaihawi, H.; Chakravarty, T.; Kofoed, K.F.; De Backer, O.; Asch, F.M.; Ruiz, C.E.; Olsen, N.T.; Trento, A.; et al. Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. N. Engl. J. Med. 2015, 373, 2015–2024. [Google Scholar] [CrossRef]
- Elbadawi, A.; Dang, A.T.; Sedhom, R.; Hamed, M.; Eid, M.; Golwala, H.; Goel, S.S.; Mamas, M.A.; Elgendy, I.Y. Direct Oral Anticoagulants versus Antiplatelet Therapy after Transcatheter Aortic Valve Replacement: A Meta-Analysis of Randomized Trials. Circ. Cardiovasc. Interv. 2022, 15, e012194. [Google Scholar] [CrossRef]
- Sondergaard, L.; De Backer, O.; Kofoed, K.F.; Jilaihawi, H.; Fuchs, A.; Chakravarty, T.; Kashif, M.; Kazuno, Y.; Kawamori, H.; Maeno, Y.; et al. Natural History of Subclinical Leaflet Thrombosis Affecting Motion in Bioprosthetic Aortic Valves. Eur. Heart J. 2017, 38, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.R.; Blanke, P.; Leipsic, J.; Thourani, V.; Chakravarty, T.; Brown, D.; Trento, A.; Guyton, R.; Babaliaros, V.; Williams, M.; et al. Subclinical Leaflet Thrombosis in Transcatheter and Surgical Bioprosthetic Valves: PARTNER 3 Cardiac Computed Tomography Substudy. J. Am. Coll. Cardiol. 2020, 75, 3003–3015. [Google Scholar] [CrossRef] [PubMed]
Database | Search Terms | Search Field | Search Results |
---|---|---|---|
PubMed | (“direct oral anticoagulant*” OR DOAC* OR NOAC* OR apixaban OR rivaroxaban OR edoxaban) AND (“transcatheter aortic valve” OR TAVR OR TAVI) | All Field | 122 |
Cochrane | (“direct oral anticoagulant*” OR DOAC* OR NOAC* OR apixaban OR rivaroxaban OR edoxaban) AND (“transcatheter aortic valve” OR TAVR OR TAVI) | All Field | 46 |
WOS | (“direct oral anticoagulant*” OR DOAC* OR NOAC* OR apixaban OR rivaroxaban OR edoxaban) AND (“transcatheter aortic valve” OR TAVR OR TAVI) | All Field | 117 |
SCOPUS | TITLE-ABS-KEY ((“direct oral anticoagulant*” OR doac* OR noac* OR apixaban OR rivaroxaban OR edoxaban) AND (“transcatheter aortic valve” OR tavr OR tavi)) | Title, Abstract | 307 |
EMBASE | #3. #1 AND #2 #2. ‘transcatheter aortic valve’: ti,ab,kw OR tavr:ti,ab,kw OR tavi:ti,ab,kw #1. ‘direct oral anticoagulant’: ti,ab,kw OR doac:ti,ab,kw OR noac:ti,ab,kw OR apixaban:ti,ab,kw OR rivaroxaban:ti,ab,kw OR edoxaban:ti,ab,kw | All Field | 146 |
Study ID | Study Design | Total Participants | DOACs | Standard of Care | Follow-Up (Months) | Primary Outcome | ||||
---|---|---|---|---|---|---|---|---|---|---|
Drug | Dose | Dosing | Drug | Dose | Dosing | |||||
Collet et al., 2022 (ATLANTIS) [8] | Open-label, multicenter RCT | 1049 | Apixaban | 5 or 2.5 mg | Twice a day | Vitamin K antagonist, SAPT, or DAPT | According to the physician’s decision | N/A | 12 | The composite of all-cause mortality, MI, stroke/TIA, SE, intracardiac or valve thrombosis, DVT/PE, and life-threatening or major bleeding |
Montalescot et al., 2022 (ATLANTIS-4D-CT) [6] | Open-label, multicenter RCT | 558 | Apixaban | 5 or 2.5 mg | Twice a day | Vitamin K antagonist, SAPT, or DAPT | According to the physician’s decision | N/A | 12 | At least 1 prosthetic valve leaflet with RLM of grade 3 or 4 or HALT of grade 3 or 4 |
Dangas et al., 2020 (GALILEO) [7] | Open-label, multicenter RCT | 1644 | Rivaroxaban plus Aspirin | Rivaroxaban (10 mg) plus Aspirin (75 to 100 mg) | Once daily | DAPT | Aspirin (75 to 100 mg) plus clopidogrel (75 mg) | Once daily | 24 | The composite of all-cause mortality, MI, stroke/TIA, SE, valve thrombosis, and DVT/PE |
Becker et al., 2020 (GALILEO-4D) [9] | Open-label, multicenter RCT | 231 | Rivaroxaban plus Aspirin | Rivaroxaban (10 mg) plus Aspirin (75 to 100 mg) | Once daily | DAPT | Aspirin (75 to 100 mg) plus clopidogrel (75 mg) | Once daily | 3 | At least 1 prosthetic valve leaflet with RLM of grade 3 or 4 or HALT of grade 3 or 4 |
Park et al., 2022 (ADAPT-TAVR) [5] | Open-label, multicenter RCT | 229 | Edoxaban | 60 or 30 mg | Once daily | DAPT | Aspirin (100 mg) plus clopidogrel (75 mg) | Once daily | 6 | Valve leaflet thrombosis |
Study ID | Number of Patients | Age (Years), Mean (SD) | Gender (Male), N (%) | BMI, Mean (SD) | STS Score, Mean (SD) | Comorbidities, N. (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HTN | HF | DM | CAD | Stroke or ICH | Permanent Pacemaker | |||||||||||||||||
DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | DOACs | Control | |
Collet et al., 2022 (ATLANTIS) [8] | 749 | 751 | 81.6 (6.1) | 82.3 (6.4) | 344 (45.9) | 360 (47.9) | 27.52 (5.45) | 27.33 (5.16) | 5.14 (5.02) | 5.14 (5.38) | 606 (80.9) | 601 (80) | 292 (39.0) | 284 (37.8) | 221 (29.5) | 214 (28.5) | N/A | N/A | 78 (10.4) | 89 (11.9) | N/A | N/A |
Montalescot et al., 2022 (ATLANTIS-4D-CT) [6] | 275 | 283 | 81.5 (6.1) | 82.3 (6.3) | 170 (45.9) | 180 (45.9) | 27.4 (5.4) | 27.1 (4.7) | 4.9 (4.2) | 4.9 (5.8) | 294 (79.5) | 310 (79.1) | 139 (37.6) | 144 (36.7) | 110 (29.7) | 114 (29.1) | N/A | N/A | 40 (10.8) | 51 (13.0) | N/A | N/A |
Dangas et al., 2020 (GALILEO) [7] | 826 | 818 | 80.4 (7.1) | 80.8 (6.0) | 426 (51.6) | 405 (49.5) | 28.1 (5.5) | 28.2 (5.7) | 4.0 (3.2) | 4.3 (3.5) | 720 (87.2) | 697 (85.2) | 394 (47.7) | 380 (46.5) | 236 (28.6) | 235 (28.7) | 325 (39.3) | 305 (37.3) | 51 (6.2) | 35 (4.3) | 80 (9.7) | 80 (9.8) |
Becker et al., 2020 (GALILEO-4D) [9] | 115 | 116 | 79.7 (7.3) | 80.5 (6.2) | 74 (64.3) | 74 (63.8) | 27.7 (6.5) | 27.8 (5.1) | 2.8 (1.5) | 3.0 (2.1) | 98 (85.2) | 95 (81.9) | 52 (45.2) | 52 (44.8) | 21 (18.3) | 27 (23.3) | 42 (36.5) | 36 (31.0) | 11 (9.6) | 6 (5.2) | 14 (12.2) | 14 (12.1) |
Park et al., 2022 (ADAPT-TAVR) [5] | 111 | 118 | 80.2 (5.2) | 80 (5.3) | 49 (44.1) | 47 (39.8) | 24.8 (3.8) | 24.8 (4.3) | 3.1 (2.1) | 3.5 (2.7) | 81 (73.0) | 84 (71.2) | 17 (15.3) | 12 (10.2) | 35 (31.5) | 36 (30.5) | 32 (28.8) | 34 (28.8) | N/A | N/A | N/A | N/A |
Certainty Assessment | No of Patients | Effect | Certainty | Importance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Studies | Study Design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other Considerations | Intervention | Comparison | Relative (95% CI) | Absolute (95% CI) | ||
All-Cause Mortality | ||||||||||||
3 | randomized trials | serious | not serious | not serious | serious b | none | 98/1463 (6.7%) | 58/1459 (4.0%) | RR 1.68 (1.22 to 2.30) | 27 more per 1000 (from 9 more to 52 more) | ⨁⨁◯◯ Low | CRITICAL |
Mortality due to Cardiovascular Causes | ||||||||||||
3 | randomized trials | serious a | not serious | not serious | serious b | none | 55/1463 (3.8%) | 40/1459 (2.7%) | RR 1.36 (0.92 to 2.03) | 10 more per 1000 (from 2 fewer to 28 more) | ⨁⨁◯◯ Low | CRITICAL |
Mortality due to Non-Cardiovascular Causes | ||||||||||||
3 | randomized trials | serious a | not serious | not serious | serious c | none | 43/1463 (2.9%) | 18/1459 (1.2%) | RR 2.34 (1.36 to 4.02) | 17 more per 1000 (from 4 more to 37 more) | ⨁⨁◯◯ Low | CRITICAL |
The composite of mortality, MI, and stroke/TIA | ||||||||||||
3 | randomized trials | serious a | not serious | not serious | serious b | none | 173/1463 (11.8%) | 122/1459 (8.4%) | RR 1.41 (1.13 to 1.76) | 34 more per 1000 (from 11 more to 64 more) | ⨁⨁◯◯ Low | IMPORTANT |
RLM | ||||||||||||
3 | randomized trials | serious a | not serious | not serious | serious c | none | 8/483 (1.7%) | 43/502 (8.6%) | RR 0.19 (0.09 to 0.41) | 69 fewer per 1000 (from 78 fewer to 51 fewer) | ⨁⨁◯◯ Low | CRITICAL |
HALT | ||||||||||||
3 | randomized trials | serious a | not serious | not serious | serious c | none | 44/483 (9.1%) | 92/503 (18.3%) | RR 0.50 (0.36 to 0.70) | 91 fewer per 1000 (from 117 fewer to 55 fewer) | ⨁⨁◯◯ Low | CRITICAL |
Major or Life-threatening bleeding | ||||||||||||
3 | randomized trials | serious a | not serious | not serious | serious c | none | 103/1463 (7.0%) | 87/1459 (6.0%) | RR 1.18 (0.90 to 1.55) | 11 more per 1000 (from 6 fewer to 33 more) | ⨁⨁◯◯ Low | IMPORTANT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuelazm, M.; Abdelazeem, B.; Katamesh, B.E.; Gamal, M.; Simhachalam Kutikuppala, L.V.; Kheiri, B.; Brašić, J.R.; Paul, T.K. The Efficacy and Safety of Direct Oral Anticoagulants versus Standard of Care in Patients without an Indication of Anti-Coagulants after Transcatheter Aortic Valve Replacement: A Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2022, 11, 6781. https://doi.org/10.3390/jcm11226781
Abuelazm M, Abdelazeem B, Katamesh BE, Gamal M, Simhachalam Kutikuppala LV, Kheiri B, Brašić JR, Paul TK. The Efficacy and Safety of Direct Oral Anticoagulants versus Standard of Care in Patients without an Indication of Anti-Coagulants after Transcatheter Aortic Valve Replacement: A Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine. 2022; 11(22):6781. https://doi.org/10.3390/jcm11226781
Chicago/Turabian StyleAbuelazm, Mohamed, Basel Abdelazeem, Basant E. Katamesh, Mohamed Gamal, Lakshmi Venkata Simhachalam Kutikuppala, Babikir Kheiri, James Robert Brašić, and Timir K. Paul. 2022. "The Efficacy and Safety of Direct Oral Anticoagulants versus Standard of Care in Patients without an Indication of Anti-Coagulants after Transcatheter Aortic Valve Replacement: A Meta-Analysis of Randomized Controlled Trials" Journal of Clinical Medicine 11, no. 22: 6781. https://doi.org/10.3390/jcm11226781
APA StyleAbuelazm, M., Abdelazeem, B., Katamesh, B. E., Gamal, M., Simhachalam Kutikuppala, L. V., Kheiri, B., Brašić, J. R., & Paul, T. K. (2022). The Efficacy and Safety of Direct Oral Anticoagulants versus Standard of Care in Patients without an Indication of Anti-Coagulants after Transcatheter Aortic Valve Replacement: A Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine, 11(22), 6781. https://doi.org/10.3390/jcm11226781