Comparison of Prognostic Value of 10 Biochemical Indices at Admission for Prediction Postoperative Myocardial Injury and Hospital Mortality in Patients with Osteoporotic Hip Fracture
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Data Collection
2.3. Laboratory Measurements
2.4. Definitions
2.5. Outcome Measures
2.6. Ethical Approval
2.7. Statistical Analyses
3. Results
3.1. Baseline Characteristics and Outcomes
3.2. Prognostic Role of Biochemical Indices at Admission
3.3. Predicting Performance of Biochemical Indices at Admission
3.4. Internal Validation
4. Discussion
4.1. Main Findings
4.2. Strength and Limitations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hietala, P.; Strandberg, M.; Strandberg, N.; Gullichsen, E.; Airaksinen, K.E. Perioperative myocardial infarctions are common and often unrecognized in patients undergoing hip fracture surgery. J. Trauma Acute Care Surg. 2013, 74, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Mohd-Tahir, N.A.; Li, S.C. Economic burden of osteoporosis-related hip fracture in Asia: A systematic review. Osteoporos. Int. 2017, 28, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.; Kelly, M.; Quinlan, J.F. Changing trends in the mortality rate at 1-year post hip fracture—A systematic review. World J. Orthop. 2019, 10, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Smeets, S.J.M.; van Wunnik, B.P.W.; Poeze, M.; Slooter, G.D.; Verbruggen, J. Cardiac overscreening hip fracture patients. Arch. Orthop. Trauma Surg. 2020, 140, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.J.; Scott, J.; Sivalingam, P. Evaluation of Nottingham Hip Fracture Score, Age-Adjusted Charlson Comorbidity Index and the Physiological and Operative Severity Score for the enumeration of Mortality and morbidity as predictors of mortality in elderly neck of femur fracture patients. SAGE Open Med. 2020, 8, 2050312120918268. [Google Scholar] [CrossRef]
- Bergh, C.; Moller, M.; Ekelund, J.; Brisby, H. Mortality after Sustaining Skeletal Fractures in Relation to Age. J. Clin. Med. 2022, 11, 2313. [Google Scholar] [CrossRef]
- Vacheron, C.H.; Hentzen, J.; Fauvernier, M.; Fessy, M.; Chaudier, P.; Landel, V.; David, J.S.; Incagnoli, P.; Piriou, V.; Friggeri, A. Association between Short-, Intermediate-, and Long-term Mortality and Myocardial Injury after Noncardiac Surgery after Hip Fracture Surgery: A Retrospective Cohort. Anesth. Analg. 2021, 133, 915–923. [Google Scholar] [CrossRef]
- Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Botker, H.E.; Hert, S.D.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; Heyndrickx, G.R.; et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar]
- Devereaux, P.J.; Sessler, D.I. Cardiac Complications in Patients Undergoing Major Noncardiac Surgery. N. Engl. J. Med. 2015, 373, 2258–2269. [Google Scholar] [CrossRef] [Green Version]
- Mauermann, E.; Bolliger, D.; Seeberger, E.; Puelacher, C.; Corbiere, S.; Filipovic, M.; Seeberger, M.; Mueller, C.; Lurati Buse, G. Incremental Value of Preoperative Copeptin for Predicting Myocardial Injury. Anesth. Analg. 2016, 123, 1363–1371. [Google Scholar] [CrossRef]
- De Hert, S.; Staender, S.; Fritsch, G.; Hinkelbein, J.; Afshari, A.; Bettelli, G.; Bock, M.; Chew, M.S.; Coburn, M.; De Robertis, E.; et al. Pre-operative evaluation of adults undergoing elective noncardiac surgery: Updated guideline from the European Society of Anaesthesiology. Eur. J. Anaesthesiol. 2018, 35, 407–465. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Berger, J.S. Perioperative Cardiovascular Risk Assessment and Management for Noncardiac Surgery: A Review. JAMA 2020, 324, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Borges, F.; Bhandari, M.; De Beer, J.; Urrutia Cuchi, G.; Adili, A.; Winemaker, M.; Avram, V.; Chan, M.T.V.; Lamas, C.; et al. Association Between Myocardial Injury and Cardiovascular Outcomes of Orthopaedic Surgery: A Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Substudy. J. Bone Jt. Surg. Am. 2020, 102, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Qamar, A.; Bangalore, S. Biomarkers to Personalize Preoperative Cardiovascular Risk Stratification: Ready for Prime Time? Ann. Intern. Med. 2020, 172, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Banco, D.; Dodson, J.A.; Berger, J.S.; Smilowitz, N.R. Perioperative cardiovascular outcomes among older adults undergoing in-hospital noncardiac surgery. J. Am. Geriatr. Soc. 2021, 69, 2821–2830. [Google Scholar] [CrossRef] [PubMed]
- Bass, A.R.; Levin, L.F. Should All Orthopaedic Patients Undergo Postoperative Troponin Testing?: Commentary on an article by Sabu Thomas, MD, MSc; et al.: “Association Between Myocardial Injury and Cardiovascular Outcomes of Orthopaedic Surgery. A Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Substudy”. J. Bone Jt. Surg. Am. 2020, 102, e46. [Google Scholar]
- Fisher, A.A.; Southcott, E.K.; Srikusalanukul, W.; Davis, M.W.; Hickman, P.E.; Potter, J.M.; Smith, P.N. Relationships between myocardial injury, all-cause mortality, vitamin D, PTH, and biochemical bone turnover markers in older patients with hip fractures. Ann. Clin. Lab. Sci. 2007, 37, 222–232. [Google Scholar]
- Fisher, A.A.; Southcott, E.N.; Goh, S.L.; Srikusalanukul, W.; Hickman, P.E.; Davis, M.W.; Potter, J.M.; Budge, M.M.; Smith, P.N. Elevated serum cardiac troponin I in older patients with hip fracture: Incidence and prognostic significance. Arch. Orthop. Trauma Surg. 2008, 128, 1073–1079. [Google Scholar] [CrossRef]
- Nordling, P.; Kiviniemi, T.; Strandberg, M.; Strandberg, N.; Airaksinen, J. Predicting the outcome of hip fracture patients by using N-terminal fragment of pro-B-type natriuretic peptide. BMJ Open 2016, 6, e009416. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.K.; Wolfe, S.W.; Sanghavi, N.M.; Fields, K.; Magid, S.K. The Incidence of Perioperative Cardiac Events after Orthopedic Surgery: A Single Institutional Experience of Cases Performed over One Year. HSS J. 2017, 13, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Cha, Y.H.; Lee, Y.K.; Koo, K.H.; Wi, C.; Lee, K.H. Difference in Mortality Rate by Type of Anticoagulant in Elderly Patients with Cardiovascular Disease after Hip Fractures. Clin. Orthop. Surg. 2019, 11, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Norring-Agerskov, D.; Madsen, C.M.; Bathum, L.; Pedersen, O.B.; Lauritzen, J.B.; Jorgensen, N.R.; Jorgensen, H.L. History of cardiovascular disease and cardiovascular biomarkers are associated with 30-day mortality in patients with hip fracture. Osteoporos. Int. 2019, 30, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, C.; Cartei, A.; Rubbieri, G.; Ceccofiglio, A.; Magni, A.; Forni, S.; Civinini, R.; Boccaccini, A. Perioperative Myocardial Infarction/Myocardial Injury Is Associated with High Hospital Mortality in Elderly Patients Undergoing Hip Fracture Surgery. J. Clin. Med. 2020, 9, 4043. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cai, M.; Li, X.; Deng, X.; Xue, Q.; Zhou, L.; Yang, M. Association of Acute Perioperative Myocardial Injury With All-Cause Mortality Within 90 Days After Hip Fracture Repair in the Elderly: A Prospective Study. Geriatr. Orthop. Surg. Rehabil. 2022, 13, 21514593211070129. [Google Scholar] [CrossRef] [PubMed]
- Katsanos, S.; Sioutis, S.; Reppas, L.; Mitsiokapa, E.; Tsatsaragkou, A.; Mastrokalos, D.; Koulalis, D.; Mavrogenis, A.F. What do hip fracture patients die from? Eur. J. Orthop. Surg. Traumatol. 2022; in press. [Google Scholar] [CrossRef]
- Pannell, L.M.; Reyes, E.M.; Underwood, S.R. Cardiac risk assessment before non-cardiac surgery. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 316–322. [Google Scholar] [CrossRef]
- Writing Committee for the VISION Study Investigators; Devereaux, P.J.; Biccard, B.M.; Sigamani, A.; Xavier, D.; Chan, M.T.V.; Srinathan, S.K.; Walsh, M.; Abraham, V.; Pearse, R.; et al. Association of Postoperative High-Sensitivity Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients Undergoing Noncardiac Surgery. JAMA 2017, 317, 1642–1651. [Google Scholar]
- Lobo, S.A.; Fischer, S. Cardiac Risk Assessment. In StatPearls; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Fleisher, L.A.; Fleischmann, K.E.; Auerbach, A.D.; Barnason, S.A.; Beckman, J.A.; Bozkurt, B.; Davila-Roman, V.G.; Gerhard-Herman, M.D.; Holly, T.A.; Kane, G.C.; et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol. 2014, 64, e77–e137. [Google Scholar] [CrossRef] [Green Version]
- Bilimoria, K.Y.; Liu, Y.; Paruch, J.L.; Zhou, L.; Kmiecik, T.E.; Ko, C.Y.; Cohen, M.E. Development and evaluation of the universal ACS NSQIP surgical risk calculator: A decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 2013, 217, 833–842.e1-3. [Google Scholar] [CrossRef] [Green Version]
- Pugely, A.J.; Martin, C.T.; Gao, Y.; Klocke, N.F.; Callaghan, J.J.; Marsh, J.L. A risk calculator for short-term morbidity and mortality after hip fracture surgery. J. Orthop. Trauma. 2014, 28, 63–69. [Google Scholar] [CrossRef]
- Harris, A.H.S.; Trickey, A.W.; Eddington, H.S.; Seib, C.D.; Kamal, R.N.; Kuo, A.C.; Ding, Q.; Giori, N.J. A Tool to Estimate Risk of 30-day Mortality and Complications after Hip Fracture Surgery: Accurate Enough for Some but Not All Purposes? A Study from the ACS-NSQIP Database. Clin. Orthop. Relat. Res. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Kivrak, S.; Haller, G. Scores for preoperative risk evaluation of postoperative mortality. Best. Pract. Res. Clin. Anaesthesiol. 2021, 35, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Markovic, D.; Jevtovic-Stoimenov, T.; Stojanovic, M.; Vukovic, A.; Dinic, V.; Markovic-Zivkovic, B.; Jankovic, R.J. Addition of clinical risk scores improves prediction performance of American Society of Anesthesiologists (ASA) physical status classification for postoperative mortality in older patients: A pilot study. Eur. Geriatr. Med. 2018, 9, 51–59. [Google Scholar] [CrossRef]
- Vernooij, L.M.; van Klei, W.A.; Moons, K.G.; Takada, T.; van Waes, J.; Damen, J.A. The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery. Cochrane Database Syst. Rev. 2021, 12, CD013139. [Google Scholar]
- Davis, C.; Tait, G.; Carroll, J.; Wijeysundera, D.N.; Beattie, W.S. The Revised Cardiac Risk Index in the new millennium: A single-centre prospective cohort re-evaluation of the original variables in 9,519 consecutive elective surgical patients. Can. J. Anaesth. 2013, 60, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Vascular Events In Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators; Devereaux, P.J.; Chan, M.T.; Alonso-Coello, P.; Walsh, M.; Berwanger, O.; Villar, J.C.; Wang, C.Y.; Garutti, R.I.; Jacka, M.J.; et al. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA 2012, 307, 2295–2304. [Google Scholar] [PubMed]
- Stolze, A.; van de Garde, E.M.W.; Posthuma, L.M.; Hollmann, M.W.; de Korte-de Boer, D.; Smit-Fun, V.M.; Buhre, W.; Boer, C.; Noordzij, P.G.; TRACE Study Investigators. Validation of the PreOperative Score to predict Post-Operative Mortality (POSPOM) in Dutch non-cardiac surgery patients. BMC Anesthesiol. 2022, 22, 58. [Google Scholar] [CrossRef] [PubMed]
- Menzenbach, J.; Layer, Y.C.; Layer, Y.L.; Mayr, A.; Coburn, M.; Wittmann, M.; Hilbert, T. The level of postoperative care influences mortality prediction by the POSPOM score: A retrospective cohort analysis. PLoS ONE 2021, 16, e0257829. [Google Scholar] [CrossRef]
- Wanjiang, F.; Xiaobo, Z.; Xin, W.; Ye, M.; Lihua, H.; Jianlong, W. Application of POSSUM and P-POSSUM scores in the risk assessment of elderly hip fracture surgery: Systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 255. [Google Scholar] [CrossRef]
- Yang, L.; Yang, H.; Chen, Q.; Shen, H.; Wang, Z. Analysis of risk factors for 90-day mortality after surgery in elderly patients with intertrochanteric fractures and a history of cardiovascular disease. Ann. Palliat. Med. 2022, 11, 155–162. [Google Scholar] [CrossRef]
- Karres, J.; Heesakkers, N.A.; Ultee, J.M.; Vrouenraets, B.C. Predicting 30-day mortality following hip fracture surgery: Evaluation of six risk prediction models. Injury 2015, 46, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Niessen, R.; Bihin, B.; Gourdin, M.; Yombi, J.C.; Cornu, O.; Forget, P. Prediction of postoperative mortality in elderly patient with hip fractures: A single-centre, retrospective cohort study. BMC Anesthesiol. 2018, 18, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danese, M.D.; Kim, J.; Doan, Q.V.; Dylan, M.; Griffiths, R.; Chertow, G.M. PTH and the risks for hip, vertebral, and pelvic fractures among patients on dialysis. Am. J. Kidney Dis. 2006, 47, 149–156. [Google Scholar] [CrossRef]
- Fisher, A.; Goh, S.; Srikusalanukul, W.; Davis, M. Elevated serum PTH is independently associated with poor outcomes in older patients with hip fracture and vitamin D inadequacy. Calcif. Tissue Int. 2009, 85, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Hosking, D.; Alonso, C.G.; Brandi, M.L. Management of osteoporosis with PTH: Treatment and prescription patterns in Europe. Curr. Med. Res. Opin. 2009, 25, 263–270. [Google Scholar] [CrossRef]
- Fisher, A.; Srikusalanukul, W.; Davis, M.; Smith, P. Hip fracture type: Important role of parathyroid hormone (PTH) response to hypovitaminosis D. Bone 2010, 47, 400–407. [Google Scholar] [CrossRef]
- Madsen, C.M.; Jorgensen, H.L.; Lind, B.; Ogarrio, H.W.; Riis, T.; Schwarz, P.; Duus, B.R.; Lauritzen, J.B. Secondary hyperparathyroidism and mortality in hip fracture patients compared to a control group from general practice. Injury 2012, 43, 1052–1057. [Google Scholar] [CrossRef]
- Van Ballegooijen, A.J.; Reinders, I.; Visser, M.; Brouwer, I.A. Parathyroid hormone and cardiovascular disease events: A systematic review and meta-analysis of prospective studies. Am. Heart J. 2013, 165, 655–664, 664 e1-5. [Google Scholar] [CrossRef]
- Domiciano, D.S.; Machado, L.G.; Lopes, J.B.; Figueiredo, C.P.; Caparbo, V.F.; Oliveira, R.M.; Scazufca, M.; McClung, M.R.; Pereira, R.M. Bone Mineral Density and Parathyroid Hormone as Independent Risk Factors for Mortality in Community-Dwelling Older Adults: A Population-Based Prospective Cohort Study in Brazil. The Sao Paulo Ageing & Health (SPAH) Study. J. Bone Miner. Res. 2016, 31, 1146–1157. [Google Scholar]
- Fisher, A.; Fisher, L.; Srikusalanukul, W.; Smith, P.N. Usefulness of simple biomarkers at admission as independent indicators and predictors of in-hospital mortality in older hip fracture patients. Injury 2018, 49, 829–840. [Google Scholar] [CrossRef]
- Gambardella, J.; De Rosa, M.; Sorriento, D.; Prevete, N.; Fiordelisi, A.; Ciccarelli, M.; Trimarco, B.; De Luca, N.; Iaccarino, G. Parathyroid Hormone Causes Endothelial Dysfunction by Inducing Mitochondrial ROS and Specific Oxidative Signal Transduction Modifications. Oxid. Med. Cell. Longev. 2018, 2018, 9582319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggio, M.; Oliveira, D.T.; Locks, R. Evaluation of the Laboratorial Profile of Elderlies with Proximal Femur Fracture by Low Energy Mechanism. Rev. Bras. Ortop. 2019, 54, 382–386. [Google Scholar]
- Lizaur-Utrilla, A.; Gonzalez-Navarro, B.; Vizcaya-Moreno, M.F.; Lopez-Prats, F.A. Altered seric levels of albumin, sodium and parathyroid hormone may predict early mortality following hip fracture surgery in elderly. Int. Orthop. 2019, 43, 2825–2829. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Landaluce, C.; Acena, A.; Pello, A.; Martinez-Milla, J.; Gonzalez-Lorenzo, O.; Tarin, N.; Cristobal, C.; Blanco-Colio, L.M.; Martin-Ventura, J.L.; Huelmos, A.; et al. Parathormone levels add prognostic ability to N-terminal pro-brain natriuretic peptide in stable coronary patients. ESC Heart Fail. 2021, 8, 2713–2722. [Google Scholar] [CrossRef] [PubMed]
- Kestenbaum, B.; Katz, R.; de Boer, I.; Hoofnagle, A.; Sarnak, M.J.; Shlipak, M.G.; Jenny, N.S.; Siscovick, D.S. Vitamin D, parathyroid hormone, and cardiovascular events among older adults. J. Am. Coll. Cardiol. 2011, 58, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Dadra, A.; Aggarwal, S.; Kumar, P.; Kumar, V.; Dibar, D.P.; Bhadada, S.K. High prevalence of vitamin D deficiency and osteoporosis in patients with fragility fractures of hip: A pilot study. J. Clin. Orthop. Trauma 2019, 10, 1097–1100. [Google Scholar] [CrossRef]
- Lee, K.C.; Lee, I.O. Preoperative laboratory testing in elderly patients. Curr. Opin. Anaesthesiol. 2021, 34, 409–414. [Google Scholar] [CrossRef]
- Meng, X.; Li, X.; Timofeeva, M.N.; He, Y.; Spiliopoulou, A.; Wei, W.Q.; Gifford, A.; Wu, H.; Varley, T.; Joshi, P.; et al. Phenome-wide Mendelian-randomization study of genetically determined vitamin D on multiple health outcomes using the UK Biobank study. Int. J. Epidemiol. 2019, 48, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, N.; Campodonico, J.; Milazzo, V.; De Metrio, M.; Brambilla, M.; Camera, M.; Marenzi, G. Vitamin D and Cardiovascular Disease: Current Evidence and Future Perspectives. Nutrients. 2021, 13, 3603. [Google Scholar] [CrossRef]
- Navale, S.S.; Mulugeta, A.; Zhou, A.; Llewellyn, D.J.; Hypponen, E. Vitamin D and brain health: An observational and Mendelian randomization study. Am. J. Clin. Nutr. 2022, 116, 531–540. [Google Scholar] [CrossRef]
- Thiele, K.; Cornelissen, A.; Florescu, R.; Kneizeh, K.; Brandenburg, V.M.; Witte, K.; Marx, N.; Schuh, A.; Stohr, R. The Role of Vitamin D3 as an Independent Predicting Marker for One-Year Mortality in Patients with Acute Heart Failure. J. Clin. Med. 2022, 11, 2733. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Safarova, M.S.; Dalia, T.; Bharati, R.; Ranka, S.; Vindhyal, M.; Jiwani, S.; Barua, R.S. Effects of Vitamin D Supplementation and 25-Hydroxyvitamin D Levels on the Risk of Atrial Fibrillation. Am. J. Cardiol. 2022, 173, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Ruttmann, E.; Brant, L.J.; Concin, H.; Diem, G.; Rapp, K.; Ulmer, H.; Vorarlberg Health, M.; Promotion Program Study, G. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: An epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation 2005, 112, 2130–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.S.; Evans, J.C.; Robins, S.J.; Wilson, P.W.; Albano, I.; Fox, C.S.; Wang, T.J.; Benjamin, E.J.; D’Agostino, R.B.; Vasan, R.S. Gamma glutamyl transferase and metabolic syndrome, cardiovascular disease, and mortality risk: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhl, C.E.; Everhart, J.E. Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 2009, 136, 477–485.e11. [Google Scholar] [CrossRef] [Green Version]
- Targher, G. Elevated serum gamma-glutamyltransferase activity is associated with increased risk of mortality, incident type 2 diabetes, cardiovascular events, chronic kidney disease and cancer—A narrative review. Clin. Chem. Lab. Med. 2010, 48, 147–157. [Google Scholar] [CrossRef]
- Dogan, A.; Icli, A.; Aksoy, F.; Varol, E.; Erdogan, D.; Ozaydin, M.; Kocyigit, S. Gamma-glutamyltransferase in acute coronary syndrome patients without ST elevation and its association with stenotic lesion and cardiac events. Coron. Artery Dis. 2012, 23, 39–44. [Google Scholar] [CrossRef]
- Koenig, G.; Seneff, S. Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Dis. Markers 2015, 2015, 818570. [Google Scholar] [CrossRef] [Green Version]
- Kunutsor, S.K. Gamma-glutamyltransferase-friend or foe within? Liver Int. 2016, 36, 1723–1734. [Google Scholar] [CrossRef] [Green Version]
- Demirelli, S.; Firtina, S.; Askin, L.; Akgol Gur, S.T.; Tanrikulu, C.S.; Ermis, E.; Ipek, E.; Kalkan, K.; Yildirim, E.; Kiziltunc, A. Utility of gamma-Glutamyl Transferase in Predicting Troponin Elevation in Emergency Departments. Angiology 2016, 67, 737–741. [Google Scholar] [CrossRef]
- Valjevac, A.; Rebic, D.; Hamzic-Mehmedbasic, A.; Sokolovic, E.; Horozic, D.; Vanis, N.; Hadzovic-Dzuvo, A. The value of gamma glutamyltransferase in predicting myocardial infarction in patients with acute coronary syndrome. Future Cardiol. 2018, 14, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, H.; Ouyang, Y.; Liu, X.; Xu, Y. Serum Levels of Gamma-Glutamyltransferase during Stable and Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Med. Sci. Monit. 2020, 26, e927771. [Google Scholar] [CrossRef] [PubMed]
- Danikiewicz, A.; Hudzik, B.; Nowak, J.; Kowalska, J.; Zielen-Zynek, I.; Szkodzinski, J.; Naung Tun, H.; Zubelewicz-Szkodzinska, B. Serum Gamma Glutamyltransferase Is Associated with 25-Hydroxyvitamin D Status in Elderly Patients with Stable Coronary Artery Disease. Int. J. Environ. Res. Public Health 2020, 17, 8980. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Chen, J.; Liu, J.; Ma, H. Associations between GGT/HDL and MAFLD: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2022, 15, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Demirel, E.; Sahin, A. Predictive Value of Blood Parameters and Comorbidities on Three-Month Mortality in Elderly Patients with Hip Fracture. Cureus 2021, 13, e18634. [Google Scholar] [CrossRef] [PubMed]
- Brozek, W.; Ulmer, H.; Pompella, A.; Nagel, G.; Leiherer, A.; Preyer, O.; Concin, H.; Zitt, E. Gamma-glutamyl-transferase is associated with incident hip fractures in women and men >/= 50 years: A large population-based cohort study. Osteoporos. Int. 2022, 33, 1295–1307. [Google Scholar] [CrossRef]
- Takemura, K.; Yuasa, T.; Inamura, K.; Amori, G.; Koga, F.; Board, P.G.; Yonese, J. Impact of Serum gamma-Glutamyltransferase on Overall Survival in Patients with Metastatic Renal Cell Carcinoma in the Era of Targeted Therapy. Target Oncol. 2020, 15, 347–356. [Google Scholar] [CrossRef]
- Lewis, J.R.; Hassan, S.K.; Wenn, R.T.; Moran, C.G. Mortality and serum urea and electrolytes on admission for hip fracture patients. Injury 2006, 37, 698–704. [Google Scholar] [CrossRef]
- Turgut, N.; Unal, A.M. Standard and Newly Defined Prognostic Factors Affecting Early Mortality after Hip Fractures. Cureus 2022, 14, e21464. [Google Scholar] [CrossRef]
- Kirtane, A.J.; Leder, D.M.; Waikar, S.S.; Chertow, G.M.; Ray, K.K.; Pinto, D.S.; Karmpaliotis, D.; Burger, A.J.; Murphy, S.A.; Cannon, C.P.; et al. Serum blood urea nitrogen as an independent marker of subsequent mortality among patients with acute coronary syndromes and normal to mildly reduced glomerular filtration rates. J. Am. Coll. Cardiol. 2005, 45, 1781–1786. [Google Scholar] [CrossRef] [Green Version]
- Aronson, D.; Hammerman, H.; Beyar, R.; Yalonetsky, S.; Kapeliovich, M.; Markiewicz, W.; Goldberg, A. Serum blood urea nitrogen and long-term mortality in acute ST-elevation myocardial infarction. Int. J. Cardiol. 2008, 127, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Seyedi, H.R.; Mahdian, M.; Khosravi, G.; Bidgoli, M.S.; Mousavi, S.G.; Razavizadeh, M.R.; Mahdian, S.; Mohammadzadeh, M. Prediction of mortality in hip fracture patients: Role of routine blood tests. Arch. Bone Jt. Surg. 2015, 3, 51–55. [Google Scholar] [PubMed]
- Horiuchi, Y.; Aoki, J.; Tanabe, K.; Nakao, K.; Ozaki, Y.; Kimura, K.; Ako, J.; Yasuda, S.; Noguchi, T.; Suwa, S.; et al. A High Level of Blood Urea Nitrogen Is a Significant Predictor for In-hospital Mortality in Patients with Acute Myocardial Infarction. Int. Heart J. 2018, 59, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, B.; Sulzgruber, P.; Koller, L.; Steininger, M.; El-Hamid, F.; Rothgerber, D.J.; Forster, S.; Goliasch, G.; Silbert, B.I.; Meyer, E.L.; et al. Blood urea nitrogen has additive value beyond estimated glomerular filtration rate for prediction of long-term mortality in patients with acute myocardial infarction. Eur. J. Intern. Med. 2019, 59, 84–90. [Google Scholar] [CrossRef]
- Liu, E.Q.; Zeng, C.L. Blood Urea Nitrogen and In-Hospital Mortality in Critically Ill Patients with Cardiogenic Shock: Analysis of the MIMIC-III Database. Biomed. Res. Int. 2021, 2021, 5948636. [Google Scholar] [CrossRef]
- Adnan, M.; Hashmat, N.; Rahat, T.; Burki, A. Prognostic value of five serum markers predicting in-hospital mortality among adults with community acquired pneumonia. J. Infect. Dev. Ctries. 2022, 16, 166–172. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Zheng, H.; Wu, S.; Wang, S. The association of blood urea nitrogen levels upon emergency admission with mortality in acute exacerbation of chronic obstructive pulmonary disease. Chron. Respir. Dis. 2021, 18, 14799731211060051. [Google Scholar] [CrossRef]
- Wernly, B.; Lichtenauer, M.; Vellinga, N.A.R.; Boerma, E.C.; Ince, C.; Kelm, M.; Jung, C. Blood urea nitrogen (BUN) independently predicts mortality in critically ill patients admitted to ICU: A multicenter study. Clin. Hemorheol. Microcirc. 2018, 69, 123–131. [Google Scholar] [CrossRef]
- Arihan, O.; Wernly, B.; Lichtenauer, M.; Franz, M.; Kabisch, B.; Muessig, J.; Masyuk, M.; Lauten, A.; Schulze, P.C.; Hoppe, U.C.; et al. Blood Urea Nitrogen (BUN) is independently associated with mortality in critically ill patients admitted to ICU. PLoS ONE 2018, 13, e0191697. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, F.; Lappalainen, M.; Vuoristo, M.; Nuutinen, H.; Leino, R.; Karvonen, A.L.; Lehtola, J.; Julkunen, R.; Pohjanpelto, P.; Farkkila, M. Factors predicting interferon treatment response in patients with chronic hepatitis c: Late viral clearance does not preclude a sustained response. Am. J. Gastroenterol. 2001, 96, 1237–1242. [Google Scholar] [CrossRef]
- Ju, M.J.; Qiu, S.J.; Fan, J.; Zhou, J.; Gao, Q.; Cai, M.Y.; Li, Y.W.; Tang, Z.Y. Preoperative serum gamma-glutamyl transferase to alanine aminotransferase ratio is a convenient prognostic marker for Child-Pugh A hepatocellular carcinoma after operation. J. Gastroenterol. 2009, 44, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, L.; Wang, G.; Cheng, X.; Hu, S.; Ke, W.; Li, M.; Zhang, Y.; Song, Z.; Zheng, Q. A new plasma biomarker enhance the clinical prediction of postoperative acute kidney injury in patients with hepatocellular carcinoma. Clin. Chim. Acta 2017, 475, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jiao, X. LDH and GGT/ALT Ratio as Novel Prognostic Biomarkers in Hepatocellular Carcinoma Patients after Liver Transplantation. Comput. Math. Methods Med. 2021, 2021, 9809990. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhu, Y.; Ni, X.; Lin, J.; Li, H.; Zheng, L.; Zhang, C.; Qi, X.; Huo, H.; Lou, X.; et al. Serum GGT/ALT ratio predicts vascular invasion in HBV-related HCC. Cancer Cell. Int. 2021, 21, 517. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Wu, T.T.; Chen, Y.; Hou, X.G.; Yang, Y.; Ma, X.; Ma, Y.T.; Zhang, J.Y.; Xie, X. Gamma-glutamyl transferase to albumin ratio as a novel predictor of bleeding events and mortality in patients after percutaneous coronary intervention: A retrospective cohort study. Catheter. Cardiovasc. Interv. 2020, 95 (Suppl. 1), 572–578. [Google Scholar] [CrossRef]
- Li, H.; Liu, R.; Li, J.; Li, J.; Wu, H.; Wang, G.; Li, Z.; Li, D. Prognostic significance of gamma-glutamyl transpeptidase to albumin ratio in patients with intrahepatic cholangiocarcinoma after hepatectomy. J. Cell. Mol. Med. 2022, 26, 3196–3202. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, S.; Liu, Y.; Xu, Z.; Shen, H.; Zhang, S.; Li, Y.; Zhang, H.; Zou, C.; Ma, X. Blood Urea Nitrogen-to-Albumin Ratio in Predicting Long-Term Mortality in Patients Following Coronary Artery Bypass Grafting: An Analysis of the MIMIC-III Database. Front. Surg. 2022, 9, 801708. [Google Scholar] [CrossRef]
- Xia, B.; Song, B.; Zhang, J.; Zhu, T.; Hu, H. Prognostic value of blood urea nitrogen-to-serum albumin ratio for mortality of pneumonia in patients receiving glucocorticoids: Secondary analysis based on a retrospective cohort study. J. Infect. Chemother. 2022, 28, 767–773. [Google Scholar] [CrossRef]
- Milas, G.P.; Issaris, V.; Papavasileiou, V. Blood urea nitrogen to albumin ratio as a predictive factor for pneumonia: A meta-analysis. Respir. Med. Res. 2022, 81, 100886. [Google Scholar] [CrossRef]
- He, T.; Li, G.; Xu, S.; Guo, L.; Tang, B. Blood Urea Nitrogen to Serum Albumin Ratio in the Prediction of Acute Kidney Injury of Patients with Rib Fracture in Intensive Care Unit. Int. J. Gen. Med. 2022, 15, 965–974. [Google Scholar] [CrossRef]
- Ye, L.; Shi, H.; Wang, X.; Duan, Q.; Ge, P.; Shao, Y. Elevated Blood Urea Nitrogen to Serum Albumin Ratio Is an Adverse Prognostic Predictor for Patients Undergoing Cardiac Surgery. Front. Cardiovasc. Med. 2022, 9, 888736. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, R.; Yu, R.; Guo, J.; Xu, J.; Yuan, X.; Guo, J. Predictive value of preoperative platelet-to-albumin ratio and apolipoprotein B-to-apolipoprotein A1 ratio for osteosarcoma in children and adolescents: A retrospective study of 118 cases. BMC Cancer. 2022, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, J.; Liu, L.; Qie, S.; Yang, L.; Yan, Z. Platelet-to-albumin ratio: A risk factor associated with technique failure and mortality in peritoneal dialysis patients. Ren. Fail. 2021, 43, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Talsnes, O.; Hjelmstedt, F.; Dahl, O.E.; Pripp, A.H.; Reikeras, O. Biochemical lung, liver and kidney markers and early death among elderly following hip fracture. Arch. Orthop. Trauma Surg. 2012, 132, 1753–1758. [Google Scholar] [CrossRef] [PubMed]
- Yardeni, D.; Toledano, R.; Novack, V.; Shalev, A.; Wolak, A.; Rotman, Y.; Etzion, O. The Association of Alanine Aminotransferase Levels with Myocardial Perfusion Imaging and Cardiovascular Morbidity. J. Cardiovasc. Pharmacol. Ther. 2022, 27, 10742484221074585. [Google Scholar] [CrossRef] [PubMed]
- Kashkosh, R.; Gringauz, I.; Weissmann, J.; Segal, G.; Swartzon, M.; Adunsky, A.; Justo, D. Prerehabilitation alanine aminotransferase blood levels and one-year mortality rates in older adults following hip fracture. Int. J. Rehabil. Res. 2020, 43, 214–218. [Google Scholar] [CrossRef]
- Kawamoto, R.; Kikuchi, A.; Akase, T.; Ninomiya, D.; Tokumoto, Y.; Kumagi, T. Association between alanine aminotransferase and all-cause mortality rate: Findings from a study on Japanese community-dwelling individuals. J. Clin. Lab. Anal. 2022, 36, e24445. [Google Scholar] [CrossRef]
- Fisher, A.A.; Srikusalanukul, W.; Davis, M.W.; Smith, P.N. Clinical profiles and risk factors for outcomes in older patients with cervical and trochanteric hip fracture: Similarities and differences. J. Trauma Manag. Outcomes 2012, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Fisher, L.; Srikusalanukul, W.; Fisher, A.; Smith, P. Liver function parameters in hip fracture patients: Relations to age, adipokines, comorbidities and outcomes. Int. J. Med. Sci. 2015, 12, 100–115. [Google Scholar] [CrossRef] [Green Version]
- Devereaux, P.J.; Sessler, D.; Lalu, M. Myocardial injury after noncardiac surgery. Can. J. Anaesth. 2022, 69, 561–567. [Google Scholar] [CrossRef]
- Linn, S.; Grunau, P.D. New patient-oriented summary measure of net total gain in certainty for dichotomous diagnostic tests. Epidemiol. Perspect. Innov. 2006, 3, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larner, A.J. Number Needed to Diagnose, Predict, or Misdiagnose: Useful Metrics for Non-Canonical Signs of Cognitive Status? Dement. Geriatr. Cogn. Dis. Extra 2018, 8, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, Y.; Zhao, K.; Wang, J.; Zheng, M.; Zhao, Y.; Han, H.; Zhao, Q.; Zhao, X. Association of Perioperative Myocardial Injury with 30-Day and Long-Term Mortality in Older Adult Patients Undergoing Orthopedic Surgery in China. Med. Sci. Monit. 2021, 27, e932036. [Google Scholar] [CrossRef] [PubMed]
- Sa-Ngasoongsong, P.; Thamyongkit, S.; Kulachote, N.; Luksameearunothai, K.; Ngamukos, T.; Suphachatwong, C. Usefulness of Serum Cardiac Biomarkers for Predicting In-Hospital Cardiac Complications in Acute Hip Fracture: A Prospective Cohort in 20 High Surgical Risk patients with Age over 55 Years. Biomed. Res. Int. 2018, 2018, 3453652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, A.M.; Nguyen, M.T.; Khan, E.; Jones, D.; Horsfall, M.; Lehman, S.; Smilowitz, N.R.; Lambrakis, K.; Than, M.; Vaile, J.; et al. Troponin elevation pattern and subsequent cardiac and non-cardiac outcomes: Implementing the Fourth Universal Definition of Myocardial Infarction and high-sensitivity troponin at a population level. PLoS ONE 2021, 16, e0248289. [Google Scholar] [CrossRef] [PubMed]
- Sazgary, L.; Puelacher, C.; Lurati Buse, G.; Glarner, N.; Lampart, A.; Bolliger, D.; Steiner, L.; Gurke, L.; Wolff, T.; Mujagic, E.; et al. Incidence of major adverse cardiac events following non-cardiac surgery. Eur. Heart J. Acute Cardiovasc. Care 2020, 10, 550–558. [Google Scholar] [CrossRef]
- Costa, M.; Furtado, M.V.; Borges, F.K.; Ziegelmann, P.K.; Suzumura, E.A.; Berwanger, O.; Devereaux, P.J.; Polanczyk, C.A. Perioperative Troponin Screening Identifies Patients at Higher Risk for Major Cardiovascular Events in Noncardiac Surgery. Curr. Probl. Cardiol. 2021, 46, 100429. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; Shi, X.; Gu, C.; Xu, H.; Liu, S. Clinical Parameters and Metabolomic Biomarkers That Predict Inhospital Outcomes in Patients With ST-Segment Elevated Myocardial Infarctions. Front. Physiol. 2021, 12, 820240. [Google Scholar] [CrossRef]
- Fisher, A.A.; Goh, S.L.; Srikusalankul, W.; Southcott, E.N.; Davis, M.W. Serum leptin levels in older patients with hip fracture—Impact on peri-operative myocardial injury. Am. Heart Hosp. J. 2009, 7, 9–16. [Google Scholar] [CrossRef]
- Fisher, A.; Srikusalanukul, W.; Davis, M.; Smith, P. Interactions between Serum Adipokines and Osteocalcin in Older Patients with Hip Fracture. Int. J. Endocrinol. 2012, 2012, 684323. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.; Srikusalanukul, W.; Davis, M.; Smith, P. Cardiovascular diseases in older patients with osteoporotic hip fracture: Prevalence, disturbances in mineral and bone metabolism, and bidirectional links. Clin. Interv. Aging 2013, 8, 239–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurmi-Luthje, I.; Luthje, P.; Kaukonen, J.P.; Kataja, M. Positive Effects of a Sufficient Pre-fracture Serum Vitamin D Level on the Long-Term Survival of Hip Fracture Patients in Finland: A Minimum 11-Year Follow-Up. Drugs Aging 2015, 32, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Fakler, J.K.; Grafe, A.; Dinger, J.; Josten, C.; Aust, G. Perioperative risk factors in patients with a femoral neck fracture—Influence of 25-hydroxyvitamin D and C-reactive protein on postoperative medical complications and 1-year mortality. BMC Musculoskelet. Disord. 2016, 17, 51. [Google Scholar] [CrossRef] [Green Version]
- Grubler, M.R.; Marz, W.; Pilz, S.; Grammer, T.B.; Trummer, C.; Mullner, C.; Schwetz, V.; Pandis, M.; Verheyen, N.; Tomaschitz, A.; et al. Vitamin-D concentrations, cardiovascular risk and events—A review of epidemiological evidence. Rev. Endocr. Metab. Disord. 2017, 18, 259–272. [Google Scholar] [CrossRef]
- Cher, E.W.L.; Allen, J.C.; Moo, I.H.; Lo, E.C.; Peh, B.; Howe, T.S.; Koh, J.S.B. Sub-optimal serum 25-hydroxyvitamin D level affects 2-year survival after hip fracture surgery. J. Bone Miner. Metab. 2020, 38, 555–562. [Google Scholar] [CrossRef]
- Pilz, S.; Tomaschitz, A.; Marz, W.; Drechsler, C.; Ritz, E.; Zittermann, A.; Cavalier, E.; Pieber, T.R.; Lappe, J.M.; Grant, W.B.; et al. Vitamin D, cardiovascular disease and mortality. Clin. Endocrinol. 2011, 75, 575–584. [Google Scholar] [CrossRef]
- Boccardi, V.; Lapenna, M.; Gaggi, L.; Garaffa, F.M.; Croce, M.F.; Baroni, M.; Ercolani, S.; Mecocci, P.; Ruggiero, C. Hypovitaminosis D: A Disease Marker in Hospitalized Very Old Persons at Risk of Malnutrition. Nutrients. 2019, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Ismailova, A.; White, J.H. Vitamin D, infections and immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Hu, X.; Tripathi, A.S. A brief review of vitamin D as a potential target for the regulation of blood glucose and inflammation in diabetes-associated periodontitis. Mol. Cell. Biochem. 2022, 477, 2257–2268. [Google Scholar] [CrossRef] [PubMed]
- Matta Reddy, A.; Iqbal, M.; Chopra, H.; Urmi, S.; Junapudi, S.; Bibi, S.; Kumar Gupta, S.; Nirmala Pangi, V.; Singh, I.; Abdel-Daim, M.M. Pivotal role of vitamin D in mitochondrial health, cardiac function, and human reproduction. EXCLI J. 2022, 21, 967–990. [Google Scholar]
- Mohd Ghozali, N.; Giribabu, N.; Salleh, N. Mechanisms Linking Vitamin D Deficiency to Impaired Metabolism: An Overview. Int. J. Endocrinol. 2022, 2022, 6453882. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, T.; Gonzalez-Montalvo, J.I.; Hoyos, R.; Diez-Sebastian, J.; Otero, A.; Mauleon, J.L. Parathyroid hormone response to two levels of vitamin D deficiency is associated with high risk of medical problems during hospitalization in patients with hip fracture. J. Endocrinol. Investig. 2015, 38, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Goldman, L.; Caldera, D.L.; Nussbaum, S.R.; Southwick, F.S.; Krogstad, D.; Murray, B.; Burke, D.S.; O’Malley, T.A.; Goroll, A.H.; Caplan, C.H.; et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N. Engl. J. Med. 1977, 297, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Detsky, A.S.; Abrams, H.B.; Forbath, N.; Scott, J.G.; Hilliard, J.R. Cardiac assessment for patients undergoing noncardiac surgery. A multifactorial clinical risk index. Arch. Intern. Med. 1986, 146, 2131–2134. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Marcantonio, E.R.; Mangione, C.M.; Thomas, E.J.; Polanczyk, C.A.; Cook, E.F.; Sugarbaker, D.J.; Donaldson, M.C.; Poss, R.; Ho, K.K.; et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999, 100, 1043–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, P.S.; Gumieiro, D.N.; Polegato, B.F.; Pereira, G.J.; Silva, I.A.; Pio, S.M.; Junior, C.P.; Junior, E.L.; de Paiva, S.A.; Minicucci, M.F.; et al. Goldman score, but not Detsky or Lee indices, predicts mortality 6 months after hip fracture. BMC Musculoskelet. Disord. 2017, 18, 134. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.H.L.; Van Mierlo, R.; McLauchlan, G.; Challen, K.; Mitra, S.; Dhaygude, A.P.; Nixon, A.C. Prognostic performance of clinical assessment tools following hip fracture in patients with chronic kidney disease. Int. Urol. Nephrol. 2021, 53, 2359–2367. [Google Scholar] [CrossRef]
- Xing, F.; Luo, R.; Liu, M.; Zhou, Z.; Xiang, Z.; Duan, X. A New Random Forest Algorithm-Based Prediction Model of Post-operative Mortality in Geriatric Patients With Hip Fractures. Front. Med. 2022, 9, 829977. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Lv, H.; Yin, P.; Zhang, L.; Tang, P. A novel machine-learning algorithm for predicting mortality risk after hip fracture surgery. Injury 2021, 52, 1487–1493. [Google Scholar] [CrossRef]
- Karres, J.; Kieviet, N.; Eerenberg, J.P.; Vrouenraets, B.C. Predicting Early Mortality after Hip Fracture Surgery: The Hip Fracture Estimator of Mortality Amsterdam. J. Orthop. Trauma 2018, 32, 27–33. [Google Scholar] [CrossRef]
- Jiang, H.X.; Majumdar, S.R.; Dick, D.A.; Moreau, M.; Raso, J.; Otto, D.D.; Johnston, D.W. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J. Bone Miner. Res. 2005, 20, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Nijmeijer, W.S.; Folbert, E.C.; Vermeer, M.; Slaets, J.P.; Hegeman, J.H. Prediction of early mortality following hip fracture surgery in frail elderly: The Almelo Hip Fracture Score (AHFS). Injury 2016, 47, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
- Mellner, C.; Eisler, T.; Borsbo, J.; Broden, C.; Morberg, P.; Mukka, S. The Sernbo score predicts 1-year mortality after displaced femoral neck fractures treated with a hip arthroplasty. Acta Orthop. 2017, 88, 402–406. [Google Scholar] [CrossRef] [Green Version]
- Hjelholt, T.J.; Johnsen, S.P.; Brynningsen, P.K.; Knudsen, J.S.; Prieto-Alhambra, D.; Pedersen, A.B. Development and validation of a model for predicting mortality in patients with hip fracture. Age Ageing 2022, 51, afab233. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.; Boulton, C.; Burgon, V.; Johansen, A.; Wakeman, R.; Cromwell, D.A. Predicting 30-day mortality after hip fracture surgery: Evaluation of the National Hip Fracture Database case-mix adjustment model. Bone Jt. Res. 2017, 6, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.L.; Lin, H.S.; Hsu, C.J. Predicting in-hospital mortality for dementia patients after hip fracture surgery—A comparison between the Charlson Comorbidity Index (CCI) and the Elixhauser Comorbidity Index. J. Orthop. Sci. 2021, 26, 396–402. [Google Scholar] [CrossRef]
- Varady, N.H.; Gillinov, S.M.; Yeung, C.M.; Rudisill, S.S.; Chen, A.F. The Charlson and Elixhauser Scores Outperform the American Society of Anesthesiologists Score in Assessing 1-year Mortality Risk After Hip Fracture Surgery. Clin. Orthop. Relat. Res. 2021, 479, 1970–1979. [Google Scholar] [CrossRef]
- Quach, L.H.; Jayamaha, S.; Whitehouse, S.L.; Crawford, R.; Pulle, C.R.; Bell, J.J. Comparison of the Charlson Comorbidity Index with the ASA score for predicting 12-month mortality in acute hip fracture. Injury 2020, 51, 1004–1010. [Google Scholar] [CrossRef]
- Sun, X.; Chen, Y.; Gao, Y.; Zhang, Z.; Qin, L.; Song, J.; Wang, H.; Wu, I.X. Prediction Models for Osteoporotic Fractures Risk: A Systematic Review and Critical Appraisal. Aging Dis. 2022, 13, 1215–1238. [Google Scholar] [CrossRef]
- Kaafarani, H.M.; Atluri, P.V.; Thornby, J.; Itani, K.M. beta-Blockade in noncardiac surgery: Outcome at all levels of cardiac risk. Arch. Surg. 2008, 143, 940–944; discussion 944. [Google Scholar] [CrossRef] [Green Version]
- Auerbach, A.D.; Goldman, L. beta-Blockers and reduction of cardiac events in noncardiac surgery: Scientific review. JAMA 2002, 287, 1435–1444. [Google Scholar] [PubMed] [Green Version]
- Talati, R.; Reinhart, K.M.; White, C.M.; Phung, O.J.; Sedrakyan, A.; Kluger, J.; Coleman, C.I. Outcomes of perioperative beta-blockade in patients undergoing noncardiac surgery: A meta-analysis. Ann. Pharmacother. 2009, 43, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Priebe, H.J. Perioperative use of beta-blockers. F1000 Med. Rep. 2009, 1, 77. [Google Scholar] [CrossRef] [PubMed]
- Van Klei, W.A.; Bryson, G.L.; Yang, H.; Forster, A.J. Effect of beta-blocker prescription on the incidence of postoperative myocardial infarction after hip and knee arthroplasty. Anesthesiology 2009, 111, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Angeli, F.; Verdecchia, P.; Karthikeyan, G.; Mazzotta, G.; Gentile, G.; Reboldi, G. ss-Blockers reduce mortality in patients undergoing high-risk non-cardiac surgery. Am. J. Cardiovasc. Drugs 2010, 10, 247–259. [Google Scholar] [CrossRef]
- Koniari, I.; Hahalis, G. Perioperative B-blockers in non-cardiac surgery: Actual situation. Curr. Pharm. Des. 2013, 19, 3946–3962. [Google Scholar] [CrossRef]
- Andersson, C.; Merie, C.; Jorgensen, M.; Gislason, G.H.; Torp-Pedersen, C.; Overgaard, C.; Kober, L.; Jensen, P.F.; Hlatky, M.A. Association of beta-blocker therapy with risks of adverse cardiovascular events and deaths in patients with ischemic heart disease undergoing noncardiac surgery: A Danish nationwide cohort study. JAMA Intern. Med. 2014, 174, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Dimmitt, S.B.; Stampfer, H.G.; Warren, J.B.; Paech, M.J. Hazards of perioperative beta-blockers are likely to be dose related. Br. J. Anaesth. 2015, 115, 944. [Google Scholar] [CrossRef]
- Mostafaie, K.; Bedenis, R.; Harrington, D. Beta-adrenergic blockers for perioperative cardiac risk reduction in people undergoing vascular surgery. Cochrane Database Syst. Rev. 2015, 1, CD006342. [Google Scholar] [CrossRef] [Green Version]
- Blessberger, H.; Lewis, S.R.; Pritchard, M.W.; Fawcett, L.J.; Domanovits, H.; Schlager, O.; Wildner, B.; Kammler, J.; Steinwender, C. Perioperative beta-blockers for preventing surgery-related mortality and morbidity in adults undergoing non-cardiac surgery. Cochrane Database Syst. Rev. 2019, 9, CD013438. [Google Scholar] [CrossRef]
- Wongcharoen, W.; Chotayaporn, T.; Chutikhongchalermroj, K.; Tantraworasin, A.; Saeteng, S.; Arworn, S.; Rerkasem, K.; Phrommintikul, A. Effects of short-term bisoprolol on perioperative myocardial injury in patients undergoing non-cardiac surgery: A randomized control study. Sci. Rep. 2021, 11, 22006. [Google Scholar] [CrossRef] [PubMed]
- Oprea, A.D.; Wang, X.; Sickeler, R.; Kertai, M.D. Contemporary personalized beta-blocker management in the perioperative setting. J. Anesth. 2020, 34, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.R.; Pritchard, M.W.; Schofield-Robinson, O.J.; Alderson, P.; Smith, A.F. Continuation versus discontinuation of antiplatelet therapy for bleeding and ischaemic events in adults undergoing non-cardiac surgery. Cochrane Database Syst. Rev. 2018, 7, CD012584. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Guilera, N.; Mases, A.; Sierra, P.; Oliva, J.C.; Colilles, C.; REGISTRESTENTS Group. Management of antiplatelet therapy in patients with coronary stents undergoing noncardiac surgery: Association with adverse events. Br. J. Anaesth. 2018, 120, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Howell, S.J.; Hoeks, S.E.; West, R.M.; Wheatcroft, S.B.; Hoeft, A.; Network, O.I.o.E.S.o.A.C.T. Prospective observational cohort study of the association between antiplatelet therapy, bleeding and thrombosis in patients with coronary stents undergoing noncardiac surgery. Br. J. Anaesth. 2019, 122, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Tarrant, S.M.; Kim, R.G.; McGregor, K.L.; Palazzi, K.; Attia, J.; Balogh, Z.J. Dual Antiplatelet Therapy and Surgical Timing in Geriatric Hip Fracture. J. Orthop. Trauma. 2020, 34, 559–565. [Google Scholar] [CrossRef]
- Yang, M.H.; Li, B.; Yao, D.C.; Zhou, Y.; Zhang, W.C.; Wang, G.; Zhang, P.; Zhu, S.W.; Wu, X.B. Safety of early surgery for geriatric hip fracture patients taking clopidogrel: A retrospective case-control study of 120 patients in China. Chin. Med. J. 2021, 134, 1720–1725. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.S.; Kim, H.; Ahn, S.G.; Cho, S.; Lee, O.H.; Park, J.K.; Shin, S.; Moon, J.Y.; Won, H.; et al. Consensus Decision-Making for the Management of Antiplatelet Therapy before Non-Cardiac Surgery in Patients Who Underwent Percutaneous Coronary Intervention With Second-Generation Drug-Eluting Stents: A Cohort Study. J. Am. Heart Assoc. 2021, 10, e020079. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.A.; Heo, B.; Kim, Y.R.; Ahn, H.J.; Yang, M.; Jang, J.; Ahn, S. Association between intraoperative hypotension and postoperative myocardial injury in patients with prior coronary stents undergoing high-risk surgery: A retrospective study. J. Anesth. 2020, 34, 257–267. [Google Scholar] [CrossRef]
- Jantzen, C.; Madsen, C.M.; Abrahamsen, B.; Van Der Mark, S.; Duus, B.R.; Howland, J.; Lauritzen, J.B.; Jorgensen, H.L. Pre-fracture medication use as a predictor of 30-day mortality in hip fracture patients: An analysis of 141,201 patients. Hip. Int. 2020, 30, 101–106. [Google Scholar] [CrossRef]
- Langerhuizen, D.W.G.; Verweij, L.P.E.; van der Wouden, J.C.; Kerkhoffs, G.; Janssen, S.J. Antihypertensive drugs demonstrate varying levels of hip fracture risk: A systematic review and meta-analysis. Injury. 2022, 53, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Xu, J.; Singh, B.; Yu, X.; Wu, T.; Huang, Y. Nitrates for the prevention of cardiac morbidity and mortality in patients undergoing non-cardiac surgery. Cochrane Database Syst. Rev. 2016, CD010726. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.; Sankar, A.; Beattie, W.S.; Wijeysundera, D.N. Alpha-2 adrenergic agonists for the prevention of cardiac complications among adults undergoing surgery. Cochrane Database Syst. Rev. 2018, 3, CD004126. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.H. Myocardial injury in noncardiac surgery. Korean. J. Anesthesiol. 2022, 75, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Alonso-Coello, P.; Devereaux, P.J. Myocardial injury after noncardiac surgery. Curr. Opin. Cardiol. 2014, 29, 307–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuma, M.; Endo, N.; Oinuma, T. Serum 25-OHD insufficiency as a risk factor for hip fracture. J. Bone Miner. Metab. 2007, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Cheng, G.; Wang, H.; Chen, B. The associations between serum 25-hydroxyvitamin D level and the risk of total fracture and hip fracture. Osteoporos. Int. 2017, 28, 1641–1652. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Y.; Ji, J.; Chang, J.; Yu, S.; Yu, B. The relationship between serum vitamin D and fracture risk in the elderly: A meta-analysis. J. Orthop. Surg. Res. 2020, 15, 81. [Google Scholar] [CrossRef]
- Dretakis, K.; Igoumenou, V.G. The role of parathyroid hormone (PTH) and vitamin D in falls and hip fracture type. Aging Clin. Exp. Res. 2019, 31, 1501–1507. [Google Scholar] [CrossRef]
- Lo, I.L.; Siu, C.W.; Tse, H.F.; Lau, T.W.; Leung, F.; Wong, M. Pre-operative pulmonary assessment for patients with hip fracture. Osteoporos. Int. 2010, 21, S579–S586. [Google Scholar] [CrossRef] [Green Version]
- Laulund, A.S.; Lauritzen, J.B.; Duus, B.R.; Mosfeldt, M.; Jorgensen, H.L. Routine blood tests as predictors of mortality in hip fracture patients. Injury 2012, 43, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Mosfeldt, M.; Pedersen, O.B.; Riis, T.; Worm, H.O.; Mark, S.; Jorgensen, H.L.; Duus, B.R.; Lauritzen, J.B. Value of routine blood tests for prediction of mortality risk in hip fracture patients. Acta Orthop. 2012, 83, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marin-Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and meta analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- Bohl, D.D.; Shen, M.R.; Hannon, C.P.; Fillingham, Y.A.; Darrith, B.; Della Valle, C.J. Serum Albumin Predicts Survival and Postoperative Course Following Surgery for Geriatric Hip Fracture. J. Bone Jt. Surg. Am. 2017, 99, 2110–2118. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; Politzer, C.; Fletcher, A.; Bolognesi, M.; Seyler, T. Preoperative Hypoalbuminemia Predicts Poor Short-term Outcomes for Hip Fracture Surgery. Orthopedics 2018, 41, e789–e796. [Google Scholar] [CrossRef]
- Higashikawa, T.; Shigemoto, K.; Goshima, K.; Horii, T.; Usuda, D.; Morita, T.; Moriyama, M.; Inujima, H.; Hangyou, M.; Usuda, K.; et al. Mortality and the Risk Factors in Elderly Female Patients with Femoral Neck and Trochanteric Fractures. J. Clin. Med. Res. 2020, 12, 668–673. [Google Scholar] [CrossRef]
- Shin, K.H.; Kim, J.J.; Son, S.W.; Hwang, K.S.; Han, S.B. Early Postoperative Hypoalbuminaemia as a Risk Factor for Postoperative Pneumonia Following Hip Fracture Surgery. Clin. Interv. Aging 2020, 15, 1907–1915. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, Y.; Zhang, K.; Tian, M.; Qin, S.; Li, X. Relationship Between Preoperative Hypoalbuminemia and Postoperative Pneumonia Following Geriatric Hip Fracture Surgery: A Propensity-Score Matched and Conditional Logistic Regression Analysis. Clin. Interv. Aging 2022, 17, 495–503. [Google Scholar] [CrossRef]
- Gringauz, I.; Weismann, J.; Justo, D.; Adunsky, A.; Segal, G. Alanine aminotransferase blood levels and rehabilitation outcome in older adults following hip fracture surgery. Int. J. Rehabil. Res. 2018, 41, 41–46. [Google Scholar] [CrossRef]
- Kim, K.J.; Hong, N.; Yu, M.H.; Lee, S.; Shin, S.; Kim, S.G.; Rhee, Y. Elevated gamma-glutamyl transpeptidase level is associated with an increased risk of hip fracture in postmenopausal women. Sci. Rep. 2022, 12, 13947. [Google Scholar] [CrossRef]
- Powell, J.; Michael, A. Peri-operative derangement in liver function tests in older patients with neck of femur fracture. Osteoporos. Int. 2021, 32, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Cannada, L.K. CORR Insights(R): Hip Fractures in Patients with Liver Cirrhosis: Worsening Liver Function is Associated with Increased Mortality. Clin. Orthop. Relat. Res. 2022, 480, 1089–1090. [Google Scholar] [CrossRef] [PubMed]
- Tseng, F.J.; Gou, G.H.; Wang, S.H.; Shyu, J.F.; Pan, R.Y. Chronic liver disease and cirrhosis increase morbidity in geriatric patients treated surgically for hip fractures: Analysis of the US Nationwide Inpatient Sample. BMC Geriatr. 2022, 22, 150. [Google Scholar] [CrossRef] [PubMed]
- Hundersmarck, D.; Groot, O.Q.; Schuijt, H.J.; Hietbrink, F.; Leenen, L.P.H.; Heng, M. Hip Fractures in Patients With Liver Cirrhosis: Worsening Liver Function Is Associated with Increased Mortality. Clin. Orthop. Relat. Res. 2022, 480, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Onochie, E.; Kayani, B.; Dawson-Bowling, S.; Millington, S.; Achan, P.; Hanna, S. Total hip arthroplasty in patients with chronic liver disease: A systematic review. SICOT J. 2019, 5, 40. [Google Scholar] [CrossRef]
- Ryan, G.; Nowak, L.; Melo, L.; Ward, S.; Atrey, A.; Schemitsch, E.H.; Nauth, A.; Khoshbin, A. Anemia at Presentation Predicts Acute Mortality and Need for Readmission Following Geriatric Hip Fracture. JB JS Open Access 2020, 5, e20.00048. [Google Scholar] [CrossRef]
- Hagino, T.; Ochiai, S.; Sato, E.; Maekawa, S.; Wako, M.; Haro, H. The relationship between anemia at admission and outcome in patients older than 60 years with hip fracture. J. Orthop. Traumatol. 2009, 10, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Vochteloo, A.J.; Borger van der Burg, B.L.; Mertens, B.; Niggebrugge, A.H.; de Vries, M.R.; Tuinebreijer, W.E.; Bloem, R.M.; Nelissen, R.G.; Pilot, P. Outcome in hip fracture patients related to anemia at admission and allogeneic blood transfusion: An analysis of 1262 surgically treated patients. BMC Musculoskelet. Disord. 2011, 12, 262. [Google Scholar] [CrossRef]
- Fisher, A.; Srikusalanukul, W.; Fisher, L.; Smith, P. The Neutrophil to Lymphocyte Ratio on Admission and Short-Term Outcomes in Orthogeriatric Patients. Int. J. Med. Sci. 2016, 13, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Forget, P.; Dillien, P.; Engel, H.; Cornu, O.; De Kock, M.; Yombi, J.C. Use of the neutrophil-to-lymphocyte ratio as a component of a score to predict postoperative mortality after surgery for hip fracture in elderly subjects. BMC Res. Notes. 2016, 9, 284. [Google Scholar] [CrossRef] [Green Version]
- Aali-Rezaie, A.; Alijanipour, P.; Shohat, N.; Vahedi, H.; Foltz, C.; Parvizi, J. Red Cell Distribution Width: An Unacknowledged Predictor of Mortality and Adverse Outcomes Following Revision Arthroplasty. J. Arthroplasty 2018, 33, 3514–3519. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Lv, H.; Li, Y.; Meng, Y.; Zhang, L.; Zhang, L.; Tang, P. Hip fracture patients who experience a greater fluctuation in RDW during hospital course are at heightened risk for all-cause mortality: A prospective study with 2-year follow-up. Osteoporos. Int. 2018, 29, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Cohort (n = 1273) | With IHD (n = 361, 28.4%) | Without IHD (n = 912, 71.6%) | p Value |
---|---|---|---|---|
Age, mean ± SD, years | 82.9 ± 8.68 | 84.9 ± 7.18 | 82.2 ± 9.10 | <0.001 |
Aged > 80 years, % | 70.6 | 76.7 | 68.2 | 0.001 |
Female, % | 73.5 | 69.5 | 75.0 | 0.028 |
PRCF resident, % | 32.8 | 30.9 | 31.6 | 0.090 |
HF type [trochanteric], % | 49.3 | 51.5 | 48.5 | 0.178 |
History of AMI, % | 7.8 | 27.7 | ||
Hypertension, % | 55.9 | 66.2 | 51.8 | <0.001 |
CVA, % | 10.8 | 15.0 | 9.1 | 0.002 |
TIA, % | 10.1 | 11.6 | 9.4 | 0.141 |
CKD, % | 34.0 | 46.1 | 29.2 | <0.001 |
COPD, % | 17.2 | 25.2 | 14.0 | <0.001 |
Anaemia, % | 41.8 | 44.3 | 40.8 | 0.138 |
T2 DM, % | 19.7 | 23.0 | 18.3 | 0.058 |
Dementia, % | 31.6 | 33.0 | 31.0 | 0.273 |
Parkinson’s disease, % | 5.0 | 3.3 | 5.6 | 0.058 |
Smoker, % | 5.7 | 4.2 | 6.4 | 0.079 |
Ex-smoker, % | 11.8 | 13.0 | 11.3 | 0.223 |
* Alcohol over-user, % | 4.0 | 2.2 | 44.7 | 0.025 |
Walking aids user, % | 37.3 | 41.0 | 35.8 | 0.048 |
In-hospital mortality, % | 4.8 | 7.5 | 3.7 | 0.005 |
Myocardial injury, % | 43.6 | 58.6 | 37.7 | <0.001 |
Postoperative AMI, % | 6.7 | 11.7 | 4.8 | <0.001 |
LOS > 10 days, % | 57.9 | 61.5 | 56.5 | 0.058 |
LOS > 20 days, % | 22.0 | 25.8 | 20.4 | 0.024 |
CRP > 100 mg/L, % | 80.9 | 84.2 | 79.7 | 0.037 |
Variable | With PMI (n = 555, 43.6%) | Without PMI (n = 718, 56.4%) | p Value |
---|---|---|---|
Age, mean ± SD, years | 86.1 ± 6.82 | 80.8 ± 8.91 | <0.001 |
Aged > 80 years, % | 85.2 | 60.4 | <0.001 |
Male, % | 28.9 | 24.6 | 0.054 |
PRCF resident, % | 38.7 | 28.4 | <0.001 |
Trochanteric HF, % | 48.2 | 49.6 | 0.341 |
History of IHD, % | 37.7 | 20.6 | <0.001 |
History of AMI, % | 11.1 | 5.2 | 0.001 |
Hypertension, % | 60.2 | 51.4 | 0.001 |
CVA, % | 11.8 | 9.6 | 0.119 |
TIA, % | 12.6 | 8.3 | 0.009 |
CKD, % | 44.3 | 26.1 | <0.001 |
COPD, % | 16.5 | 17.5 | 0.347 |
Anaemia, % | 46.0 | 38.4 | 0.005 |
T2DM, % | 20.8 | 18.8 | 0.524 |
Dementia, % | 38.5 | 26.2 | <0.001 |
Parkinson’s disease, % | 3.8 | 5.9 | 0.052 |
Smoker, % | 4.1 | 6.5 | 0.068 |
Ex-smoker, % | 13.0 | 11.7 | 0.286 |
* Alcohol over-user, % | 1.9 | 5.4 | 0.001 |
Walking aids user, % | 38.7 | 36.0 | 0.341 |
In-hospital mortality, % | 8.8 | 1.9 | <0.001 |
LOS > 10 days, % | 61.4 | 54.9 | 0.013 |
LOS > 20 days, % | 22.1 | 21.0 | 0.645 |
CRP > 100 mg/L, % | 88.0 | 77.3 | <0.001 |
CRP > 150 mg/L, % | 69.2 | 55.1 | <0.001 |
Variable | 1 Total Cohort (n = 1273) | 2 IHD (n = 361) | 3 IHD > 80 Years of Age (n = 277) | |||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
In-hospital Mortality | ||||||
Age > 80 years | 4.9 (1.95–12.33) | 0.001 | 5.0 (1.96–12.62) | 0.001 | ||
IHD | 2.1 (1.24–3.51) | 0.005 | 7.4 (2.55–21.51) | <0.001 | ||
PTH > 6.8 pmol/L | 1.9 (1.06–3.25) | 0.031 | 3.7 (1.85–7.27) | <0.001 | 11.8 (2.71–51.19) | 0.001 |
25(OH)D < 25 nmol/L | 2.4 (1.25–4.68) | 0.009 | 8.0 (3.46–18.28) | <0.001 | 23.6 (6.73–82.54) | <0.001 |
25(OH)D < 50 nmol/L | 1.2 (0.71–2.11) | 0.473 | 2.7 (1.43–5.24) | 0.002 | 8.4 (2.72–25.89) | <0.001 |
Albumin < 33 g/L | 1.2 (0.64–2.23) | 0.573 | 3.3 (1.46–7.64) | 0.004 | 15.2 (3.87–59.53) | <0.001 |
Urea > 7.5 mmol/L | 2.2 (1.34–3.95) | 0.007 | 5.1 (2.48–1066) | <0.001 | 9.5 (2.8–32.47) | <0.001 |
GGT ≥ 26 IU | 1.7 (1.01–2.94) | 0.047 | 1.7 (0.98–2.89) | 0.057 | 7.7 (1.72–34.33) | 0.008 |
GGT/Albumin ratio ≥ 7 | 2.1 (1.21–3.69) | 0.008 | 4.0 (1.85–8.78) | <0.001 | 16.5 (2.16–126.33) | 0.007 |
GG/ALT ratio > 2.5 | 1.3 (0.74–2.23) | 0.372 | 2.6 (1.129–5.44) | 0.008 | 8.5 (2.30–31.15) | 0.001 |
Urea/Albumin ratio ≥ 2.0 | 2.2 (1.22–4.07) | 0.009 | 5.2 (2.50–11.03) | <0.001 | 9.2 (2.70–31.44) | <0.001 |
Plt/Albumin ratio ≥ 5.9 | 1.8 (1.05–3.16) | 0.032 | 4.0 (1.83–8.55) | <0.001 | 21.8 (2.85–166.99) | <0.001 |
ALT ≥ 17 IU | 1.1 (0.64–1.85) | 0.751 | 1.7 (0.73–4.14) | 0.216 | 2.42 (0.71–8.29) | 0.158 |
Postoperative Myocardial Injury | ||||||
Age > 80 years | 3.8 (2.83–4.99) | <0.001 | 3.9 (2.92–5.27) | <0.001 | ||
IHD | 2.3 (1.81–3.01) | <0.001 | 8.3 (5.58–12.36) | <0.001 | ||
PTH > 6.8 pmol/L | 1.3 (1.02–1.68) | 0.032 | 3.1 (2.20–4.35) | <0.001 | 8.3 (5.01–13.73) | <0.001 |
25(OH)D < 25 nmol/L | 0.97 (0.65–1.44) | 0.869 | 3.9 (1.92–8.03) | <0.001 | 18.0 (7.00–46.26) | <0.001 |
25(OH)D < 50 nmol/L | 1.04 (0.80–1.35) | 0.768 | 2.3 (1.55–3.33) | <0.001 | 10.4 (5.78–18.83) | <0.001 |
Albumin < 33 g/L | 0.8 (0.59–1.09) | 0.162 | 1.8 (1.07–3.02) | 0.026 | 6.6 (3.37–13.08) | <0.001 |
Urea ≥ 7.5 mmol/L | 1.5 (1.21–1.99) | 0.001 | 4.4 (3.12–6.36) | <0.001 | 12.8 (7.71–21.31) | <0.001 |
GGT ≥ 26 IU | 0.98 (0.76–1.25) | 0.861 | 2.5 (1.74–3.64) | <0.001 | 9.1 (5.07–16.16) | <0.001 |
GGT/Albumin ratio ≥ 7.0 | 1.04 (0.81–1.33) | 0.753 | 2.4 (1.66–3.33) | <0.001 | 9.9 (5.51–17.62) | <0.001 |
GG/ALT ratio ≥ 2.5 | 0.99 (0.761.30) | 0.965 | 2.1 (1.44–3.14) | <0.001 | 11.4 (6.25–20.71) | <0.001 |
Urea/Albumin ratio ≥ 2.0 | 1.50 (1.19–1.96) | 0.001 | 4.5 (3.18–6.39) | <0.001 | 12.6 (7.62–20.89) | <0.001 |
Plt/Albumin ratio ≥ 5.9 | 0.89 (0.70–1.14) | 0.351 | 2.1 (1.45–3.10) | <0.001 | 6.1 (3.50–10.53) | <0.001 |
ALT ≥ 17 IU | 0.95 (0.74–1.21) | 0.661 | 2.8 (1.96–3.88) | <0.001 | 7.5 (4.05–13.77) | <0.001 |
Biomarker | AUC (95% CI) | Sensitivity (%) | Specificity (%) | Accuracy (%) | PPV (%) | NPV (%) | LR+ | LR− | NNP | * Calibration, chi2 (p Value) |
---|---|---|---|---|---|---|---|---|---|---|
In-Hospital mortality | ||||||||||
25(OH)D < 25 nmol/L | 0.803 (0.671–0.934) | 69.2 | 91.3 | 90.3 | 28.1 | 98.4 | 7.946 | 0.337 | 3.77 | 9.11 (0.6113) |
Albumin < 33 g/L | 0.789 (0.649–0.929) | 72.7 | 85.1 | 84.6 | 16 | 98.8 | 4.866 | 0.321 | 6.76 | 6.97 (0.8012) |
GGT/ALT > 2.5 | 0.742 (0.627–0857) | 78.6 | 69.8 | 70.2 | 22.4 | 98.4 | 2.6 | 0.307 | 4.81 | 7.44 (0.7524) |
25(OH)D < 50 nmol/L | 0.739 (0.644–0.830) | 80 | 67.7 | 68.6 | 16.3 | 97.7 | 2.478 | 0.295 | 7.14 | 20.39 (0.0401) |
Urea > 7.5 mmol/L | 0.729 (0.653–0.803) | 87 | 58.7 | 60.4 | 12.1 | 98.5 | 2.105 | 0.222 | 9.52 | 4.89 (0.9363) |
PTH > 6.8 pmol/L | 0.725 (0.658–0.792) | 90.9 | 54.1 | 56.4 | 12 | 98.9 | 1.979 | 0.168 | 9.17 | 8.20 (0.6955) |
GGT/Albumin ≥ 7.0 | 0.725 (0.659–0.790) | 94.1 | 50.8 | 53.5 | 11.3 | 99.2 | 1.912 | 0.116 | 9.52 | 4.38 (0.9574) |
Urea/Albumin ≥ 2.0 | 0.7216 (0.649–0.794) | 87.5 | 56.8 | 58.7 | 11.9 | 98.6 | 2.027 | 0.22 | 9.52 | 4.74 (0.9433) |
Plt/Albumin ≥ 5.9 | 94.1 | 57.7 | 59.9 | 19.8 | 99.3 | 2.225 | 0.102 | 5.24 | 8.43 (0.6747) | |
IHD + Age > 80 years | 0.700 (0.634–0.765) | 86.7 | 53.3 | 55 | 9.4 | 98.6 | 1.854 | 0.25 | 12.5 | 1.26 (0.8681) |
GGT ≥ 26 IU | 0.694 (0.609–0.780) | 88.2 | 50.6 | 53.1 | 11 | 98.4 | 1.787 | 0.232 | 10.64 | 2.71 (0.9941) |
ALT ≥ 17 IU | 0.607 (0.464–0.751) | 66.7 | 54.8 | 55.4 | 7.5 | 96.8 | 1.475 | 0.608 | 23.26 | 14.82 (0.1908) |
Age > 80 years | 0.637 (0.584–0.691) | 91.8 | 30.4 | 33.4 | 6.2 | 98.7 | 1.32 | 0.269 | 20.41 | 0.29 (0.5876) |
IHD | 0.591 (0.519–0.663) | 44.3 | 72.4 | 71.1 | 7.5 | 96.3 | 1.606 | 0.769 | 26.3 | 0.17 (0.6766) |
Postoperative myocardial injury | ||||||||||
Urea > 7.5 mmol/L | 0.782 (0.738–0.825) | 87.7 | 78.8 | 82.2 | 71.7 | 91.3 | 4.131 | 0.156 | 1.59 | 5.47 (0.9063) |
Urea/Albumin ≥ 2.0 | 0.780 (0.737–0.823) | 79.2 | 76.8 | 77.8 | 69.8 | 84.5 | 3.416 | 0.271 | 1.84 | 6.66 (0.8261) |
GGT/ALT > 2.5 | 0.760 (0.705–0.816) | 67.4 | 84.6 | 79 | 68.2 | 84.2 | 4.382 | 0.385 | 1.91 | 13.44 (0.2654) |
25(OH)D < 50 nmol/L | 0.757 (0.702–0.812) | 68.8 | 82.6 | 77.7 | 68.1 | 83 | 3.946 | 0.378 | 1.96 | 6.46 (0.841) |
GGT/Albumin ≥ 7.0 | 0.755 (0.703–0.806) | 80.7 | 70.2 | 74.7 | 67.2 | 82.8 | 3.708 | 0.275 | 2 | 10.14 (0.5176) |
PTH > 6.8 pmol/L | 0.742 (0.694–0.789) | 76.6 | 71.6 | 73.7 | 65.6 | 81.3 | 2.703 | 0.326 | 2.13 | 12.30 (0.3417) |
IHD + Age > 80 years | 0.741 (0.703–0.778) | 77.7 | 70.4 | 73.4 | 64.3 | 82.2 | 2.626 | 0.316 | 2.15 | 1.88 (0.758) |
Plt/Albumin ≥ 5.9 | 0.711 (0.654–0.768) | 71 | 71.3 | 71.2 | 60.7 | 79.7 | 2.47 | 0.407 | 2.27 | 9.28 (0.5960) |
25(OH)D < 25 nmol/L | 0.665 (0.608–0.723) | 36.1 | 97 | 80.7 | 81.3 | 80.6 | 11.856 | 0.659 | 1.62 | 12.94 (0.2970) |
Albumin < 33 g/L | 0.656 (0.593–0.720) | 53.1 | 90.7 | 83.7 | 56.5 | 89.4 | 5.678 | 0.518 | 2.18 | 12.92 (0.2986) |
ALT ≥ 17 IU | 0.732 (0.672–0.792) | 74.7 | 71.6 | 72.9 | 63.1 | 81.4 | 2.635 | 0.353 | 2.25 | 4.71 (0.9446) |
GGT ≥ 26 IU | 0.748 (0.695–0.802) | 85.7 | 70.7 | 77.1 | 68.7 | 86.8 | 2.927 | 0.202 | 1.8 | 13.48 (0.2629) |
Age > 80 years (total cohort) | 0.624 (0.600–0.647) | 85.2 | 39.6 | 59.4 | 52.1 | 77.6 | 1.409 | 0.375 | 3.37 | 0.00 (0.9465) |
IHD (total cohort) | 0.593 (0.593–0.623) | 37.7 | 79.4 | 61.2 | 58.6 | 62.3 | 1.832 | 0.784 | 4.78 | 0.68 (0.4088) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisher, A.; Srikusalanukul, W.; Fisher, L.; Smith, P.N. Comparison of Prognostic Value of 10 Biochemical Indices at Admission for Prediction Postoperative Myocardial Injury and Hospital Mortality in Patients with Osteoporotic Hip Fracture. J. Clin. Med. 2022, 11, 6784. https://doi.org/10.3390/jcm11226784
Fisher A, Srikusalanukul W, Fisher L, Smith PN. Comparison of Prognostic Value of 10 Biochemical Indices at Admission for Prediction Postoperative Myocardial Injury and Hospital Mortality in Patients with Osteoporotic Hip Fracture. Journal of Clinical Medicine. 2022; 11(22):6784. https://doi.org/10.3390/jcm11226784
Chicago/Turabian StyleFisher, Alexander, Wichat Srikusalanukul, Leon Fisher, and Paul N. Smith. 2022. "Comparison of Prognostic Value of 10 Biochemical Indices at Admission for Prediction Postoperative Myocardial Injury and Hospital Mortality in Patients with Osteoporotic Hip Fracture" Journal of Clinical Medicine 11, no. 22: 6784. https://doi.org/10.3390/jcm11226784
APA StyleFisher, A., Srikusalanukul, W., Fisher, L., & Smith, P. N. (2022). Comparison of Prognostic Value of 10 Biochemical Indices at Admission for Prediction Postoperative Myocardial Injury and Hospital Mortality in Patients with Osteoporotic Hip Fracture. Journal of Clinical Medicine, 11(22), 6784. https://doi.org/10.3390/jcm11226784