Risk Factors and Corresponding Management for Suture Anchor Pullout during Arthroscopic Rotator Cuff Repair
Abstract
:1. Introduction
2. Method
3. Results
3.1. Total Incidence of Anchor Pullout
3.1.1. Early Anchor Pullout
3.1.2. Anchor Pullout during Surgery
3.1.3. Anchor Pullout Has a Relatively Low Incidence
3.2. Risk Factors for Suture Anchor Pullout
3.2.1. Bone Quality
3.2.2. Anchor Material and Design
3.2.3. Number of Anchors (Distance between Anchors)
3.2.4. Insertion Angle
3.2.5. Size of Rotator Cuff Tear
3.2.6. Insertion Depth
3.2.7. The Effect of Corticosteroid Injections on Anchor Pullout Strength
3.3. Anchor Pullout Management
3.3.1. Changing the Implant Site of Anchors
3.3.2. Cement Augmentation for Suture Anchors
3.3.3. Using All-Suture Anchors
3.3.4. Increasing the Number of Suture Limbs
3.3.5. Buddy Anchor Technique
3.3.6. Steinmann Pin Anchoring
3.3.7. Using an Arthroscopic Transosseous Knotless Anchor
3.3.8. Transosseous Suture Repair Technology
4. Discussion and Clinical Inspirations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colvin, A.C.; Egorova, N.; Harrison, A.K.; Moskowitz, A.; Flatow, E.L. National Trends in Rotator Cuff Repair. J. Bone Jt. Surg. 2012, 94, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harryman, D.T., 2nd; Hettrich, C.M.; Smith, K.L.; Campbell, B.; Sidles, J.A.; Matsen, F.A., 3rd. A prospective multipractice investigation of patients with full-thickness rotator cuff tears: The importance of comorbidities, practice, and other covariables on self-assessed shoulder function and health status. J. Bone Jt. Surg. Am. 2003, 85, 690–696. [Google Scholar] [CrossRef]
- Barber, F.A.; Herbert, M.A. Cyclic Loading Biomechanical Analysis of the Pullout Strengths of Rotator Cuff and Glenoid Anchors: 2013 Update. Arthrosc. J. Arthrosc. Relat. Surg. 2013, 29, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Tingart, M.J.; Apreleva, M.; Lehtinen, J.; Zurakowski, D.; Warner, J.J. Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: Which anchors are best to use in patients with low bone quality? Am. J. Sports Med. 2004, 32, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, C.; Braunstein, V.; Milz, S.; Sprecher, C.M.; Fischer, F.; Tami, A.; Ahrens, P.; Imhoff, A.B.; Hinterwimmer, S. Assessment of bone quality within the tuberosities of the osteoporotic humeral head: Relevance for anchor positioning in rotator cuff repair. Am. J. Sports Med. 2010, 38, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Tingart, M.J.; Bouxsein, M.L.; Zurakowski, D.; Warner, J.P.; Apreleva, M. Three-dimensional distribution of bone density in the proximal humerus. Calcif. Tissue Res. 2003, 73, 531–536. [Google Scholar] [CrossRef]
- Djurasovic, M.; Marra, G.; Arroyo, J.S.; Pollock, R.G.; Flatow, E.L.; Bigliani, L.U. Revision Rotator Cuff Repair: Factors Influencing Results. J. Bone Jt. Surg. 2001, 83, 1849–1855. [Google Scholar] [CrossRef]
- Cummins, C.A.; Murrell, G.A. Mode of failure for rotator cuff repair with suture anchors identified at revision surgery. J. Shoulder Elb. Surg. 2003, 12, 128–133. [Google Scholar] [CrossRef]
- Skaliczki, G.; Paladini, P.; Merolla, G.; Campi, F.; Porcellini, G. Early anchor displacement after arthroscopic rotator cuff repair. Int. Orthop. 2015, 39, 915–920. [Google Scholar] [CrossRef]
- Benson, E.C.; MacDermid, J.C.; Drosdowech, D.S.; Athwal, G.S. The Incidence of Early Metallic Suture Anchor Pullout After Arthroscopic Rotator Cuff Repair. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, 310–315. [Google Scholar] [CrossRef]
- Dezaly, C.; Sirveaux, F.; Philippe, R.; Wein-Remy, F.; Sedaghatian, J.; Roche, O.; Molé, D. Arthroscopic treatment of rotator cuff tear in the over-60s: Repair is preferable to isolated acromioplasty-tenotomy in the short term. Orthop. Traumatol. Surg. Res. 2011, 97, S125–S130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, W.; Kim, D.O.; Kim, J.; Kim, S.H. Novel and reproducible technique coping with intraoperative anchor pullout during arthroscopic rotator cuff repair. Knee Surg. Sports Traumatol. Arthrosc. 2020, 29, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, M.F.; Fröhlich, V.; Ficklscherer, A.; Gülecyüz, M.F.; Wegener, B.; Jansson, V.; Müller, P.E. Suture anchor fixation strength in osteopenic versus non-osteopenic bone for rotator cuff repair. Arch. Orthop. Trauma Surg. 2009, 129, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, T.A.; Beebe, M.J.; Strauss, E.J.; Kubiak, E.N. The Effect of Insertion Angle on the Pullout Strength of Threaded Suture Anchors: A Validation of the Deadman Theory. Arthrosc. J. Arthrosc. Relat. Surg. 2014, 30, 900–905. [Google Scholar] [CrossRef]
- Bynum, C.K.; Lee, S.; Mahar, A.; Tasto, J.; Pedowitz, R. Failure mode of suture anchors as a function of insertion depth. Am. J. Sports Med. 2005, 33, 1030–1034. [Google Scholar] [CrossRef]
- Nagamoto, H.; Yamamoto, N.; Sano, H.; Itoi, E. A biomechanical study on suture anchor insertion angle: Which is better, 90° or 45°? J. Orthop. Sci. 2017, 22, 56–62. [Google Scholar] [CrossRef]
- Barber, F.A.; Hapa, O.; Bynum, J.A. Comparative Testing by Cyclic Loading of Rotator Cuff Suture Anchors Containing Multiple High-Strength Sutures. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, S134–S141. [Google Scholar] [CrossRef]
- Bisbinas, I.; Magnissalis, E.A.; Gigis, I.; Beslikas, T.; Hatzokos, I.; Christoforidis, I. Suture anchors, properties versus material and design: A biomechanical study in ovine model. Eur. J. Orthop. Surg. Traumatol. 2010, 21, 95–100. [Google Scholar] [CrossRef]
- Mahar, A.T.; Tucker, B.S.; Upasani, V.V.; Oka, R.S.; Pedowitz, R.A. Increasing the insertion depth of suture anchors for rotator cuff repair does not improve biomechanical stability. J. Shoulder Elbow Surg. 2005, 14, 626–630. [Google Scholar] [CrossRef]
- Tingart, M.J.; Apreleva, M.; Zurakowski, D.; Warner, J.J. Pullout strength of suture anchors used in rotator cuff repair. J. Bone Jt. Surg. 2003, 85, 2190–2198. [Google Scholar] [CrossRef]
- Brand, J.C., Jr.; Pienkowski, D.; Steenlage, E.; Hamilton, D.; Johnson, D.L.; Caborn, D.N. Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am. J. Sports Med. 2000, 28, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Poukalova, M.; Yakacki, C.M.; Guldberg, R.E.; Lin, A.; Saing, M.; Gillogly, S.D.; Gall, K. Pullout strength of suture anchors: Effect of mechanical properties of trabecular bone. J. Biomech. 2010, 43, 1138–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakacki, C.M.; Poukalova, M.; Guldberg, R.E.; Lin, A.; Saing, M.; Gillogly, S.; Gall, K. The effect of the trabecular microstructure on the pullout strength of suture anchors. J. Biomech. 2010, 43, 1953–1959. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Briot, J.; Pedrono, A.; Sans, N.; Mansat, P.; Mansat, M.; Swider, P. Age- and gender-related distribution of bone tissue of osteoporotic humeral head using computed tomography. J. Shoulder Elb. Surg. 2007, 16, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Martinel, V.; Bonnevialle, N. Contribution of postoperative ultrasound to early detection of anchor pullout after rotator cuff tendon repair: Report of 3 cases. Orthop. Traumatol. Surg. Res. 2020, 106, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Yamakado, K.; Katsuo, S.-I.; Mizuno, K.; Arakawa, H.; Hayashi, S. Medial-Row Failure After Arthroscopic Double-Row Rotator Cuff Repair. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, 430–435. [Google Scholar] [CrossRef]
- Barber, F.A.; Coons, D.A.; Ruiz-Suarez, M. Cyclic Load Testing of Biodegradable Suture Anchors Containing 2 High-Strength Sutures. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Deakin, M.; Stubbs, D.; Bruce, W.; Goldberg, J.; Gillies, R.M.; Walsh, W.R. Suture Strength and Angle of Load Application in a Suture Anchor Eyelet. Arthrosc. J. Arthrosc. Relat. Surg. 2005, 21, 1447–1451. [Google Scholar] [CrossRef]
- Meyer, D.C.; Fucentese, S.F.; Ruffieux, K.; Jacob, H.A.; Gerber, C. Mechanical testing of absorbable suture anchors. Arthrosc. J. Arthrosc. Relat. Surg. 2003, 19, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, A.; Ghodadra, N.; Karas, V.; Salata, M.J.; Cole, B.J. Complications of Bioabsorbable Suture Anchors in the Shoulder. Am. J. Sports Med. 2011, 40, 1424–1430. [Google Scholar] [CrossRef]
- Park, A.Y.; Hatch, J.D. Proximal humerus osteolysis after revision rotator cuff repair with bioabsorbable suture anchors. Am. J. Orthop. 2011, 40, 139–141. [Google Scholar] [PubMed]
- Glueck, D.; Wilson, T.C.; Johnson, D.L. Extensive Osteolysis after Rotator Cuff Repair with a Bioabsorbable Suture Anchor: A Case Report. Am. J. Sports Med. 2005, 33, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Jang, S.-H.; Oh, K.-S.; Li, Y.J. Radiolucent rings around bioabsorbable anchors after rotator cuff repair are not associated with clinical outcomes. Arch. Orthop. Trauma. Surg. 2017, 137, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Haneveld, H.; Hug, K.; Diederichs, G.; Scheibel, M.; Gerhardt, C. Arthroscopic double-row repair of the rotator cuff: A comparison of bio-absorbable and non-resorbable anchors regarding osseous reaction. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1647–1654. [Google Scholar] [CrossRef]
- Chae, S.-W.; Kang, J.-Y.; Lee, J.; Han, S.-H.; Kim, S.-Y. Effect of structural design on the pullout strength of suture anchors for rotator cuff repair. J. Orthop. Res. 2018, 36, 3318–3327. [Google Scholar] [CrossRef] [Green Version]
- Brady, P.C.; Arrigoni, P.; Burkhart, S.S. What do you do when you have a loose screw? Arthroscopy 2006, 22, 925–930. [Google Scholar] [CrossRef]
- Yakacki, C.M.; Griffis, J.; Poukalova, M.; Gall, K. Bearing area: A new indication for suture anchor pullout strength? J. Orthop. Res. 2009, 27, 1048–1054. [Google Scholar] [CrossRef]
- Horoz, L.; Hapa, O.; Barber, F.A.; Hüsemoğlu, B.; Özkan, M.; Havitçioğlu, H. Suture Anchor Fixation in Osteoporotic Bone: A Biomechanical Study in an Ovine Model. Arthroscopy 2017, 33, 68–74. [Google Scholar] [CrossRef]
- Kang, Y.G.; Kim, J.-H.; Shin, J.-W.; Baik, J.-M.; Choo, H.-J. Induction of bone ingrowth with a micropore bioabsorbable suture anchor in rotator cuff tear: An experimental study in a rabbit model. J. Shoulder Elb. Surg. 2013, 22, 1558–1566. [Google Scholar] [CrossRef]
- Green, R.N.; Donaldson, O.W.; Dafydd, M.; Evans, S.L.; Kulkarni, R. Biomechanical study: Determining the optimum insertion angle for screw-in suture anchors-is deadman’s angle correct? Arthroscopy 2014, 30, 1535–1539. [Google Scholar] [CrossRef]
- Sano, H.; Takahashi, A.; Chiba, D.; Hatta, T.; Yamamoto, N.; Itoi, E. Stress distribution inside bone after suture anchor insertion: Simulation using a three-dimensional finite element method. Knee Surg. Sports Traumatol. Arthrosc. 2012, 21, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, M.F.; Gülecyüz, M.F.; Fieseler, S.; Hentschel, M.; Rossbach, B.; Jansson, V.; Müller, P.E. Biomechanical stability of knotless suture anchors used in rotator cuff repair in healthy and osteopenic bone. Arthroscopy 2010, 26, 1035–1044. [Google Scholar] [CrossRef]
- Gülecyüz, M.; Bortolotti, H.; Pietschmann, M.; Ficklscherer, A.; Niethammer, T.; Roßbach, B.; Müller, P. Primary stability of rotator cuff repair: Can more suture materials yield more strength? Int. Orthop. 2016, 40, 989–997. [Google Scholar] [CrossRef]
- Kawakami, J.; Yamamoto, N.; Nagamoto, H.; Itoi, E. Minimum Distance of Suture Anchors Used for Rotator Cuff Repair Without Decreasing the Pullout Strength: A Biomechanical Study. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.R.; Harrington, R.M.; Lee, K.M.; Anderson, P.A.; Tencer, A.F.; Kowalski, D. Factors affecting the pullout strength of cancellous bone screws. J. Biomech. Eng. 1996, 118, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Nagra, N.S.; Zargar, N.; Smith, R.D.J.; Carr, A.J. Mechanical properties of all-suture anchors for rotator cuff repair. Bone Jt. Res. 2017, 6, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ntalos, D.; Sellenschloh, K.; Huber, G.; Briem, D.; Püschel, K.; Morlock, M.M.; Frosch, K.-H.; Fensky, F.; Klatte, T.O. Conventional rotator cuff versus all-suture anchors—A biomechanical study focusing on the insertion angle in an unlimited cyclic model. PLoS ONE 2019, 14, e0225648. [Google Scholar] [CrossRef] [Green Version]
- Fleischli, J.E. Editorial Commentary: Biomechanics of All Suture Anchors: What We Know So Far. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 2796–2798. [Google Scholar] [CrossRef] [Green Version]
- Strauss, E.; Frank, D.; Kubiak, E.; Kummer, F.; Rokito, A. The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: Deadman’s angle revisited. Arthroscopy 2009, 25, 597–602. [Google Scholar] [CrossRef]
- Barber, F.A.; Cawley, P.; Prudich, J.F. Suture anchor failure strength—An in vivo study. Arthrosc. J. Arthrosc. Relat. Surg. 1993, 9, 647–652. [Google Scholar] [CrossRef]
- De Carli, A.; Vadalà, A.; Monaco, E.; Labianca, L.; Zanzotto, E.; Ferretti, A. Effect of cyclic loading on new polyblend suture coupled with different anchors. Am. J. Sports Med. 2005, 33, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.S. The deadman theory of suture anchors: Observations along a south Texas fence line. Arthroscopy 1995, 11, 119–123. [Google Scholar] [CrossRef]
- Itoi, E.; Nagamoto, H.; Sano, H.; Yamamoto, N.; Kawakami, J. Deadman theory revisited12. Bio-Med. Mater. Eng. 2016, 27, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Nagamoto, H.; Yamamoto, N.; Itoi, E. Effect of anchor threads on the pullout strength: A biomechanical study. J. Orthop. 2018, 15, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, C.; Kirchhoff, S.; Sprecher, C.M.; Ahrens, P.; Imhoff, A.B.; Hinterwimmer, S.; Milz, S.; Braunstein, V. X-treme CT analysis of cancellous bone at the rotator cuff insertion in human individuals with osteoporosis: Superficial versus deep quality. Arch. Orthop. Trauma. Surg. 2012, 133, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Puzzitiello, R.N.; Patel, B.H.; Forlenza, E.M.; Nwachukwu, B.U.; Allen, A.A.; Forsythe, B.; Salzler, M.J. Adverse Impact of Corticosteroids on Rotator Cuff Tendon Health and Repair: A Systematic Review of Basic Science Studies. Arthrosc. Sports Med. Rehabilitation 2020, 2, e161–e169. [Google Scholar] [CrossRef]
- Boileau, P.; Brassart, N.; Watkinson, D.J.; Carles, M.; Hatzidakis, A.M.; Krishnan, S.G. Arthroscopic repair of full-thickness tears of the supraspinatus: Does the tendon really heal? J. Bone Jt. Surg. Am. 2005, 87, 1229–1240. [Google Scholar] [CrossRef]
- Duquin, T.R.; Buyea, C.; Bisson, L.J. Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am. J. Sports Med. 2010, 38, 835–841. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Kido, A.; Inoue, K.; Sakurai, G.; Hashiuchi, T.; Munemoto, M.; Tanaka, Y. In vivo microstructural analysis of the humeral greater tuberosity in patients with rotator cuff tears using multidetector row computed tomography. BMC Musculoskelet. Disord. 2014, 15, 351. [Google Scholar] [CrossRef] [Green Version]
- Oshtory, R.; Lindsey, D.P.; Giori, N.J.; Mirza, F.M. Bioabsorbable Tricalcium Phosphate Bone Cement Strengthens Fixation of Suture Anchors. Clin. Orthop. Relat. Res. 2010, 468, 3406–3412. [Google Scholar] [CrossRef]
- Giori, N.J.; Sohn, D.H.; Mirza, F.M.; Lindsey, D.P.; Lee, A.T. Bone Cement Improves Suture Anchor Fixation. Clin. Orthop. Relat. Res. 2006, 451, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Postl, L.K.; Ahrens, P.; Beirer, M.; Crönlein, M.; Imhoff, A.B.; Foehr, P.; Burgkart, R.; Braun, C.; Kirchhoff, C. Pull-out stability of anchors for rotator cuff repair is also increased by bio-absorbable augmentation: A cadaver study. Arch. Orthop. Trauma. Surg. 2016, 136, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Kafchitsas, K.; Geiger, F.; Rauschmann, M.; Schmidt, S. Zementverteilung bei Vertebroplastieschrauben unterschiedlichen Designs [Cement distribution in vertebroplasty pedicle screws with different designs]. Orthopade 2010, 39, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, V.; Ockert, B.; Windolf, M.; Sprecher, C.M.; Mutschler, W.; Imhoff, A.; Postl, L.K.L.; Biberthaler, P.; Kirchhoff, C. Increasing pullout strength of suture anchors in osteoporotic bone using augmentation—A cadaver study. Clin. Biomech. 2015, 30, 243–247. [Google Scholar] [CrossRef]
- Aziz, K.; Shi, B.Y.; Okafor, L.C.; Smalley, J.; Belkoff, S.M.; Srikumaran, U. Pullout strength of standard vs. cement-augmented rotator cuff repair anchors in cadaveric bone. Clin. Biomech. 2018, 54, 132–136. [Google Scholar] [CrossRef]
- Ntalos, D.; Huber, G.; Sellenschloh, K.; Saito, H.; Püschel, K.; Morlock, M.M.; Frosch, K.H.; Klatte, T.O. All-suture anchor pullout results in decreased bone damage and depends on cortical thickness. Knee Surg. Sports Traumatol. Arthrosc. 2020, 29, 2212–2219. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.H.; Jeong, H.J.; Yang, S.H.; Rhee, S.-M.; Itami, Y.; McGarry, M.H.; Lee, T.Q. Pullout Strength of All-Suture Anchors: Effect of the Insertion and Traction Angle—A Biomechanical Study. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 2784–2795. [Google Scholar] [CrossRef]
- Shi, B.Y.; Diaz, M.; Binkley, M.; McFarland, E.G.; Srikumaran, U. Biomechanical Strength of Rotator Cuff Repairs: A Systematic Review and Meta-regression Analysis of Cadaveric Studies. Am. J. Sports Med. 2018, 47, 1984–1993. [Google Scholar] [CrossRef]
- Denard, P.J.; Burkhart, S.S. Techniques for Managing Poor Quality Tissue and Bone During Arthroscopic Rotator Cuff Repair. Arthrosc. J. Arthrosc. Relat. Surg. 2011, 27, 1409–1421. [Google Scholar] [CrossRef]
- Sandow, M.J.; Schutz, C.R. Arthroscopic rotator cuff repair using a transosseous knotless anchor (ATOK). J. Shoulder Elb. Surg. 2019, 29, 527–533. [Google Scholar] [CrossRef]
- Randelli, P.; Stoppani, C.A.; Zaolino, C.; Menon, A.; Randelli, F.; Cabitza, P. Advantages of Arthroscopic Rotator Cuff Repair With a Transosseous Suture Technique: A Prospective Randomized Controlled Trial. Am. J. Sports Med. 2017, 45, 2000–2009. [Google Scholar] [CrossRef]
- Srikumaran, U.; Huish, E.G.; Shi, B.Y.; Hannan, C.V.; Ali, I.; Kilcoyne, K.G. Anchorless Arthroscopic Transosseous and Anchored Arthroscopic Transosseous Equivalent Rotator Cuff Repair Show No Differences in Structural Integrity or Patient-reported Outcomes in a Matched Cohort. Clin. Orthop. Relat. Res. 2020, 478, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Chillemi, C.; Mantovani, M.; Osimani, M.; Castagna, A. Arthroscopic transosseous rotator cuff repair: The eight-shape technique. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.E.; Schneider, K.; Clarke, E.C.; O’Briain, D.E.; Smith, M.M.; Cunningham, G.; Cass, B.; Young, A.A. A Biomechanical Comparison of Different Suture Materials Used for Arthroscopic Shoulder Procedures. Arthrosc. J. Arthrosc. Relat. Surg. 2020, 36, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, J.; Beauchamp, M. Functional outcomes of arthroscopic transosseous rotator cuff repair using a 2-mm tape suture in a 137-patient cohort. JSES Int. 2021, 5, 1105–1110. [Google Scholar] [CrossRef]
Study | Types of Bone Cement | Testing Model | Anchor Type | Percentage Increase (%) | p Value |
---|---|---|---|---|---|
Giori et al. [61] | PMMA bone cement | Cadaveric humerus | Metal screw-like suture anchors (5-mm Fastin RC; Mitek, Norwood, MA, USA) | 71 | p = 0.02 |
Oshtory et al. [60] | Bioabsorbable tricalcium phosphate cement | Cadaveric humerus | Metal screw-like suture anchors (5-mm Fastin RC; Mitek, Norwood, MA, USA) | 29 | p = 0.027 |
Postl et al. [62] | The bio-absorbable and fiber-reinforced calcium phosphate cement | Cadaveric humerus | titanium suture anchors (Corkscrew FT 1 Suture Anchors, Arthrex, Naples, FL, USA) | 66.8 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xiao, Y.; Shu, H.; Sun, X.; Nie, M. Risk Factors and Corresponding Management for Suture Anchor Pullout during Arthroscopic Rotator Cuff Repair. J. Clin. Med. 2022, 11, 6870. https://doi.org/10.3390/jcm11226870
Li X, Xiao Y, Shu H, Sun X, Nie M. Risk Factors and Corresponding Management for Suture Anchor Pullout during Arthroscopic Rotator Cuff Repair. Journal of Clinical Medicine. 2022; 11(22):6870. https://doi.org/10.3390/jcm11226870
Chicago/Turabian StyleLi, Xiangwei, Yujia Xiao, Han Shu, Xianding Sun, and Mao Nie. 2022. "Risk Factors and Corresponding Management for Suture Anchor Pullout during Arthroscopic Rotator Cuff Repair" Journal of Clinical Medicine 11, no. 22: 6870. https://doi.org/10.3390/jcm11226870
APA StyleLi, X., Xiao, Y., Shu, H., Sun, X., & Nie, M. (2022). Risk Factors and Corresponding Management for Suture Anchor Pullout during Arthroscopic Rotator Cuff Repair. Journal of Clinical Medicine, 11(22), 6870. https://doi.org/10.3390/jcm11226870