Comparison of the Efficacy and Safety of Adamgammadex with Sugammadex for Reversal of Rocuronium-Induced Neuromuscular Block: Results of a Phase II Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Ethics, and Criteria of Inclusion and Exclusion
2.2. Study Procedures
2.3. Efficacy Study
2.4. Safety Study
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Efficacy Study
3.3. Safety Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herring, W.J.; Woo, T.; Assaid, C.A.; Lupinacci, R.J.; Lemmens, H.J.; Blobner, M.; Khuenl-Brady, K.S. Sugammadex efficacy for reversal of rocuronium- and vecuronium-induced neuromuscular blockade: A pooled analysis of 26 studies. J. Clin. Anesthesia 2017, 41, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Samara, E.; Stamatiou, K.; Balanika, M.; Tzimas, P. Thehe Effect of Sugammadex on Prothrombin and Activated Partial Thromboplastin Time. Cureus 2021, 13, e14521. [Google Scholar] [CrossRef]
- Tsur, A.M.; Kalansky, A. Hypersensitivity associated with sugammadex administration: A systematic review. Anaesthesia 2014, 69, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Sunaga, H.; Kida, K.; Hobo, S.; Inoue, N.; Muto, M.; Uezono, S. Incidence of Anaphylaxis Associated With Sugammadex. Anesthesia Analg. 2018, 126, 1505–1508. [Google Scholar] [CrossRef]
- James, C.W.; Gurk-Turner, C. Cross-Reactivity of Beta-Lactam Antibiotics. Bayl. Univ. Med. Cent. Proc. 2001, 14, 106–107. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Qi, Y.; Yu, B.; Lao, Q.; Li, C.; Zhu, D.; Jie, Q. Screened adamgammadex for reversing rocuronium-induced neuromuscular blockade with greater safety. Chin. J. Pharmacol. Toxicol. 2018, 32, 515–526. [Google Scholar]
- Chen, M.-X.; Zhang, W.-T.; Wen, J.; Zhao, X.; Fan, G.-R.; Qi, Y.-M.; Jie, Q. Spectroscopy study on the interaction of γ-cyclodextrin and its two derivatives with rocuronium and vecuronium. Acad. J. Second Mil. Med. Univ. 2015, 36, 507–512. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Xiang, S.; Zhao, W.; Liu, J.; Zhang, W. Safety, tolerability, and pharmacokinetics of adamgammadex sodium, a novel agent to reverse the action of rocuronium and vecuronium, in healthy volunteers. Eur. J. Pharm. Sci. 2019, 141, 105134. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Y.; Zhang, Y.J.; Zhu, Z.Q.; Huang, Y.D.; Zhou, D.C.; Liu, J.C.; Li, C.Y.; Liu, J.; Liu, B.; Zhang, W.S. Adamgammadex in patients to reverse a moderate rocuronium-induced neuromuscular block. Br. J. Clin. Pharmacol. 2022, 88, 3760–3770. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Huai, X.; Yu, Z.; Qi, Y.; Qing, J.; Yu, W.; Su, D. Efficiency and Safety of the Selective Relaxant Binding Agent Adamgammadex Sodium for Reversing Rocuronium-Induced Deep Neuromuscular Block: A Single-Center, Open-Label, Dose-Finding, and Phase IIa Study. Front. Med. 2021, 8, 697395. [Google Scholar] [CrossRef]
- Fuchs-Buder, T.; Claudius, C.; Skovgaard, L.T.; Eriksson, L.I.; Mirakhur, R.K.; Viby-Mogensen, J. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: The Stockholm revision. Acta Anaesthesiol. Scand. 2007, 51, 789–808. [Google Scholar] [CrossRef]
- Kopman, A.F.; Yee, P.S.; Neuman, G.G. Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology 1997, 86, 765–771. [Google Scholar] [CrossRef]
- Bom, A.; Bradley, M.; Cameron, K.; Clark, J.K.; Van Egmond, J.; Feilden, H.; MacLean, E.J.; Muir, A.W.; Palin, R.; Rees, D.C.; et al. A novel concept of reversing neuromuscular block: Chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew. Chem. Int. Ed. 2002, 41, 265–270. [Google Scholar] [CrossRef]
- Hristovska, A.-M.; Duch, P.; Allingstrup, M.; Afshari, A. The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. A Cochrane systematic review with meta-analysis and trial sequential analysis. Anaesthesia 2017, 73, 631–641. [Google Scholar] [CrossRef] [Green Version]
- UFaD. The Drug Development Process. Available online: https://www.fda.gov/patients/drug-development-process/step-3-clinical-research (accessed on 1 April 2018).
- Sorgenfrei, I.F.; Norrild, K.; Larsen, P.B.; Stensballe, J.; Østergaard, D.; Prins, M.E.; Viby-Mogensen, J. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: A dose-finding and safety study. Anesthesiology 2006, 104, 667–674. [Google Scholar] [CrossRef]
- Sparr, H.J.; Vermeyen, K.M.; Beaufort, A.M.; Rietbergen, H.; Proost, J.H.; Saldien, V.; Velik-Salchner, C.; Wierda, J.M.K.H. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: Efficacy, safety, and pharmacokinetics. Anesthesiology 2007, 106, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Savic, L.; Savic, S.; Hopkins, P. Sugammadex: The sting in the tail? Br. J. Anaesth. 2018, 121, 694–697. [Google Scholar] [CrossRef] [Green Version]
- de Kam, P.-J.; Nolte, H.; Good, S.; Yunan, M.; Williams-Herman, D.; Burggraaf, J.; Kluft, C.; Adkinson, N.; Cullen, C.; Skov, P.; et al. Sugammadex hypersensitivity and underlying mechanisms: A randomised study of healthy non-anaesthetised volunteers. Br. J. Anaesth. 2018, 121, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Gijsenbergh, F.; Ramael, S.; Houwing, N.; Van Iersel, T. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology 2005, 103, 695–703. [Google Scholar] [CrossRef]
- De Kam, P.-J.; Van Kuijk, J.; Smeets, J.; Thomsen, T.; Peeters, P. Sugammadex is not associated with QT/QTc prolongation: Methodology aspects of an intravenous moxifloxacin-controlled thorough QT study. Int. J. Clin. Pharmacol. Ther. 2012, 50, 595–604. [Google Scholar] [CrossRef]
- Cammu, G.; De Kam, P.J.; Demeyer, I.; Decoopman, M.; Peeters, P.A.M.; Smeets, J.M.W.; Foubert, L. Safety and tolerability of single intravenous doses of sugammadex administered simultaneously with rocuronium or vecuronium in healthy volunteers. Br. J. Anaesth. 2008, 100, 373–379. [Google Scholar] [CrossRef] [PubMed]
- De Kam, P.-J.; Grobara, P.; Dennie, J.; Cammu, G.; Ramael, S.; Jagt-Smook, M.L.F.; Heuvel, M.W.V.D.; Berg, R.J.W.; Peeters, P.A.M. Effect of sugammadex on QT/QTc interval prolongation when combined with QTc-prolonging sevoflurane or propofol anaesthesia. Clin. Drug Investig. 2013, 33, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Takasusuki, T.; Kimura, Y.; Komatsuzaki, M.; Yamaguchi, S. Effects of Neostigmine and Sugammadex for Reversal of Neuromuscular Blockade on QT Dispersion Under Propofol Anesthesia: A Randomized Controlled Trial. Cardiol. Ther. 2018, 7, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Honing, G.; Martini, C.H.; Bom, A.; Van Velzen, M.; Niesters, M.; Aarts, L.; Dahan, A.; Boon, M. Safety of sugammadex for reversal of neuromuscular block. Expert Opin. Drug Saf. 2019, 18, 883–891. [Google Scholar] [CrossRef]
- De Kam, P.-J.; Grobara, P.; Prohn, M.; Höppener, F.; Kluft, C.; Burggraaf, J.; Langdon, R.B.; Peeters, P. Effects of sugammadex on activated partial thromboplastin time and prothrombin time in healthy subjects. Int. J. Clin. Pharmacol. Ther. 2014, 52, 227–236. [Google Scholar] [CrossRef]
- Rahe-Meyer, N.; Fennema, H.; Schulman, S.; Klimscha, W.; Przemeck, M.; Blobner, M.; Wulf, H.; Speek, M.; McCrary Sisk, C.; Williams-Herman, D.; et al. Effect of reversal of neuromuscular blockade with sugammadex versus usual care on bleeding risk in a randomized study of surgical patients. Anesthesiology 2014, 121, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Dirkmann, D.; Britten, M.W.; Pauling, H.; Weidle, J.; Volbracht, L.; Görlinger, K.; Peters, J. Anticoagulant Effect of Sugammadex: Just an In Vitro Artifact. Anesthesiology 2016, 124, 1277–1285. [Google Scholar] [CrossRef]
Adamgammadex (4 mg kg−1, n = 20) | Adamgammadex (6 mg kg−1, n = 20) | Sugammadex (2 mg kg−1, n = 20) | |
---|---|---|---|
sex (male), n (%) | 7 (35%) | 7 (35%) | 10 (50%) |
Age (years), min–max | 21–57 | 23–60 | 20–57 |
Weight (kg), mean (SD) | 62 (9) | 63 (13) | 63 (10) |
Height (cm), mean (SD) | 161 (7) | 1635 (8) | 165 (9) |
BMI (kg/m2), mean (SD) | 24.1 (2.7) | 23.5 (3.4) | 23.2 (2.7) |
ASA class | |||
1 | 7 | 4 | 7 |
2 | 13 | 16 | 13 |
Surgical specialty | |||
Otolaryngology-Head and Neck Surgery | 1 (5%) | 3 (15%) | 3 (15%) |
Gynaecology | 3 (15%) | 2 (10%) | 3 (15%) |
Orthopaedics | 0 | 0 | 1 (5.0%) |
Oral and maxillofacial surgery | 1 (5%) | 1 (5%) | 2 (10%) |
Urology | 0 | 1 (5%) | 1 (5%) |
General surgery | 15 (75%) | 13 (65%) | 10 (50%) |
Surgery duration (min), mean (SD) | 58 (32) | 81 (69) | 68 (38) |
Adamgammadex (4 mg kg−1, n = 16) | Adamgammadex (6 mg kg−1, n = 20) | Sugammadex (2 mg kg−1, n = 20) | ||||
---|---|---|---|---|---|---|
Events | Patients | Events | Patients | Events | Patients | |
PTE, n | 0 | 0 | 1 | 1 | 0 | 0 |
TEAEs, n | 10 | 6 | 43 | 11 | 29 | 14 |
SAEs, n | 0 | 0 | 0 | 0 | 0 | 0 |
drug-related AEs, n * | 0 | 0 | 2 # | 2 | 0 | 0 |
drug-related SAEs, n * | 0 | 0 | 0 | 0 | 0 | 0 |
anaphylactic reaction, n | 0 | 0 | 0 | 0 | 0 | 0 |
Parameters [Normal Range] | Pre-Dose | Post-Dose | ||||
---|---|---|---|---|---|---|
Adamgammadex (4 mg kg−1) | Adamgammadex (6 mg kg−1) | Sugammadex (2 mg kg−1) | Adamgammadex (4 mg kg−1) | Adamgammadex (6 mg kg−1) | Sugammadex (2 mg kg−1) | |
PT (s), mean (SD) [9.6–12.8] | 11.6 (1.2) | 12.1 (1.5) | 12.0 (1.5) | 11.9 (1.4) | 13.0 (1.5) | 12.6 (1.6) |
APTT (s), mean (SD) [24.8–33.8] | 33.4 (6.4) | 35.7 (5.7) | 35.0 (6.6) | 31.5 (6.4) | 35.9 (5.6) | 34.7 (6.7) |
TT (s), mean (SD) [14.0–22.0] | 16.3 (1.9) | 16.1 (1.1) | 17.0 (1.6) | 15.5 (1.8) | 15.9 (1.1) | 16.1 (1.1) |
Fib (g/L), mean (SD) [2.0–4.0] | 3.1 (0.7) | 3.4 (1.0) | 2.8 (0.5) | 3.4 (0.6) | 3.7 (1.3) | 3.3 (0.6) |
INR, mean (SD) [0.9–1.2] | 1.0 (0.1) | 1.0 (0.1) | 1.0 (0.1) | 1.0 (0.1) | 1.1 (0.1) | 1.0 (0.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhang, Y.; Zhu, Z.; Huang, Y.; Zhou, D.; Liu, J.; Li, C.; Chen, X.; Kang, D.; Wang, S.; et al. Comparison of the Efficacy and Safety of Adamgammadex with Sugammadex for Reversal of Rocuronium-Induced Neuromuscular Block: Results of a Phase II Clinical Trial. J. Clin. Med. 2022, 11, 6951. https://doi.org/10.3390/jcm11236951
Jiang Y, Zhang Y, Zhu Z, Huang Y, Zhou D, Liu J, Li C, Chen X, Kang D, Wang S, et al. Comparison of the Efficacy and Safety of Adamgammadex with Sugammadex for Reversal of Rocuronium-Induced Neuromuscular Block: Results of a Phase II Clinical Trial. Journal of Clinical Medicine. 2022; 11(23):6951. https://doi.org/10.3390/jcm11236951
Chicago/Turabian StyleJiang, Yingying, Yujun Zhang, Zhaoqiong Zhu, Yidan Huang, Dachun Zhou, Jingchen Liu, Chaoyu Li, Xiangdong Chen, Dingxin Kang, Shoushi Wang, and et al. 2022. "Comparison of the Efficacy and Safety of Adamgammadex with Sugammadex for Reversal of Rocuronium-Induced Neuromuscular Block: Results of a Phase II Clinical Trial" Journal of Clinical Medicine 11, no. 23: 6951. https://doi.org/10.3390/jcm11236951
APA StyleJiang, Y., Zhang, Y., Zhu, Z., Huang, Y., Zhou, D., Liu, J., Li, C., Chen, X., Kang, D., Wang, S., Liu, J., Liu, B., & Zhang, W. (2022). Comparison of the Efficacy and Safety of Adamgammadex with Sugammadex for Reversal of Rocuronium-Induced Neuromuscular Block: Results of a Phase II Clinical Trial. Journal of Clinical Medicine, 11(23), 6951. https://doi.org/10.3390/jcm11236951