Veno-Arterial Extracorporeal Membrane Oxygenation as a Bridge to Heart Transplant—Change of Paradigm
Abstract
:1. Introduction
2. Cardiogenic Shock and VA-ECMO
3. ECMO as a Bridge to HT Strategy in Different Allocation Systems—Analysis of Outcomes
4. Prediction of Outcomes in Patients with VA-ECMO Support as Bridge to Heart Transplant—A Comparison of Scoring Systems
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of Heart Failure. Eur. J. Heart Fail 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Task, A.; Members, F.; Mcdonagh, T.A.; United, C.; Gardner, R.S.; Force, T.; United, C.; Baumbach, A.; Kingdom, U.; Bo, M.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Trivedi, J.R.; Cheng, A.; Singh, R.; Williams, M.L.; Slaughter, M.S. Survival on the Heart Transplant Waiting List: Impact of Continuous Flow Left Ventricular Assist Device as Bridge to Transplant. Ann. Thorac. Surg. 2014, 98, 830–834. [Google Scholar] [CrossRef]
- Axtell, A.L.; Fiedler, A.G.; Lewis, G.; Melnitchouk, S.; Tolis, G.; Alessandro, D.A.D.; Villavicencio, M.A. Reoperative Sternotomy Is Associated with Increased Early Mortality after Cardiac Transplantation. Eur. J. Cardio-Thorac. Surg. 2019, 55, 1136–1143. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Clerkin, K.; Truby, L.K.; Francke, M.; Fried, J.; Masoumi, A.; Garan, A.R.; Farr, M.A.; Takayama, H.; Takeda, K.; et al. ECMO as a Bridge to Left Ventricular Assist Device or Heart Transplantation. JACC Heart Fail 2021, 9, 281–289. [Google Scholar] [CrossRef]
- Werdan, K.; Gielen, S.; Ebelt, H.; Hochman, J.S. Mechanical Circulatory Support in Cardiogenic Shock. Eur. Heart J. 2014, 35, 156–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasseron, C.; Lebreton, G.; Cantrelle, C.; Legeai, C.; Leprince, P.; Flecher, E.; Sirinelli, A.; Bastien, O.; Dorent, R. Impact of Heart Transplantation on Survival in Patients on Venoarterial Extracorporeal Membrane Oxygenation at Listing in France. Transplantation 2016, 100, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.; Mathier, M.A.; Hickey, G.W.; Sultan, I.; Morell, V.O.; Mulukutla, S.R.; Keebler, M.E. Evolving Trends in Adult Heart Transplant with the 2018 Heart Allocation Policy Change. JAMA Cardiol. 2021, 6, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Hanff, T.C.; Harhay, M.O.; Kimmel, S.E.; Molina, M.; Mazurek, J.A.; Goldberg, L.R.; Birati, E.Y. Trends in Mechanical Support Use as a Bridge to Adult Heart Transplant under New Allocation Rules. JAMA Cardiol. 2020, 5, 728–729. [Google Scholar] [CrossRef]
- Moonsamy, P.; Mph, A.L.A.; Ibrahim, N.E.; Funamoto, M.; Tolis, G.; Lewis, G.D.; Alessandro, D.A.D.; Mba, M.A.V. Survival After Heart Transplantation in Patients Bridged with Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2020, 75, 2892–2905. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Franz-Josef, N.; Miroslaw, F.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock Holger. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Diepen, S.; Katz, J.N.; Albert, N.M.; Henry, T.D.; Jacobs, A.K.; Kapur, N.K.; Kilic, A.; Menon, V.; Ohman, E.M.; Sweitzer, N.K.; et al. Contemporary Management of Cardiogenic. Circulation 2017, 136, 232–268. [Google Scholar] [CrossRef]
- Chakaramakkil, M.J. ECMO in Cardiogenic Shock and Bridge to Heart Transplant. Indian J. Thorac. Cardiovasc. Surg. 2021, 37, 319–326. [Google Scholar] [CrossRef]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI Clinical Expert Consensus Statement on the Classification of Cardiogenic Shock: This Document Was Endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R.; Combes, A. ELSO Interim Guidelines for Venoarterial Extracorporeal Membrane Oxygenation in Adult Cardiac Patients. ASAIO J. 2021, 67, 827–844. [Google Scholar] [CrossRef]
- Guglin, M.; Zucker, M.J.; Bazan, V.M.; Bozkurt, B.; el Banayosy, A.; Estep, J.D.; Gurley, J.; Nelson, K.; Malyala, R.; Panjrath, G.S.; et al. Venoarterial ECMO for Adults: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2019, 73, 698–716. [Google Scholar] [CrossRef]
- Zalawadiya, S.; Fudim, M.; Bhat, G.; Cotts, W.; Lindenfeld, J.A. Extracorporeal Membrane Oxygenation Support and Post-Heart Transplant Outcomes among United States Adults. J. Heart Lung Transplantat. 2017, 36, 77–81. [Google Scholar] [CrossRef]
- Fukuhara, S.; Takeda, K.; Kurlansky, P.A.; Naka, Y. ADULT: MECHANICAL CIRCULATORY SUPPORT Extracorporeal Membrane Oxygenation as a Direct Bridge to Heart Transplantation in Adults. J. Thorac. Cardiovasc. Surg. 2018, 155, 1607–1618.e6. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.H.; Acharya, D.; Lee, S.; Leacche, M.; Boeve, T.; Manandhar-Shrestha, N.; Jovinge, S.; Loyaga-Rendon, R.Y. Improved Survival after Heart Transplantation in Patients Bridged with Extracorporeal Membrane Oxygenation in the New Allocation System. J. Heart Lung Transplantat. 2021, 40, 149–157. [Google Scholar] [CrossRef]
- Colvin-Adams, M.; Valapour, M.; Hertz, M.; Heubner, B.; Paulson, K.; Dhungel, V.; Skeans, M.A.; Edwards, L.; Ghimire, V.; Waller, C.; et al. Lung and Heart Allocation in the United States. Am. J. Transplantat. 2012, 12, 3213–3234. [Google Scholar] [CrossRef] [PubMed]
- Shore, S.; Golbus, J.R.; Aaronson, K.D.; Nallamothu, B.K. Changes in the United States Adult Heart Allocation Policy: Challenges and Opportunities. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e005795. [Google Scholar] [CrossRef]
- Hess, N.R.; Hickey, G.W.; Sultan, I.; Kilic, A. Extracorporeal Membrane Oxygenation Bridge to Heart Transplant: Trends Following the Allocation Change. J. Card. Surg. 2021, 36, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Xia, Y.; Tran, Z.; Hadaya, J.; Dobaria, V.; Choi, W.; Id, P.B. Outcomes of Extracorporeal Membrane Oxygenation Following the 2018 Adult Heart Allocation Policy. PloS ONE 2022, 17, e0268771. [Google Scholar] [CrossRef]
- Nordan, T.; Critsinelis, A.C.; Mahrokhian, S.H.; Kapur, N.K.; Thayer, K.L.; Chen, F.Y.; Couper, G.S.; Kawabori, M. Bridging With Extracorporeal Membrane Oxygenation Under the New Heart Allocation. Circ. Heart Fail 2021, 14, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Barge-Caballero, E.; Almenar-Bonet, L.; Gonzalez-Vilchez, F.; Lambert-Rodríguez, J.L.; González-Costello, J.; Segovia-Cubero, J.; Castel-Lavilla, M.A.; Delgado-Jiménez, J.; Garrido-Bravo, I.P.; Rangel-Sousa, D.; et al. Clinical Outcomes of Temporary Mechanical Circulatory Support as a Direct Bridge to Heart Transplantation: A Nationwide Spanish Registry. Eur. J. Heart Fail 2018, 20, 178–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutance, G.; Jacob, N.; Demondion, P.; Nguyen, L.S.; Bouglé, A.; Bréchot, N.; Varnous, S.; Leprince, P.; Combes, A.; Lebreton, G. Favorable Outcomes of a Direct Heart Transplantation Strategy in Selected Patients on Extracorporeal Membrane Oxygenation Support. Crit. Care Med. 2020, 48, 498–506. [Google Scholar] [CrossRef]
- Barth, E.; Durand, M.; Heylbroeck, C.; Boignard, A. Extracorporeal Life Support as a Bridge to High-Urgency Heart Transplantation. Clin. Transplant. 2012, 26, 484–488. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yang, J.H.; Sung, K.; Jeong, D.S.; Park, P.W.; Kim, W.S.; Lee, Y.T.; Jeon, E.S. Extracorporeal Life Support as a Bridge to Heart Transplantation: Importance of Organ Failure in Recipient Selection. ASAIO J. 2015, 61, 139–143. [Google Scholar] [CrossRef]
- Downward, L.; Hogg, R.; Rushton, S. Annual Report on Mechanical Circulatory Support Related to Heart Transplantation. 2022. Available online: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/25930/nhsbt-annual-report-on-mcs-2020-21.pdf (accessed on 18 October 2022).
- Rushton, S.; Parameshwar, J.; Lim, S.; Dar, O.; Callan, P.; Al-Attar, N.; Tsui, S.; MacGowan, G.A. The Introduction of a Super-Urgent Heart Allocation Scheme in the UK: A 2-Year Review. J. Heart Lung Transplant. 2020, 39, 1109–1117. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G. Heart Transplantation in Spain. Eur. Heart J. 2017, 38, 3414–3416. [Google Scholar] [CrossRef]
- Dorent, R.; Jasseron, C.; Audry, B.; Bayer, F.; Legeai, C.; Cantrelle, C.; Smits, J.M.; Eisen, H.; Jacquelinet, C.; Leprince, P.; et al. New French Heart Allocation System: Comparison with Eurotransplant and US Allocation Systems. Am. J. Transplantat. 2020, 20, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- POL229/9–Heart Transplantation: Selection Criteria and Recipient Registration. Available online: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/26637/pol229.pdf (accessed on 7 November 2022).
- Vincent, J.-L.; Moreno, R.; Takala, J.; Willatts, S.; de Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, J.E.; Kramer, A.A.; McNair, D.S.; Malila, F.M. Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital Mortality Assessment for Today’s Critically Ill Patients. Crit. Care Med. 2006, 34, 1297–1310. [Google Scholar] [CrossRef] [Green Version]
- Lechiancole, A.; Sponga, S.; Isola, M.; Vendramin, I.; Maiani, M.; Livi, U. Heart Transplantation in Patients Supported by ECMO: Is the APACHE IV Score a Predictor of Survival? Artif. Organs 2018, 42, 670–673. [Google Scholar] [CrossRef]
- Givertz, M.M. Heart Allocation in the United States Intended and Unintended Consequences. Circ. Heart Fail 2012, 5, 140–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbaro, R.P.; Odetola, F.O.; Kidwell, K.M.; Paden, M.L.; Bartlett, R.H.; Davis, M.M.; Annich, G.M. Association of Hospital-Level Volume of Extracorporeal Membrane Oxygenation Cases and Mortality: Analysis of the Extracorporeal Life Support Organization Registry. Am. J. Respir. Crit. Care Med. 2015, 191, 894–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalewski, M.; Zieliński, K.; Gozdek, M.; Raffa, G.M.; Pilato, M.; Alanazi, M.; Gilbers, M.; Heuts, S.; Natour, E.; Bidar, E.; et al. Veno-Arterial Extracorporeal Life Support in Heart Transplant and Ventricle Assist Device Centres. Meta-Analysis. ESC Heart Fail 2021, 8, 1064–1075. [Google Scholar] [CrossRef]
- Rousse, N.; Juthier, F.; Pinçon, C.; Hysi, I.; Banfi, C.; Robin, E.; Fayad, G.; Jegou, B.; Prat, A.; Vincentelli, A. ECMO as a Bridge to Decision: Recovery, VAD, or Heart Transplantation? Int. J. Cardiol. 2015, 187, 620–627. [Google Scholar] [CrossRef]
Stage | Description | Physical Exam/Bedside Findings | Biochemical Markers | Hemodynamic |
---|---|---|---|---|
A At risk | A patient who is not currently experiencing signs or symptoms of CS but is at risk for its development. These patients may include those with large acute myocardial infarction or prior infarction as well as those with acute and/or acute-to-chronic heart failure symptoms. | Normal JVP Lung sounds clear Warm and well perfused →Strong distal pulses →Normal mentation | Normal labs →Normal renal function →Normal lactic acid | Normotensive (SBP ≥ 100 mmHg or normal for patient.) If hemodynamic done →Cardiac index ≥ 2.5 L/min/m2 →CVP < 10 mmHg |
B Beginning CS | A patient who has clinical evidence of relative hypotension or tachycardia without hypoperfusion. | Elevated JVP Rales in lung fields Warm and well perfused →Strong distal pulses →Normal mentation | Normal lactate Minimal renal function impairment Elevated BNP | SBP < 90 or MAP < 60 or > 30 mmHg drop from baseline Pulse ≥ 100 bpm If hemodynamic done →Cardiac index ≥ 2.2 |
C Classic CS | A patient that manifests with hypoperfusion that requires intervention (inotrope, pressor or mechanical support, including ECMO) beyond volume resuscitation to restore perfusion. These patients typically present with relative hypotension. | May include any of: Looks unwell Panicked, Ashen, mottled, dusky Volume overload Extensive rales Killip class 3 or 4 BiPap or mechanical ventilation Cold, clammy Acute alteration in mental status Urine output <30 mL/h | May include any of: Lactate ≥ 2 Creatinine doubling or >50% drop in GFR Elevated BNP | May include any of: SBP < 90 or MAP < 60 or >30 mmHg drop from baseline AND drugs/device used to maintain blood pressure above these targets Hemodynamic →Cardiac index <2.2 L/min/m2 →PCWP > 15 mmHg →RAP/PCWP ≥ 0.8 →Cardiac power output ≤ 0.6 W |
D Deteriorating/doom | A patient that is similar to category C but is getting worse. They show a failure to respond to initial interventions. | Any of stage C | Any of state C AND: deteriorating | Any of stage C AND: Requiring multiple pressors or addition of mechanical circulatory support devices to maintain perfusion |
E Extremis | A patient that is experiencing cardiac arrest with ongoing CPR and/or ECMO, being supported by multiple interventions. | Near pulselessness Cardiac collapse Mechanical ventilation Defibrillator used | ‘Trying to die’ CPR pH ≤ 7.2 Lactate ≥ 5 mmol/L | No SBP without resuscitation PEA or refractory VT/VF Hypotension despite maximal support |
USA Allocation Policy 1999–2018 [20] | USA Allocation Policy 2018—Present [21] | ||
---|---|---|---|
Status 1A |
| Status 1 |
|
Status 2 |
| ||
Status 3 |
| ||
Status 1B |
| Status 4 |
|
Status 5 |
| ||
Status 2 |
| Status 6 |
|
USA a [21] | Spain b [31] | France c* [32] | United Kingdom d [33] |
---|---|---|---|
HT candidates on ECMO (maximum time of stay for these patients in the highest urgency grade is <7 days with possible prolongation for additional 7 days.) HT candidates with non-dischargeable surgically implanted VAD HT candidates with MCS device and with life-threatening ventricular arrhythmia | HT candidates dependent on temporary MCS and cannot be weaned off the device HT candidates with durable VADs and with complications (infection, pump failure, or thrombosis) The patients with ECMO or any temporary MCS offering partial support must be on the MCS a minimum of 48 h before entering the highest urgency status list and only provided they do not present criteria of multi-organ failure. The maximum time of stay for these patients in the highest urgency grade is <7 days. | HT candidate with the highest national score. The allocation system is based on a national score, going from 0 to 1151 and ranking all candidates. The candidate risk score (CRS) is the cornerstone of the allocation score. CRS includes VA ECMO use, plasma concentrations of natriuretic peptides, glomerular filtration rate (GFR) and total serum bilirubin level; CRS is generated by summing the products of each predictor multiplied by its coefficient Exceptions: Nine hundred points are allocated immediately or over a three-month period to patients on durable VAD with device-related complications and to patients on uncomplicated BiVAD and total artificial heart, as well as to those with sustained ventricular arrhythmia and to those with contraindications to durable VAD Time allowed for ECMO patients bridged to HT to stay in the highest priority group <12–16 days | HT candidate on temporary VAD or VA-ECMO support. HT candidate (a) on intra-aortic balloon pump (IABP) support (b) at imminent risk of death or irreversible complications. Meets criteria for urgent listing but is not suitable for long-term VAD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šipuš, D.; Krželj, K.; Đurić, Ž.; Gašparović, H.; Miličić, D.; Hanževački, J.Š.; Lovrić, D. Veno-Arterial Extracorporeal Membrane Oxygenation as a Bridge to Heart Transplant—Change of Paradigm. J. Clin. Med. 2022, 11, 7101. https://doi.org/10.3390/jcm11237101
Šipuš D, Krželj K, Đurić Ž, Gašparović H, Miličić D, Hanževački JŠ, Lovrić D. Veno-Arterial Extracorporeal Membrane Oxygenation as a Bridge to Heart Transplant—Change of Paradigm. Journal of Clinical Medicine. 2022; 11(23):7101. https://doi.org/10.3390/jcm11237101
Chicago/Turabian StyleŠipuš, Dubravka, Kristina Krželj, Željko Đurić, Hrvoje Gašparović, Davor Miličić, Jadranka Šeparović Hanževački, and Daniel Lovrić. 2022. "Veno-Arterial Extracorporeal Membrane Oxygenation as a Bridge to Heart Transplant—Change of Paradigm" Journal of Clinical Medicine 11, no. 23: 7101. https://doi.org/10.3390/jcm11237101
APA StyleŠipuš, D., Krželj, K., Đurić, Ž., Gašparović, H., Miličić, D., Hanževački, J. Š., & Lovrić, D. (2022). Veno-Arterial Extracorporeal Membrane Oxygenation as a Bridge to Heart Transplant—Change of Paradigm. Journal of Clinical Medicine, 11(23), 7101. https://doi.org/10.3390/jcm11237101