Effects of Running in Minimal and Conventional Footwear on Medial Tibiofemoral Cartilage Failure Probability in Habitual and Non-Habitual Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Walking
2.2.2. Running
2.3. Experimental Footwear
2.4. Processing
2.4.1. Data Processing
2.4.2. Spatiotemporal Variables
2.4.3. Joint Contact Forces
2.4.4. Stress/Strain
2.4.5. Medial Tibiofemoral Cartilage Failure Probabilistic Modelling
2.5. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Running Analyses
3.2.1. Spatiotemporal Variables
Non-Habitual | Habitual | ||||||||
---|---|---|---|---|---|---|---|---|---|
Minimal | Conventional | Minimal | Conventional | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Velocity (m/s) | 3.77 | 0.39 | 3.68 | 0.44 | 3.36 | 0.56 | 3.43 | 0.53 | A |
Stride length (m) | 2.80 | 0.30 | 2.82 | 0.28 | 2.46 | 0.28 | 2.58 | 0.34 | A |
Cadence (steps/min) | 157.86 | 13.22 | 150.33 | 11.02 | 152.36 | 10.77 | 145.79 | 8.25 | A, B |
3.2.2. Joint Contact Forces
Non-Habitual | Habitual | ||||||||
---|---|---|---|---|---|---|---|---|---|
Minimal | Conventional | Minimal | Conventional | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Peak medial tibiofemoral force (BW) | 7.40 | 0.97 | 7.50 | 0.73 | 7.43 | 1.61 | 7.11 | 1.38 | A |
Medial tibiofemoral cumulative load (BW/m) | 2.59 | 0.33 | 2.61 | 0.41 | 2.97 | 0.58 | 2.80 | 0.59 |
3.2.3. Stress/Strain
Non-Habitual | Habitual | ||||||||
---|---|---|---|---|---|---|---|---|---|
Minimal | Conventional | Minimal | Conventional | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Peak medial tibiofemoral stress (MPa) | 4.77 | 0.57 | 5.05 | 0.66 | 4.65 | 0.82 | 5.12 | 0.80 | A |
Peak medial tibiofemoral strain | 0.29 | 0.03 | 0.30 | 0.03 | 0.28 | 0.04 | 0.30 | 0.04 |
3.2.4. Medial Tibiofemoral Cartilage Failure Probabilistic Modelling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.C.; Pate, R.R.; Lavie, C.J.; Sui, X.; Church, T.S.; Blair, S.N. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 2014, 64, 472–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedisic, Z.; Shrestha, N.; Kovalchik, S.; Stamatakis, E.; Liangruenrom, N.; Grgic, J.; Oja, P. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Van Gent, R.N.; Siem, D.; van Middelkoop, M.; Van Os, A.G.; Bierma-Zeinstra, S.M.A.; Koes, B.W. Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. Br. J. Sports Med. 2007, 41, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Hespanhol Junior, L.C.; Van Mechelen, W.; Verhagen, E. Health and economic burden of running-related injuries in Dutch trailrunners: A prospective cohort study. Sports Med. 2017, 47, 367–377. [Google Scholar] [CrossRef] [Green Version]
- D’Lima, D.D.; Fregly, B.J.; Patil, S.; Steklov, N.; Colwell, C.W., Jr. Knee joint forces: Prediction, measurement, and significance. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2012, 226, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Casp. J. Intern. Med. 2011, 2, 205–212. [Google Scholar]
- Martins, R.; Kotsopoulos, N.; Kließ, M.K.; Beck, C.; Abraham, L.; Large, S.; Connolly, M.P. Comparing the fiscal consequences of controlled and uncontrolled osteoarthritis pain applying a UK public economic perspective. J. Health Econ. Outcomes Res. 2021, 8, 127–136. [Google Scholar] [CrossRef]
- Chen, D.I.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Alshami, A.M. Knee osteoarthritis related pain: A narrative review of diagnosis and treatment. Int. J. Health Sci. 2014, 8, 85–104. [Google Scholar] [CrossRef]
- Eitner, A.; Hofmann, G.O.; Schaible, H.G. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front. Mol. Neurosci. 2017, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Wise, B.L.; Niu, J.; Yang, M.; Lane, N.E.; Harvey, W.; Felson, D.T.; Multicenter Osteoarthritis (MOST) Group. Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans. Arthritis Care Res. 2012, 64, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Kutzner, I.; Bender, A.; Dymke, J.; Duda, G.; Von Roth, P.; Bergmann, G. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Jt. J. 2017, 99, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.; Greenhalgh, A.; Brooks, D.; Edmundson, C.J.; Hobbs, S.J. The influence of barefoot and barefoot-inspired footwear on the kinetics and kinematics of running in comparison to conventional running shoes. Footwear Sci. 2013, 5, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Davis, I.S. The re-emergence of the minimal running shoe. J. Orthop. Sports Phys. Ther. 2014, 44, 775–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, J.; Butters, B.; Stainton, P. Acute effects of barefoot and minimalist footwear on medial tibiofemoral compartment loading during running: A statistical parametric mapping approach. J. Hum. Kinet. 2018, 65, 35–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombini-Souza, F.; Matias, A.B.; Yokota, M.; Butugan, M.K.; Goldenstein-Schainberg, C.; Fuller, R.; Sacco, I.C. Long-term use of minimal footwear on pain, self-reported function, analgesic intake, and joint loading in elderly women with knee osteoarthritis: A randomized controlled trial. Clin. Biomech. 2015, 30, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; Elashi, M.; Newsham-West, R.; Taunton, J. Examining the potential role of minimalist footwear for the prevention of proximal lower-extremity injuries. Footwear Sci. 2013, 5, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Sritharan, P.; Lin, Y.C.; Pandy, M.G. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 2012, 30, 1586–1595. [Google Scholar] [CrossRef]
- Sinclair, J.; Brooks, D.; Taylor, P.J.; Liles, N.B. Effects of running in minimal, maximal and traditional running shoes: A musculoskeletal simulation exploration using statistical parametric mapping and Bayesian analyses. Footwear Sci. 2021, 13, 143–156. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Tam, N.; Darragh, I.A.; Divekar, N.V.; Lamberts, R.P. Habitual minimalist shod running biomechanics and the acute response to running barefoot. Int. J. Sports Med. 2017, 38, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.H.; Krupenevich, R.L. Medial knee cartilage is unlikely to withstand a lifetime of running without positive adaptation: A theoretical biomechanical model of failure phenomena. PeerJ 2020, 8, e9676. [Google Scholar] [CrossRef] [PubMed]
- Esculier, J.F.; Dubois, B.; Dionne, C.E.; Leblond, J.; Roy, J.S. A consensus definition and rating scale for minimalist shoes. J. Foot Ankle Res. 2015, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Sinclair, J.; Brooks, D.; Butters, B. Effects of different heel heights on lower extremity joint loading in experienced and in-experienced users: A musculoskeletal simulation analysis. Sport Sci. Health 2019, 15, 237–248. [Google Scholar] [CrossRef]
- Sinclair, J.; Hebron, J.; Taylor, P.J. The influence of tester experience on the reliability of 3D kinematic information during running. Gait Posture 2014, 40, 707–711. [Google Scholar] [CrossRef]
- Graydon, R.W.; Fewtrell, D.J.; Atkins, S.; Sinclair, J.K. The test-retest reliability of different ankle joint center location techniques. Foot Ankle Online J. 2015, 1, 26–31. [Google Scholar]
- Sinclair, J.; Hebron, J.; Taylor, P.J. The test-retest reliability of knee joint center location techniques. J. Appl. Biomech. 2015, 31, 117–121. [Google Scholar] [CrossRef]
- Sinclair, J.; Taylor, P.J.; Currigan, G.; Hobbs, S.J. The test-retest reliability of three different hip joint centre location techniques. Mov. Sport Sci. Sci. Mot. 2014, 83, 31–39. [Google Scholar] [CrossRef]
- Sinclair, J.K.; Edmundson, C.J.; Brooks, D.; Hobbs, S.J. Evaluation of kinematic methods of identifying gait Events during running. Int. J. Sports Sci. Eng. 2011, 5, 188–192. [Google Scholar]
- Sinclair, J.; Taylor, P.J.; Hobbs, S.J. Digital filtering of three-dimensional lower extremity kinematics: An assessment. J. Hum. Kinet. 2013, 39, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, J.; Chockalingam, N.; Taylor, P.J. Lower Extremity Kinetics and Kinematics in Runners with Patellofemoral Pain: A Retrospective Case–Control Study Using Musculoskeletal Simulation. Appl. Sci. 2022, 12, 585. [Google Scholar] [CrossRef]
- Lerner, Z.F.; DeMers, M.S.; Delp, S.L.; Browning, R.C. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 2015, 48, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Steele, K.M.; DeMers, M.S.; Schwartz, M.H.; Delp, S.L. Compressive tibiofemoral force during crouch gait. Gait Posture 2012, 35, 556–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuno, N.; Ahmed, A.M. Sagittal profile of the femoral condyles and its application to femorotibial contact analysis. J. Biomech. Eng. 2001, 123, 18–26. [Google Scholar] [CrossRef]
- Liu, F.; Kozanek, M.; Hosseini, A.; Van de Velde, S.K.; Gill, T.J.; Rubash, H.E.; Li, G. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 2010, 43, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular contact in a three-dimensional model of the knee. J. Biomech. 1991, 24, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, D.E.; Seedhom, B.B. The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 1999, 38, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Danso, E.K.; Mäkelä, J.T.A.; Tanska, P.; Mononen, M.E.; Honkanen, J.T.J.; Jurvelin, J.S.; Korhonen, R.K. Characterization of site-specific biomechanical properties of human meniscus—Importance of collagen and fluid on mechanical nonlinearities. J. Biomech. 2015, 48, 1499–1507. [Google Scholar] [CrossRef]
- Blöcker, K.; Guermazi, A.; Wirth, W.; Benichou, O.; Kwoh, C.K.; Hunter, D.J.; OAI investigators. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing–data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2013, 21, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Thambyah, A.; Nather, A.; Goh, J. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthr. Cartil. 2006, 14, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.E.; Higginson, J.S.; Barrance, P.J. Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint. J. Biomech. Eng. 2011, 133, 014502. [Google Scholar] [CrossRef] [PubMed]
- DeFrate, L.E.; Sun, H.; Gill, T.J.; Rubash, H.E.; Li, G. In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J. Biomech. 2004, 37, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Weightman, B.O.; Freeman, M.A.R.; Swanson, S.A.V. Fatigue of articular cartilage. Nature 1973, 244, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Losina, E.; Weinstein, A.M.; Reichmann, W.M.; Burbine, S.A.; Solomon, D.H.; Daigle, M.E.; Katz, J.N. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 2013, 65, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, W.; Stovitz, S.D.; Choh, A.C.; Czerwinski, S.A.; Towne, B.; Demerath, E.W. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults. Int. J. Obes. 2012, 36, 535–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, D. Fatigue of bone and bones: An analysis based on stressed volume. J. Orthop. Res. 1998, 16, 163–169. [Google Scholar] [CrossRef]
- Taylor, D.; Kuiper, J.H. The prediction of stress fractures using a ‘stressed volume’ concept. J. Orthop. Res. 2001, 19, 919–926. [Google Scholar] [CrossRef]
- Taylor, D.; Casolari, E.; Bignardi, C. Predicting stress fractures using a probabilistic model of damage, repair and adaptation. J. Orthop. Res. 2004, 22, 487–494. [Google Scholar] [CrossRef]
- Riemenschneider, P.E.; Rose, M.D.; Giordani, M.; McNary, S.M. Compressive fatigue and endurance of juvenile bovine articular cartilage explants. J. Biomech. 2019, 95, 109304. [Google Scholar] [CrossRef]
- Nakamura, N.; Horibe, S.; Toritsuka, Y.; Mitsuoka, T.; Natsu-ume, T.; Yoneda, K.; Shino, K. The location-specific healing response of damaged articular cartilage after ACL reconstruction: Short-term follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.; Brooks, D.; Taylor, P.J.; Liles, N. Effects of toe-in/out toe-in gait and lateral wedge orthoses on lower extremity joint kinetics; an exploration using musculoskeletal simulation and Bayesian contrasts. Sport Sci. Health 2021, 17, 781–795. [Google Scholar] [CrossRef]
- Bergmann, G.; Bender, A.; Graichen, F.; Dymke, J.; Rohlmann, A.; Trepczynski, A.; Kutzner, I. Standardized loads acting in knee implants. PLoS ONE 2014, 9, e86035. [Google Scholar] [CrossRef] [PubMed]
- Willy, R.W.; Meardon, S.A.; Schmidt, A.; Blaylock, N.R.; Hadding, S.A.; Willson, J.D. Changes in tibiofemoral contact forces during running in response to in-field gait retraining. J. Sports Sci. 2016, 34, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.; Schwartz, T.A.; Helmick, C.G.; Renner, J.B.; Tudor, G.; Koch, G.; Jordan, J.M. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Care Res. 2008, 59, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Madaleno, F.O.; Santos, B.A.; Araújo, V.L.; Oliveira, V.C.; Resende, R.A. Prevalence of knee osteoarthritis in former athletes: A systematic review with meta-analysis. Braz. J. Phys. Ther. 2018, 22, 437–451. [Google Scholar] [CrossRef]
- Gutsell, P.C.; Plonka, C. Does running increase the risk of knee osteoarthritis? Evid.-Based Pract. 2019, 22, 11–12. [Google Scholar] [CrossRef]
- Killen, B.A.; Saxby, D.J.; Fortin, K.; Gardiner, B.S.; Wrigley, T.V.; Bryant, A.L.; Lloyd, D.G. Individual muscle contributions to tibiofemoral compressive articular loading during walking, running and sidestepping. J. Biomech. 2018, 80, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, E.B.; Svendsen, M.B.; Nørreslet, A.; Baldvinsson, H.K.; Heilskov-Hansen, T.; Larsen, P.K.; Henriksen, M. Walking on high heels changes muscle activity and the dynamics of human walking significantly. J. Appl. Biomech. 2012, 28, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Barkema, D.D.; Derrick, T.R.; Martin, P.E. Heel height affects lower extremity frontal plane joint moments during walking. Gait Posture 2012, 35, 483–488. [Google Scholar] [CrossRef]
- Kerrigan, D.C.; Todd, M.K.; Riley, P.O. Knee osteoarthritis and high-heeled shoes. Lancet 1998, 351, 1399–1401. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Chang, C.B.; Kim, K.W.; Park, J.H.; Yoo, J.H.; Koh, I.J.; Kim, T.K. Gender and prevalence of knee osteoarthritis types in elderly Koreans. The Journal of arthroplasty 2011, 26, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, G.; Seedhom, B.B. Mechanical behaviour of articular cartilage under tensile cyclic load. Rheumatology 2001, 40, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Wilson, W.; Ito, K.; Van Donkelaar, C.C. A numerical model to study mechanically induced initiation and progression of damage in articular cartilage. Osteoarthr. Cartil. 2014, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
Minimal | Conventional | |
---|---|---|
Mass (g) | 167 | 285 |
Heel thickness (mm) | 7 | 25 |
Heel–toe drop (mm) | 0 | 14 |
Esculier et al. [23] minimalist index | 92 | 20 |
Non-Habitual | Habitual | |||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Age (years) | 26.15 | 4.74 | 27.00 | 3.26 |
Mass (kg) | 68.54 | 5.32 | 67.77 | 6.19 |
Stature (m) | 1.78 | 0.08 | 1.77 | 0.07 |
BMI (kg/m2) | 21.86 | 2.50 | 21.81 | 2.93 |
Weekly running volume (km) | 45.94 | 6.56 | 43.79 | 4.80 |
Duration of habitual minimal footwear utilization (months) | 45.80 | 9.28 |
Non-Habitual | Habitual | ||||||||
---|---|---|---|---|---|---|---|---|---|
Minimal | Conventional | Minimal | Conventional | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Probability of failure with repair (%) | 33.18 | 29.48 | 47.19 | 31.71 | 32.81 | 32.08 | 50.00 | 34.16 | A, B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinclair, J.; Huang, G.; Taylor, P.J.; Chockalingam, N.; Fan, Y. Effects of Running in Minimal and Conventional Footwear on Medial Tibiofemoral Cartilage Failure Probability in Habitual and Non-Habitual Users. J. Clin. Med. 2022, 11, 7335. https://doi.org/10.3390/jcm11247335
Sinclair J, Huang G, Taylor PJ, Chockalingam N, Fan Y. Effects of Running in Minimal and Conventional Footwear on Medial Tibiofemoral Cartilage Failure Probability in Habitual and Non-Habitual Users. Journal of Clinical Medicine. 2022; 11(24):7335. https://doi.org/10.3390/jcm11247335
Chicago/Turabian StyleSinclair, Jonathan, Guohao Huang, Paul John Taylor, Nachiappan Chockalingam, and Yifang Fan. 2022. "Effects of Running in Minimal and Conventional Footwear on Medial Tibiofemoral Cartilage Failure Probability in Habitual and Non-Habitual Users" Journal of Clinical Medicine 11, no. 24: 7335. https://doi.org/10.3390/jcm11247335
APA StyleSinclair, J., Huang, G., Taylor, P. J., Chockalingam, N., & Fan, Y. (2022). Effects of Running in Minimal and Conventional Footwear on Medial Tibiofemoral Cartilage Failure Probability in Habitual and Non-Habitual Users. Journal of Clinical Medicine, 11(24), 7335. https://doi.org/10.3390/jcm11247335