Impact of Exercise-Induced Pulmonary Hypertension on Right Ventricular Function and on Worsening of Cardiovascular Risk in HIV Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Collection
2.2. Echocardiography at Rest
2.3. Stress Echocardiography
2.4. Cardiopulmonary Stress Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 26, ehac237. [Google Scholar]
- Nunes, H.; Humbert, M.; Sitbon, O.; Morse, J.H.; Deng, Z.; Knowles, J.A.; Le Gall, C.; Parent, F.; Garcia, G.; Hervé, P.; et al. Prognostic factors for survival in human immunodeficiency virus-associated pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2003, 167, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Degano, B.; Guillaume, M.; Savale, L.; Montani, D.; Jaïs, X.; Yaici, A.; Le Pavec, J.; Humbert, M.; Simonneau, G.; Sitbon, O. HIV-associated pulmonary arterial hypertension: Survival and prognostic factors in the modern therapeutic era. AIDS 2010, 24, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Sitbon, O.; Lascoux-Combe, C.; Delfraissy, J.F.; Yeni, P.G.; Raffi, F.; De Zuttere, D.; Gressin, V.; Clerson, P.; Sereni, D.; Simonneau, G. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am. J. Respir. Crit. Care Med. 2008, 177, 108–113. [Google Scholar] [CrossRef]
- Humbert, M.; Monti, G.; Fartoukh, M.; Magnan, A.; Brenot, F.; Rain, B.; Capron, F.; Galanaud, P.; Duroux, P.; Simonneau, G.; et al. Platelet-derived growth factor expression in primary pulmonary hypertension: Comparison of HIV seropositive and HIV seronegative patients. Eur. Respir. J. 1998, 11, 554–559. [Google Scholar] [CrossRef]
- Naeije, R.; Vanderpool, R.; Dhakal, B.P.; Saggar, R.; Saggar, R.; Vachiery, J.L.; Lewis, G.D. Exercise-induced pulmonary hypertension: Physiological basis and methodological concerns. Am. J. Respir. Crit. Care Med. 2013, 187, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.E.; Zern, E.K.; Lau, E.S.; Wooster, L.; Bailey, C.S.; Cunningham, T.; Eisman, A.S.; Hardin, K.M.; Farrell, R.; Sbarbaro, J.A.; et al. Exercise Pulmonary Hypertension Predicts Clinical Outcomes in Patients with Dyspnea on Effort. J. Am. Coll. Cardiol. 2020, 75, 17–26. [Google Scholar] [CrossRef]
- Stamm, A.; Saxer, S.; Lichtblau, M.; Hasler, E.D.; Jordan, S.; Huber, L.C.; Bloch, K.E.; Distler, O.; Ulrich, S. Exercise pulmonary haemodynamics predict outcome in patients with systemic sclerosis. Eur. Respir. J. 2016, 48, 1658–1667. [Google Scholar] [CrossRef] [Green Version]
- Madonna, R.; Fabiani, S.; Morganti, R.; Forniti, A.; Biondi, F.; Ridolfi, L.; Iapoce, R.; Menichetti, F.; De Caterina, R. Exercise-Induced Pulmonary Hypertension Is Associated with High Cardiovascular Risk in Patients with HIV. J. Clin. Med. 2022, 11, 2447. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Mazzola, M.; Madonna, R.; Gargani, L.; De Biase, N.; Dini, F.L.; Taddei, S.; De Caterina, R.; Masi, S. Exercise-induced pulmonary hypertension in HFpEF and HFrEF: Different pathophysiologic mechanism behind similar functional impairment. Vascul. Pharmacol. 2022, 144, 106978. [Google Scholar] [CrossRef]
- Madonna, R.; Bonitatibus, G.; Vitulli, P.; Pierdomenico, S.D.; Galiè, N.; De Caterina, R. Association of the European Society of Cardiology echocardiographic probability grading for pulmonary hypertension with short and mid-term clinical outcomes after heart valve surgery. Vascul. Pharmacol. 2020, 125, 106648. [Google Scholar] [CrossRef] [PubMed]
- Madonna, R.; Fabiani, S.; Morganti, R.; Forniti, A.; Mazzola, M.; Menichetti, F.; De Caterina, R. Exercise-induced pulmonary hypertension in HIV patients: Association with poor clinical and immunological status. Vascul. Pharmacol. 2021, 139, 106888. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Nishimura, R.A.; Sorajja, P.; Lam, C.S.; Redfield, M.M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ. Heart Fail. 2010, 3, 588–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [PubMed]
- Quezada, M.; Martin-Carbonero, L.; Soriano, V.; Vispo, E.; Valencia, E.; Moreno, V.; de Isla, L.P.; Lennie, V.; Almería, C.; Zamorano, J.L. Prevalence and risk factors associated with pulmonary hypertension in HIV-infected patients on regular follow-up. AIDS 2012, 26, 1387–1392. [Google Scholar] [CrossRef]
- Sicari, R.; Nihoyannopoulos, P.; Evangelista, A.; Kasprzak, J.; Lancellotti, P.; Poldermans, D.; Voigt, J.U.; Zamorano, J.L. European Association of Echocardiography. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur. J. Echocardiogr. 2008, 9, 415–437. [Google Scholar] [CrossRef] [Green Version]
- Steen, V.; Chou, M.; Shanmugam, V.; Mathias, M.; Kuru, T.; Morrissey, R. Exercise- induced pulmonary arterial hypertension in patients with systemic sclerosis. Chest 2008, 134, 146–151. [Google Scholar] [CrossRef]
- Voilliot, D.; Magne, J.; Dulgheru, R.; Kou, S.; Henri, C.; Caballero, L.; De Sousa, C.; Sprynger, M.; Andre, B.; Pierard, L.A.; et al. Prediction of new onset of resting pulmonary arterial hypertension in systemic sclerosis. Arch. Cardiovasc. Dis. 2016, 109, 268–277. [Google Scholar] [CrossRef]
- Janosi, A.; Apor, P.; Hankoczy, J.; Kadar, A. Pulmonary artery pressure and oxygen consumption measurement during supine bicycle exercise. Chest 1988, 93, 419–421. [Google Scholar] [CrossRef]
- Alkotob, M.L.; Soltani, P.; Sheatt, M.A.; Katsetos, M.C.; Rothfield, N.; Hager, W.D.; Foley, R.J.; Silverman, D.I. Reduced exercise capacity and stress-induced pulmonary hypertension in patients with scleroderma. Chest 2006, 130, 176–181. [Google Scholar] [CrossRef]
- Collins, N.; Bastian, B.; Quiqueree, L.; Jones, C.; Morgan, R.; Reeves, G. Abnormal pulmonary vascular responses in patients registered with a systemic autoimmunity database: Pulmonary Hypertension Assessment and Screening Evaluation using stress echocardiography (PHASE-I). Eur. J. Echocardiogr. 2006, 7, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Madonna, R.; Morganti, R.; Radico, F.; Vitulli, P.; Mascellanti, M.; Amerio, P.; De Caterina, R. Isolated Exercise-Induced Pulmonary Hypertension Associates with Higher Cardiovascular Risk in Scleroderma Patients. J. Clin. Med. 2020, 9, 1910. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.J.; Sarode, A.; Al-Kindi, S.; Shaver, L.; Thomas, R.; Watson, E.; Alaiti, M.A.; Liu, Y.; Hamilton, J.; Seiberlich, N.; et al. Evaluation of dyspnea of unknown etiology in HIV patients with cardiopulmonary exercise testing and cardiovascular magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 2020, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Doukky, R.; Lee, W.Y.; Ravilla, M.; Lateef, O.B.; Pelaez, V.; French, A.; Tandon, R. A novel expression of exercise induced pulmonary hypertension in human immunodeficiency virus patients: A pilot study. Open Cardiovasc. Med. J. 2012, 6, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goerlich, E.; Mukherjee, M.; Schar, M.; Brown, T.T.; Bonanno, G.; Weiss, R.G.; Hays, A.G. Noninvasive detection of impaired pulmonary artery endothelial function in people living with HIV. AIDS 2020, 34, 2231–2238. [Google Scholar] [CrossRef]
- Kusunose, K.; Yamada, H.; Hotchi, J.; Bando, M.; Nishio, S.; Hirata, Y.; Ise, T.; Yamaguchi, K.; Yagi, S.; Soeki, T.; et al. Prediction of Future Overt Pulmonary Hypertension by 6-Min Walk Stress Echocardiography in Patients with Connective Tissue Disease. J. Am. Coll. Cardiol. 2015, 66, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Naeije, R.; Saggar, R.; Badesch, D.; Rajagopalan, S.; Gargani, L.; Rischard, F.; Ferrara, F.; Marra, A.M.; D’ Alto, M.; Bull, T.M.; et al. Exercise-Induced Pulmonary Hypertension: Translating Pathophysiological Concepts into Clinical Practice. Chest 2018, 154, 10–15. [Google Scholar] [CrossRef]
- Suzuki, K.; Izumo, M.; Kamijima, R.; Mizukoshi, K.; Takai, M.; Kida, K.; Yoneyama, K.; Nobuoka, S.; Yamada, H.; Akashi, Y.J. Influence of pulmonary vascular reserve on exercise-induced pulmonary hypertension in patients with systemic sclerosis. Echocardiography 2015, 32, 428–435. [Google Scholar] [CrossRef]
- Krüger, S.; Graf, J.; Kunz, D.; Stickel, T.; Hanrath, P.; Janssens, U. Brain natriuretic peptide levels predict functional capacity in patients with chronic heart failure. J. Am. Coll. Cardiol. 2002, 40, 718–722. [Google Scholar] [CrossRef] [Green Version]
- Tsutamoto, T.; Wada, A.; Maeda, K.; Hisanaga, T.; Maeda, Y.; Fukai, D.; Ohnishi, M.; Sugimoto, Y.; Kinoshita, M. Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: Prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 1997, 96, 509–516. [Google Scholar] [CrossRef]
- Omland, T.; Aakvaag, A.; Bonarjee, V.V.; Caidahl, K.; Lie, R.T.; Nilsen, D.W.; Sundsfjord, J.A.; Dickstein, K. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction: Comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation 1996, 93, 1963–1969. [Google Scholar] [CrossRef] [PubMed]
- Koglin, J.; Pehlivanli, S.; Schwaiblmair, M.; Vogeser, M.; Cremer, P.; von Scheidt, W. Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure. J. Am. Coll. Cardiol. 2001, 38, 1934–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, M.R.; Burger, A.J. BNP in decompensated heart failure: Diagnostic, prognostic and therapeutic potential. Curr. Opin. Investig. Drugs 2001, 2, 929–935. [Google Scholar] [PubMed]
- Nagaya, N.; Nishikimi, T.; Okano, Y.; Uematsu, M.; Satoh, T.; Kyotani, S.; Kuribayashi, S.; Hamada, S.; Kakishita, M.; Nakanishi, N.; et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 1998, 31, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Nootens, M.; Kaufmann, E.; Rector, T.; Toher, C.; Judd, D.; Francis, G.S.; Rich, S. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: Relation to hemodynamic variables and endothelin levels. J. Am. Coll. Cardiol. 1995, 26, 1581–1585. [Google Scholar] [CrossRef] [Green Version]
- Leuchte, H.H.; Holzapfel, M.; Baumgartner, R.A.; Neurohr, C.; Vogeser, M.; Behr, J. Characterization of brain natriuretic peptide in long-term follow-up of pulmonary arterial hypertension. Chest 2005, 128, 2368–2374. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, N.; Nishikimi, T.; Uematsu, M.; Satoh, T.; Kyotani, S.; Sakamaki, F.; Kakishita, M.; Fukushima, K.; Okano, Y.; Nakanishi, N.; et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 2000, 102, 865–870. [Google Scholar] [CrossRef]
Parameter | ExPH No | ExPH Yes | p-Value |
---|---|---|---|
LVEDD (mm) | 46 (43–52) | 43 (40–46) | 0.123 |
LVESD (mm) | 29 (25–35) | 24 (20–34) | 0.146 |
LVEDV (mL) | 104 (82–125) | 91 (76–117) | 0.411 |
iLVEDV (mL/m2) | 36 (30–43) | 33 (25–39) | 0.232 |
LVESV (mL) | 40 (28–46) | 35 (21–47) | 0.537 |
iLVESV (mL/cm2) | 13 (10–16) | 12 (10–15) | 0.411 |
LVmass (g) | 160 (131–194) | 151 (104–178) | 0.243 |
iLVmass (g/m2) | 77 (57–93) | 63 (40–86) | 0.208 |
LAD (mm) | 48 (42–52) | 49 (39–52) | 0.888 |
LAV (mL) | 35 (22–50) | 32 (22–38) | 0.404 |
iLAV (mL/m2) | 12 (7–23) | 13 (5–30) | 0.517 |
LVEF (%) | 65 (59–70) | 61 (60–70) | 0.908 |
E wave (cm/s) | 70 (56–80) | 77 (61–87) | 0.154 |
A wave (cm/s) | 70 (57–82) | 79 (63–90) | 0.243 |
Septal E wave (cm/s) | 10 (7–12) | 10 (5–10) | 0.194 |
E/A | 0.9 (0.7–1.4) | 0.9 (0.7–1.4) | 0.990 |
E/e’ | 6 (5–9) | 8.1 (6.8–11) | 0.039 |
iRVESA (cm2/m2) | 4.1 (3.2–5.1) | 5.3 (4.5–5.9) | 0.070 |
iRVEDA (cm2/m2) | 6 (5–8) | 7 (6–9) | 0.425 |
iRVESV (mL/m2) | 6 (3–8) | 5 (3–7) | 0.877 |
iRVEDV (mL/m2) | 15 (10–18) | 13 (9–16) | 0.322 |
RD1 (mm) | 37 (33–40) | 34 (32–42) | 0.441 |
RD2 (mm) | 32 (28–35) | 28 (24–35) | 0.129 |
RD3 (mm) | 19 (15–23) | 15 (11–22) | 0.169 |
RVOT prox (mm) | 32 (28–38) | 34 (30–35) | 0.888 |
RVOT dist (mm) | 34 (30–39) | 33 (30–37) | 0.537 |
Eccentricity index | 0.9 (0.9–1) | 0.9 (0.8–1) | 0.501 |
Right ventricle/left ventricle basal diameter ratio | 0.8 (0.7–0.9) | 0.8 (0.7–0.9) | 0.443 |
TAPSE (mm) | 22 (19–24) | 16.5 (15.5–17) | <0.001 |
FAC (%) | 51 (46–54) | 43 (39–49) | 0.010 |
ERV/ARV | 1.4 (0.8–1.7) | 0.7 (0.6–0.9) | 0.001 |
ERV/e′ | 3.2 (2.1–5.2) | 2.7 (2.4–4.3) | 0.721 |
SRV vel | 12 (10–14) | 12 (9–14) | 0.802 |
SRV VTI | 2.6 (2.1–3.4) | 1.9 (1.7–2.3) | 0.047 |
sPAP(mmHg) | 21 (19–27) | 35 (30–41) | <0.001 |
mPAP (mmHg) | 15 (13–18) | 20 (19–25) | 0.004 |
TR velocity (m/s) | 2 (1.8–2.3) | 2.8 (2.1–3) | 0.006 |
Right ventricular out flow doppler acceleration (t/s) | 110 (81–130) | 120 (116–147) | 0.108 |
VCI diameter (mm) | 16 (13–17) | 16 (15–17) | 0.765 |
Right atrial area (cm2) | 14 (12–16) | 21 (20–25) | <0.001 |
iRAV (mL/m2) | 5.3 (4.1–6.9) | 8.1 (6.2–11.1) | 0.004 |
VTI rvot | 15 (13–16) | 13 (12–14) | 0.133 |
VRT/VTI rvot | 0.1 (0.1–0.2) | 0.3 (0.2–0.3) | <0.001 |
TAPSE/PAPs | 1 (0.8–1.3) | 0.9 (0.4–1.4) | 0.279 |
Concentric_remodeling | 0.258 | ||
no | 20 | 5 | |
yes | 13 | 7 | |
Normal_geometry | 0.286 | ||
no | 19 | 9 | |
yes | 14 | 3 | |
Concentric_hypertophy | 0.721 | ||
no | 29 | 11 | |
yes | 4 | 1 | |
Eccentric_hypertrophy | 0.787 | ||
no | 31 | 11 | |
yes | 2 | 1 | |
MR | 0.366 | ||
no | 17 | 8 | |
yes | 16 | 4 | |
AO | 0.552 | ||
no | 28 | 11 | |
yes | 5 | 1 |
Parameter | Low | Intermediate + High | p-Value |
---|---|---|---|
LVEDD (mm) | 46 (42–52) | 45 (41–49) | 0.608 |
LVESD (mm) | 28 (23–33) | 29 (21–36) | 0.891 |
LVEDV (mL) | 106 (88–125) | 96 (77–123) | 0.426 |
iLVEDV (mL/m2) | 36 (30–41) | 33 (27–41) | 0.516 |
LVESV (mL) | 41 (25–46) | 35 (26–47) | 0.480 |
iLVESV (mL/cm2) | 14 (10–16) | 12 (10–15) | 0.426 |
LVmass (g) | 162 (136–194) | 150 (118–181) | 0.195 |
iLVmass (g/m2) | 77 (57–94) | 66 (44–91) | 0.333 |
LAD (mm) | 51 (42–55) | 46 (41–51) | 0.165 |
LAV (mL) | 44 (27–50) | 31 (20–39) | 0.065 |
iLAV (mL/m2) | 11 (8–15) | 13 (8–17) | 0.523 |
LVEF (%) | 65 (60–70) | 62 (59–70) | 0.864 |
E wave (cm/s) | 72 (56–85) | 71 (59–82) | 0.955 |
A wave (cm/s) | 73 (58–84) | 69 (57–86) | 0.608 |
Septal E wave (cm/s) | 10 (7–12) | 10 (7–12) | 0.698 |
E/A | 0.9 (0.7–1.4) | 0.9 (0.7–1.4) | 0.622 |
E/e′ | 7 (5–10) | 7 (6–9) | 0.855 |
iRVESA (cm2/m2) | 4 (3–5) | 5 (3–6) | 0.284 |
iRVEDA (cm2/m2) | 6 (5–8) | 7 (5–9) | 0.945 |
iRVESV (mL/m2) | 5 (3–12) | 5 (1–10) | 0.855 |
iRVEDV (mL/m2) | 15 (12–18) | 13 (9–16) | 0.380 |
RD1 (mm) | 37 (33–40) | 34 (32–40) | 0.439 |
RD2 (mm) | 33 (29–35) | 30 (26–34) | 0.148 |
RD3 (mm) | 18 (17–23) | 18 (13–24) | 0.508 |
RVOT prox (mm) | 33 (28–38) | 34 (29–35) | 0.909 |
RVOT dist (mm) | 34 (30–38) | 33 (28–38) | 0.546 |
Eccentricity index | 0.9 (0.9–1.1) | 0.9 (0.9–1) | 0.156 |
Right ventricle/left ventricle basal diameter ratio | 0.8 (0.7–0.9) | 0.8 (0.8–0.9) | 0.558 |
TAPSE (mm) | 21 (18–24) | 20 (17–23) | 0.186 |
FAC (%) | 52 (45–55) | 49 (43–51) | 0.092 |
ERV/ARV | 1.4 (0.8–1.7) | 0.9 (0.7–1.5) | 0.298 |
ERV/e′ | 3.1 (2.3–6) | 2.8 (2.6–3.2) | 0.334 |
SRV vel | 12 (9–14) | 13 (10–16) | 0.338 |
SRV VTI | 2.6 (1.9–3.1) | 2.2 (1.9–3.2) | 0.866 |
sPAP(mmHg) | 20 (18–27) | 29 (23–35) | 0.005 |
mPAP (mmHg) | 14 (13–18) | 18 (16–22) | 0.019 |
TR velocity (m/s) | 1.9 (1.6–2.3) | 2.3 (1.9–2.8) | 0.009 |
Right ventricular out flow doppler acceleration (t/) | 106 (77–130) | 119 (101–139) | 0.183 |
VCI diameter (mm) | 15 (12–16) | 16 (15–17) | 0.073 |
Right atrial area (cm2) | 13.5 (11.1–16) | 19 (14.6–22.5) | 0.010 |
iRAV (mL/m2) | 5 (4–7) | 6 (5–9) | 0.168 |
VTI rvot | 15 (13.2–16.6) | 13.6 (12.2–15.3) | 0.062 |
VRT/VTI rvot | 0.1 (0.1–0.1) | 0.2 (0.2–0.3) | 0.004 |
TAPSE/PAPs | 1.1 (0.8–1.5) | 0.9 (0.7–1.3) | 0.230 |
Concentric_remodeling | 0.161 | ||
no | 14 | 11 | |
yes | 7 | 13 | |
Normal_geometry | 0.967 | ||
no | 13 | 15 | |
yes | 8 | 9 | |
Concentric_hypertophy | 0.133 | ||
no | 17 | 23 | |
yes | 4 | 1 | |
Eccentric_hypertrophy | 0.472 | ||
no | 19 | 23 | |
yes | 2 | 1 | |
MR | 0.316 | ||
no | 10 | 15 | |
yes | 11 | 9 | |
AO | 0.860 | ||
no | 18 | 21 | |
yes | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madonna, R.; Ridolfi, L.; Morganti, R.; Biondi, F.; Fabiani, S.; Forniti, A.; Iapoce, R.; De Caterina, R. Impact of Exercise-Induced Pulmonary Hypertension on Right Ventricular Function and on Worsening of Cardiovascular Risk in HIV Patients. J. Clin. Med. 2022, 11, 7349. https://doi.org/10.3390/jcm11247349
Madonna R, Ridolfi L, Morganti R, Biondi F, Fabiani S, Forniti A, Iapoce R, De Caterina R. Impact of Exercise-Induced Pulmonary Hypertension on Right Ventricular Function and on Worsening of Cardiovascular Risk in HIV Patients. Journal of Clinical Medicine. 2022; 11(24):7349. https://doi.org/10.3390/jcm11247349
Chicago/Turabian StyleMadonna, Rosalinda, Lorenzo Ridolfi, Riccardo Morganti, Filippo Biondi, Silvia Fabiani, Arianna Forniti, Riccardo Iapoce, and Raffaele De Caterina. 2022. "Impact of Exercise-Induced Pulmonary Hypertension on Right Ventricular Function and on Worsening of Cardiovascular Risk in HIV Patients" Journal of Clinical Medicine 11, no. 24: 7349. https://doi.org/10.3390/jcm11247349
APA StyleMadonna, R., Ridolfi, L., Morganti, R., Biondi, F., Fabiani, S., Forniti, A., Iapoce, R., & De Caterina, R. (2022). Impact of Exercise-Induced Pulmonary Hypertension on Right Ventricular Function and on Worsening of Cardiovascular Risk in HIV Patients. Journal of Clinical Medicine, 11(24), 7349. https://doi.org/10.3390/jcm11247349